Table 2.
Two-class classification results: Dataset 1.
CNN | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | score | AUC |
---|---|---|---|---|---|---|
80% training and 20% testing | ||||||
AlexNet | 99.14 ± 0.62 | 98.44 ± 1.19 | 99.51 ± 0.66 | 99.10 ± 1.21 | 0.988 ± 0.009 | 0.999 ± 0.002 |
GoogLeNet | 99.70 ± 0.52 | 100 ± 0.00 | 99.54 ± 0.80 | 99.16 ± 1.46 | 0.996 ± 0.007 | 0.999 ± 0.000 |
SqueezeNet | 99.85 ± 0.26 | 100 ± 0.00 | 99.77 ± 0.40 | 99.57 ± 0.74 | 0.998 ± 0.004 | 0.999 ± 0.000 |
50% training and 50% testing | ||||||
AlexNet | 99.19 ± 0.23 | 98.32 ± 0.65 | 99.65 ± 0.14 | 99.35 ± 0.26 | 0.988 ± 0.003 | 0.999 ± 0.000 |
GoogLeNet | 99.22 ± 0.46 | 99.14 ± 0.60 | 99.26 ± 0.42 | 98.63 ± 0.79 | 0.989 ± 0.007 | 0.999 ± 0.002 |
SqueezeNet | 98.43 ± 2.10 | 95.85 ± 6.28 | 99.81 ± 0.32 | 99.66 ± 0.032 | 0.976 ± 0.000 | 0.999 ± 0.000 |