Table 7.
Three-class classification results: Dataset 6
| CNN | Accuracy (%) | Sensitivity (%) | Specificity (%) | Precision (%) | score | AUC |
|---|---|---|---|---|---|---|
| 90% training and 10% testing | ||||||
| AlexNet | 97.59 ± 0.60 | 95.45 ± 4.55 | 97.76 ± 0.37 | 98.55 ± 2.51 | 0.969 ± 0.014 | 0.998 ± 0.004 |
| GoogLeNet | 96.09 ± 2.30 | 96.97 ± 2.62 | 96.02 ± 2.28 | 98.48 ± 2.62 | 0.977 ± 0.023 | 0.999 ± 0.004 |
| SqueezeNet | 97.47 ± 1.31 | 98.48 ± 2.62 | 97.39 ± 1.30 | 94.20 ± 2.51 | 0.963 ± 0.026 | 0.999 ± 0.009 |
| 50% training and 50% testing | ||||||
| AlexNet | 95.89 ± 0.42 | 92.11 ± 6.31 | 96.20 ± 0.66 | 96.66 ± 2.30 | 0.942 ± 0.029 | 0.998 ± 0.000 |
| GoogLeNet | 96.07 ± 0.63 | 95.23 ± 1.51 | 96.14 ± 0.72 | 95.24 ± 1.72 | 0.952 ± 0.015 | 0.999 ± 0.001 |
| SqueezeNet | 95.95 ± 0.52 | 92.11 ± 3.02 | 96.26 ± 0.63 | 96.75 ± 1.20 | 0.943 ± 0.014 | 0.998 ± 0.001 |