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Abstract

Meta-analyses of clinical trials typically focus on one outcome at a time. However, treatment 

decision-making depends on an overall assessment of outcomes balancing benefit in various 

domains and potential risks. This calls for meta-analysis methods for combined outcomes that 

encompass information from different domains. When individual patient data (IPD) are available 

from all studies, combined outcomes can be calculated for each individual and standard meta-

analysis methods would apply. However, IPD are usually difficult to obtain. We propose a method 

to estimate the overall treatment effect for combined outcomes based on first reconstructing 

pseudo IPD from available summary statistics and then pooling estimates from multiple 

reconstructed datasets. We focus on combined outcomes constructed from two continuous original 

outcomes. The reconstruction step requires the specification of the joint distribution of these two 

original outcomes, including the correlation which is often unknown. For outcomes that are 

combined in a linear fashion, misspecifications of this correlation affect efficiency, but not 

consistency, of the resulting treatment effect estimator. For other combined outcomes, an accurate 

estimate of the correlation is necessary to ensure the consistency of treatment effect estimates. To 

this end, we propose several ways to estimate this correlation under different data availability 

scenarios. We evaluate the performance of the proposed methods through simulation studies and 

apply these to two examples: (1) a meta-analysis of dipeptidyl peptidase-4 inhibitors versus 

control on treating type 2 diabetes; (2) a meta-analysis of positive airway pressure therapy versus 

control on lowering blood pressure among patients with obstructive sleep apnea.
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1 Introduction

Meta-analysis is widely used in evidence-based clinical research for intervention 

evaluations. In clinical practice, treatment decision-making depends on an overall 

assessment of the patient-level outcomes balancing benefit in various domains and potential 

risks. Oftentimes a variety of outcome measures are reported in randomized clinical trials 

(RCTs), which naturally elicits the question of how to synthesize treatment effects across 

studies on multiple outcomes simultaneously. This motivates us to consider a single measure 

that is carefully constructed to reflect the effectiveness of an intervention across different 

outcomes. We henceforth refer to this type of measures as combined outcomes, and the 

reported outcomes that contribute to it as original outcomes.

Use of combined outcomes is commonplace in clinical assessment, such as the Apgar Score,
1 the Glasgow Coma Scale,2 the Elixhauser Comorbidity Index,3 etc. These three examples 

are all constructed by summing up the component scores, which is a conventional way of 

constructing combined outcomes. However, the construction of combined outcomes can take 

on more complex forms than summation and can pool information from outcomes of 

different types. For instance, Evans et al4 proposed a way for the evaluation of antibiotic use 

strategies that was based on the desirability of outcome ranking (DOOR) as a unified 

measure of both an overall clinical outcome (an ordinal variable with 5 mutually exclusive 

levels of desirability based on clinical benefit and adverse effects (AE) ranging from clinical 

benefit without AE to death) and the duration of antibiotic use (a continuous variable). As 

the name suggests, the construction of DOOR involves ranking all trial participants with 

respect to the desirability of their clinical outcomes. When two participants have the same 

clinical outcome, the one with a shorter duration of antibiotic use receives a higher rank. We 

differentiate the term combined outcome from composite outcome. The latter is commonly 

seen in the survival analysis literature, where it refers to a collection of different outcomes 

and the interest lies in the time to any one of these outcomes, for example, time to major 

adverse cardiac events or death.5 In contrast, a combined outcome is designed to represent a 

clinically meaningful synthesis of multiple outcomes and can be a function of variables of 

different types including continuous, binary, or ordinal.

When IPD are available, combined outcomes can be easily obtained for each individual, and 

standard meta-analysis methods apply. However, in practice IPD are rarely available to 

meta-analysts. Instead, aggregate data (AD), such as group means and the associated 

standard errors of the original outcomes are readily accessible through published literature. 

These AD carry important distributional information about components of combined 

outcomes. The question now becomes whether one can make inferences about treatment 

effects on combined outcomes by exploiting AD of the original outcomes with limited or no 

IPD.

Song et al. Page 2

Res Synth Methods. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When more than one outcome is of interest, multivariate meta-analysis (MVMA) methods 

can be employed to jointly estimate treatment effects on several outcomes. MVMA extends 

the two-stage estimation procedure from univariate meta-analysis, where each study supplies 

a vector of treatment effect estimates together with an estimated variance-covariance matrix. 

Based on the hierarchical multivariate normality for study-specific treatment effect estimates 

on multiple outcomes, parameters of interest can be estimated through maximum likelihood,
6,7 restricted maximum likelihood,6,8 profile likelihood7 or Bayesian methods.9–11 Other 

estimating procedures based on the method of moments12–14 and the use of U-statistics15 

have also been developed.

One main advantage of MVMA over separate univariate meta-analyses is the improvement 

in efficiency resulting from joint modeling multiple outcomes and accounting for their 

correlations.16,17 Correctly specifying the correlations facilitates the “borrowing of 

information” across multiple outcomes and leads to efficiency gain.16,18 It has been 

demonstrated through both analytical and simulation studies that ignoring within-study 

correlations can result in increased mean squared errors and standard errors of the pooled 

estimates, especially when the between- and within-study covariances are of comparable 

scale.18,19 However, within-study correlations are typically assumed known without error in 

MVMA and concerns have been raised about the unavailability of within-study correlations 

from study reports.6,16,18,20 Wei and Higgins21 derived analytical formulae for estimating 

within-study correlations between study-specific treatment effect estimates on bivariate 

outcomes. Their method is able to handle various types of effect measures including the 

standard difference in means, log odds/risk ratio, etc, but requires knowledge of the 

correlation between the original outcome measures. Alternative options for MVMA when 

within-study correlations are unknown18 include using approximation techniques,22 

obtaining IPD,23,24 narrowing the range of possible values,25 conducting sensitivity analyses 

over the entire parameter space,26 and employing an alternative model that does not require 

the specification of within-study correlations.27,28

Although MVMA makes use of correlations among multiple outcomes, inference is 

typically made for each original outcome separately. It is possible to make inference about a 

smooth function of the treatment effect vector through the use of the Delta method.29 In 

some settings MVMA can be used to make inference about combined outcomes. For 

example, in a bivariate meta-analysis of two continuous outcomes U and V, suppose that 

treatment effects on both outcomes are estimated using mean differences between 

intervention groups, and the pooled estimates are ΔU, ΔV  with an estimated variance-

covariance matrix Σ. Based on the results of MVMA, one can make inference about a 

combined outcome of the form aU + bV where a, b are constants.13,16,27 However, settings 

like this are limited. One key difference is that we consider a function of the original 

outcomes, while the MVMA methods work with the vector of study-specific treatment 

effects and the functions thereof. It is not obvious how the existing MVMA methods would 

handle outcomes that combine information from two original outcomes in a non-linear 

fashion. Take our data application in Section 4.2 for example, where the original outcomes 

are systolic and diastolic blood pressures (SBP and DBP). We are interested in estimating 

the treatment effect on the combined outcome which is a binary indicator of whether a 
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patient’s SBP is over 130 mmHg or DBP is over 80 mmHg, i.e., 1(SBP > 130 or DBP > 80), 

where we use 1(·) to denote the indicator function. This combined outcome signifies whether 

a patient has elevated blood pressure. While standard MVMA can provide estimates of 

treatment effects on SBP, DBP, or more generally, a linear combination of SBP and DBP, 

i.e., aSBP+bDBP where a, b are fixed constants, taking into account the correlation between 

SBP and DBP, for outcomes such as 1(SBP > 130 or DBP > 80), they no longer apply.

In this paper, we develop meta-analysis methods for combined outcomes that are based on 

the reconstruction of IPD. If we view the unavailable IPD as missing values, this approach 

can be considered as an imputation approach. For each set of pseudo IPD, we can calculate 

the values of combined outcomes and apply standard random-effects methods to obtain the 

pooled treatment effect estimates. We then follow the multiple imputation approach30 and 

take the average of the overall treatment effect estimates from multiple reconstructed IPD to 

be our final treatment effect estimate.

The proposed approach complements existing MVMA methods by expanding the variety of 

combined outcomes that could be meta-analyzed based on AD and/or partial IPD. Because 

once complete (pseudo) IPD have been generated, they can be used to construct any types of 

combined outcomes. Having IPD also permits the use of one-stage approaches that analyze 

data from all studies simultaneously under a hierarchical model without first obtaining 

study-specific estimates.31

The idea of reconstructing IPD has been previously explored in other settings. 

Papadimitropoulou et al32 found that fitting linear mixed effect models to reconstructed IPD 

led to treatment effect estimates that were comparable to those obtained through traditional 

aggregate data meta-analyses. Analysis of reconstructed IPD has also been shown to 

facilitate the detection of treatment-covariate interactions.33 In meta-analysis of survival 

data, an algorithm has been developed to map digitised Kaplan-Meier (KM) curves back to 

the data that generate these plots using information on numbers of events and numbers at 

risk. The algorithm demonstrated considerable accuracy in reproducing sample statistics 

including survival probabilities, medians and hazard ratios.34

The remainder of the article is organized as follows. In Section 2, we describe the proposed 

reconstruction and estimation procedure. Section 3 presents results from our simulation 

study. In Section 4, we illustrate the proposed method with two data examples: the first is a 

meta-analysis of dipeptidyl peptidase-4 inhibitors (DPP4-I) versus control in treating 

patients with type 2 diabetes, where the combined outcome of interest depends on both 

change in hemoglobin A1c (HbA1c) level and change in body weight; and the second 

involves a meta-analysis of the effect of positive airway pressure (PAP) in reducing blood 

pressure among patients with obstructive sleep apnea (OSA). Section 5 offers some 

discussion and concluding remarks.
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2 Methods

2.1 Notation and setting

We consider a meta-analysis of J independent two-arm RCTs with two continuous original 

outcomes U and V . Let i = 1 or 2 denote the treatment or the control arm respectively. We 

use j = 1, · · · , J to index studies and k = 1, … , nij to index patients, where nij is the number 

of subjects assigned to arm i of study j. We assume that the studies are randomly sampled 

from an underlying population where the grand means of responses for individuals in 

intervention arm i are μiU and μi
V  respectively. Let γijU, γij

V  denote the mean responses for 

individuals in arm i of study j. We assume that the joint distribution of γijU, γij
V  has finite first 

and second moments that are given below:

E γijU = μiU,
E γij

V = μi
V ,

V ar γijU = τiU
2,

V ar γij
V = τi

V 2,
Cov γijU, γij

V = κτiUτi
V .

Following convention, we use E[X] and V ar(X) to represent the marginal expectation and 

variance of a random variable X respectively, and Cov(X1, X2) to represent the covariance 

between random variables X1 and X2. We assume a random-effects model that permits 

heterogeneous treatment effects across studies. Such between-study heterogeneity often 

exists due to differences in study populations, or in the design and execution of the studies.35 

We further assume that, conditioning on intervention arm i and study membership j, the joint 

distribution of two original outcomes of the same individual satisfies the following:

E Uijk ∣ γijU, γij
V = γijU,

E V ijk ∣ γijU, γij
V = γij

V ,

V ar Uijk ∣ γijU, γij
V = σijU

2,

V ar V ijk ∣ γijU, γij
V = σij

V 2,
Cov Uijk, V ijk ∣ γijU, γij

V = ρσijUσij
V .

Lastly we assume that the marginal distribution of each original outcome conditioning on 

intervention arm i and study membership j, i.e. the distributions of Uijk ∣ γijU, γij
V  and 

V ijk ∣ γijU, γij
V , are functionally independent of ρ. The above hierarchical model allows for 

both the within-individual correlation (ρ) and the correlation induced by study-level 

characteristics (κ).

Let g(·, ·) be a user-specified known function, and Y = g(U, V) is a combined outcome 

constructed from the original outcomes U and V. For example, g(U, V) = U +V leads to a 

continuous outcome Y which is the sum of the original outcomes; and g(U, V) = 1(U > a, V 
> b) yields a binary outcome Y that indicates whether or not original outcomes U and V are 

greater than some constants a and b. For simplicity of notation, let Ej[X] denote the 
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expectation of a random variable X conditional on study membership j (i.e. conditional on 

γijU, γij
V ). Let θj = ℎ Ej Y 1jk − ℎ Ej Y 2jk  denote the treatment effect on the combined 

outcome for study j, where h(·) is the link function that specifies the metric on which the 

comparison between two intervention arms is made. For example, when Yijk is a continuous 

outcome, we may choose h(·) as the identity function, then θj represents the difference in 

means. When Yijk is a binary outcome, we may choose h(·) to be the logit function, that is, 

ℎ x = log x
1 − x , then θj represents the log odds ratio.

As in conventional random-effects meta-analyses, we assume that the study-specific effect 

sizes θj, j = 1, · · · J, are a random sample from some underlying distribution G(·). 

Commonly-used random-effects meta-analysis techniques, for example, the DerSimonian-

Laird method,36 focus on making inference about the mean of this distribution. Similarly, 

our objective is to estimate the overall effect size defined as:

θ0: = EG θj .

To achieve this goal, conventional two-stage meta-analysis methods require a treatment 

effect estimate θ j together with an estimated standard error from each study. These estimates 

are straightforward to calculate if IPD are available from all studies. Therefore, we focus on 

the settings where IPD are not available for some studies. We divide participating studies 

into two categories based on the type of data they contribute. Let A denote the collection of 

studies for which only AD are available. That is, for j ∈ A, only summary statistics of the 

original outcomes nij, Uij, V ij, sijU, sij
V : i = 1, 2  are available, where

Uij = 1
nij ∑

k = 1

nij
Uijk,

V ij = 1
nij ∑

k = 1

nij
V ijk,

sijU =
∑k = 1

nij Uijk − Uij
2

nij nij − 1
,

sij
V =

∑k = 1
nij V ijk − V ij

2

nij nij − 1
.

Let ℐ denote the set of studies with available IPD, that is, for j ∈ ℐ, all individual-level 

outcomes Uijk, V ijk :k = 1, …, nij, i = 1, 2  are available.

Although our model specification shares similar hierarchical structures as the standard 

random-effects MVMA model, they differ substantially. We impose our modeling 

assumptions directly on the original individual outcomes, whereas the MVMA approaches 

typically postulate modeling assumptions on individual study treatment effect estimates. 

Furthermore, although both models involve within- and between-study correlations, these 

parameters refer to different quantities under the two models. For MVMA, the within-study 
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correlation refers to correlation between treatment effect estimates on different outcomes 

conditional on study membership, and the between-study correlation refers to the correlation 

between the true treatment effect sizes on different outcomes across studies (see, for 

example Jackson et al12). Moreover, it is typical in MVMA to assume that both the study-

specific treatment effect estimates and the true treatment effect parameters follow a 

multivariate normal distribution (or are approximately normal).19 In contrast, in the current 

setting, the within-study correlation refers to the correlation between original outcomes of 

the same individual, and the between-study correlation refers to the correlation among the 

underlying group-specific mean responses. We present this contrast in Table 1 for the setting 

with two continuous outcomes and where treatment effects are estimated by the differences 

in sample means.

We make the comparison more explicit by writing out the model assumptions for a standard 

random-effects bivariate meta-analysis of two continuous outcomes using our notations:

U1j − U2j
V 1j − V 2j

∣ γ1j
U , γ1j

V , γ2j
U , γ2j

V MV N
γ1j
U − γ2j

U

γ1j
V − γ2j

V , D1j ,

γ1j
U − γ2j

U

γ1j
V − γ2j

V MV N
μ1

U − μ2
U

μ1
V − μ2

V , D2 ,

where

D1j =

σ1j
U 2

n1j
+

σ2j
U 2

n2j
ρj*

σ1j
U 2

n1j
+

σ2j
U 2

n2j
σ1j

V 2

n1j
+

σ2j
V 2

n2j

ρj*
σ1j

U 2

n1j
+

σ2j
U 2

n2j
σ1j

V 2

n1j
+

σ2j
V 2

n2j
σ1j

V 2

n1j
+

σ2j
V 2

n2j

,

ρj* =

ρσ1j
U σ1j

V

n1j
+

ρσ2j
U σ2j

V

n2j

σ1j
U 2

n1j
+

σ2j
U 2

n2j
σ1j

V 2

n1j
+

σ2j
V 2

n2j

,

D2 =
τ1
U 2 + τ2

U 2 κ* τ1
U 2 + τ2

U 2 τ1
V 2 + τ2

V 2

κ* τ1
U 2 + τ2

U 2 τ1
V 2 + τ2

V 2 τ1
V 2 + τ2

V 2
,

κ* =
κτ1

Uτ1
V + κτ2

Uτ2
V

τ1
U 2 + τ2

U 2 τ1
V 2 + τ2

V 2 .

ρj* and κ* correspond to the within- and between-study correlation in the MVMA setting 

respectively.

2.2 The proposed method

As mentioned before, when complete IPD are available from all studies, values of combined 

outcomes can be computed for every individual and standard two-stage meta-analysis or IPD 

meta-analysis methods apply. In this section, we present our approach based on multiple 
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reconstructed IPD for studies that provide AD only. Once pseudo IPD for every study in A
are generated, they are combined with the observed IPD from studies in ℐ to form one set of 

complete IPD, and standard two-stage meta-analytic methods can be carried out to obtain an 

overall treatment effect estimate on the combined outcome of interest. In what follows, we 

first present our method for the reconstruction of IPD, then describe how results based on 

multiple reconstructed IPD are pooled to arrive at the final treatment effect estimates.

2.2.1 Reconstructions of IPD—Suppose j ∈ A then for the k-th participant in arm i of 

study j, the values of original outcomes are imputed from a bivariate normal distribution 

with mean and variance set to be the observed sample summary statistics, and correlation set 

to be ρ, which is an estimate of the within-individual correlation ρ, i.e.

Uijk*

V ijk* MV N
Uij
V ij

, nij
sijU

2 ρsijUsij
V

ρsijUsij
V sij

V 2 .

While summary statistics such as sample average Uij, V ij  and the associated standard errors 

sijU, sijU  are often reported by individual studies, estimates of the within-study correlation ρ 

are not commonly provided. The within-study correlation ρ we consider here is the 

correlation between the original study outcomes. As we clarify in Section 2.1, this ρ is 

different from the within-study correlation commonly considered in MVMA, which is the 

correlation between the two treatment effect estimates within each study. Nonetheless, the 

problem of estimating within-study correlations also arises in MVMA and some of the 

approaches can be adapted to our setting, such as estimating the within-study correlation 

from IPD and conducting sensitivity analysis over a plausible range of values.

The impact of ρ on the final treatment effect estimator depends on how the original 

outcomes are combined. The estimation of ρ depends on data availability. In the remainder 

of this subsection, we will first define linear versus non-linear combined outcomes, contrast 

the impact of ρ on treatment effect estimates for these two categories of outcomes, and then 

propose estimators of ρ that are suitable under different data availability scenarios.

Linear versus non-linear combined outcomes: We introduce the notion of a linear 
combined outcome: a combined outcome is linear if it can be written in the following form:

Yijk = g Uijk, V ijk = g1 Uijk + g2 V ijk ,

where g1(·), g2(·) are some user-specified functions. For example, Yijk = Uijk + Vijk and Yijk 

= 1(Uijk > u) + 1(Vijk > v), where u and v are user-specified constants representing some 

meaningful thresholds, are both linear combined outcomes. Note that linear combined 

outcomes include, but not limited to, linear combinations of the original outcomes. We term 

combined outcomes that are not linear as non-linear combined outcomes. For example,

Yijk = 1 Uijk > u, V ijk > v .
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Suppose Yijk is linear and we are interested in estimating the parameter θ0 = EG[θj], where

θj = ℎ Ej Y1jk − ℎ Ej Y2jk
= ℎ Ej g1 U1jk + Ej g2 V 1jk − ℎ Ej g1 U2jk + Ej g2 V 2jk .

Note that θj depends on the original outcomes only through their marginal distributions. 

Thus, by the assumption made in Section 2.1, consistent estimates of θ0 can be obtained as 

long as the marginal distributions of the reconstructed outcomes Uijk*  and V ijk*  match those 

of the original data in each study. Therefore, the specification of ρ in the reconstruction step 

does not affect the consistency of the final estimator. It does, however, affects its efficiency. 

Below we illustrate this dependence through examining the variance of the final treatment 

effect estimator under a simple setting.

We consider the setting where all studies provide AD only. We assume hierarchical 

normality for the original outcomes and let σijU
2 = σij

V 2 = 1, i = 1, 2, j = 1, …, J and n1j = 

n2j = nj for the ease of notation. We assume that all the variance parameters (between-and 

within-study) are known. As before, let ρ be the true underlying correlation between the two 

original outcomes and ρ be the value used in IPD reconstruction. Let Uij, V ij represent the 

sample means of the real (unavailable) IPD and Uij* , V ij*  are sample means of the 

reconstructed pseudo IPD. We have

Uij
V ij

∣ γijU, γij
V MV N

γijU

γij
V ,

1
nj

ρ
nj

ρ
nj

1
nj

,

Uij*

V ij*
∣ Uij, V ij MV N

Uij
V ij

,

1
nj

ρ
nj

ρ
nj

1
nj

.

We consider the simple linear combined outcome Y1,ijk = Uijk + Vijk. Let 

θj = γ1j
U + γ1j

V − γ2j
U + γ2j

V  and θ0 = EG1 θj , where G1 denotes the underlying distribution of 

the study-specific effect size θj. Furthermore, let θ j = U1j* + V 1j* − U2j* + V 2j*  denote the 

study j’s treatment effect estimate on combined outcome Y1 calculated from a one set of 

reconstructed IPD, it can be verified that

E θj = E E θj ∣ γ1j
U , γ1j

V , γ2j
U , γ2j

V = E γ1j
U + γ1j

V − γ2j
U + γ2j

V = E θj = θ0,

V ar θj ∣ γ1j
U , γ1j

V , γ2j
U , γ2j

V = V ar U1j* + V 1j* ∣ γ1j
U , γ1j

V + V ar U2j* + V 2j* ∣ γ2j
U , γ2j

V = 4
nj

2 + ρ + ρ ,

V ar θj = 4
nj

2 + ρ + ρ + ξ2,  where ξ2 = τ1
U 2 + τ1

V 2 + τ2
U 2 + τ2

V 2 + 2κ τ1
Uτ1

V + τ2
Uτ2

V .

Consider the inverse-variance weighted pooled treatment effect estimate based one 

reconstruction of IPD:
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θ = ∑
j = 1

J
wjθj,  where wj =

1/V ar θj
∑j′ = 1

J 1/V ar θj′
.

We have

E θ = θ0, (1)

V ar θ = 1
∑j = 1

J 1/V ar θ j
= 1

∑j = 1
J 1

4
nj

2 + ρ + ρ + ξ2
.

(2)

As can be seen from (1) & (2), the expectation of the final treatment effect estimate does not 

depend on ρ, the value of within-study correlation used in the reconstruction, whereas its 

variance does. In contrast, for non-linear combined outcomes, θj depends on the joint 

distribution of U and V and θ0 varies across different values of ρ. Therefore, accurate 

characterization of ρ is essential and misspecification of ρ could lead to substantial bias. In 

what follows, we describe the estimation approaches in details when some studies provide 

IPD, and when all studies provide AD only respectively.

Some studies provide IPD: We first consider settings where IPD are available for at least 

one of the studies, from which an estimate of the within-individual correlation coefficient ρ 
can be obtained. There are various methods to estimate ρ using IPD. In our simulation study, 

we used a weighted average of the sample Pearson correlation coefficients with weights 

proportional to sample sizes. That is,

ρIPD = 1
∑i = 1

2 ∑j ∈ ℐnij
∑
i = 1

2
∑

j ∈ ℐ

nij∑k = 1
nij Uijk − Uij V ijk − V ij

∑k = 1
nij Uijk − U ij

2 ∑k = 1
nij V ijk − V ij

2

.

(3)

If one is willing to make fully parametric assumptions on the distribution of (Uijk, Vijk), 

maximum likelihood estimators or Bayesian estimators are viable options as well.

All studies provide AD only: When none of the studies provides IPD, we can only estimate 

ρ from AD. The data generating process described in Section 2.1 implies the following 

properties for the marginal distribution of the observed sample means:
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E U ij = μiU,
E V ij = μi

V ,

V ar U ij =
σijU

2

nij
+ τiU

2,

V ar V ij =
σij

V 2

nij
+ τi

V 2,

Cov U ij, V ij =
ρσijUσij

V

nij
+ κτiUτi

V .

(4)

Hence, ρ and κ are not identifiable from AD only. Assuming κ = κ0, we can derive the 

following estimator for ρ based on the method of moments:

ρMM = 1
2J ∑

i = 1

2
∑
j = 1

J nij U ij − μi
U V ij − μi

V − κ0τ i
Uτ i

V

σij
Uσij

V , (5)

where μi
U, μi

V , σij
U, σij

V  are consistent estimators for μiU, μi
V , σijU, σij

V . One set of estimators is 

given below: σij
U = nij1/2sijU, σij

V = nij1/2sij
V , and μi

U, μi
V  are the inverse-variance weighted 

averages of the observed group means Uij and V ij respectively. The weights were estimated 

using sij
V , sijU and the DerSimonian and Laird estimators36 of τiU

2 and τi
V 2:

μiU =
∑j = 1

J wij
UUij

∑j = 1
J wij

U ,

with

wijU = sijU
2 + τiU

2 −1
,

τiU
2 = max 0,

QiU − J − 1

∑j = 1
J sijU

−2 −
∑j = 1

J sijU
−4

∑j = 1
J sijU

−2

,

QiU = ∑
j = 1

J
sijU

−2 Uij − Ui
2,

Ui =
∑j = 1

J sijU
−2Uij

∑j = 1
J sijU

−2 .

The estimation for μi
V  can be done similarly. Note that the resulting ρMM is not guaranteed 

to be bounded between −1 and 1. One option is to truncate it at −1 or 1 accordingly if the 

estimate is out of range. Alternative truncation points can be established based on prior 

information. For instance, if two outcomes are believed to be positively correlated, such as 
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the systolic and diabolic blood pressure, it would be more reasonable to truncate the 

correlation estimates at 0 and 1.

A likelihood-based estimator can also be derived. Under mild regularity conditions, the 

sample means are approximately normally distributed when sample sizes are sufficiently 

large by the central limit theorem. Therefore we can obtain an estimate of the correlation 

through maximizing the approximate likelihood function L on the interval [−1, 1]

ρML = argmax
ρ ∈ −1, 1

L ρ

= argmax
ρ ∈ −1, 1

∏
i = 1

2
∏

j = 1

J 1
1 − ψij2

exp − 1
2 1 − ψij2

Uij − μiU
2

σijU
2

nij
+ τiU

2
+

V ij − μi
V 2

σij
V 2

nij
+ τi

V 2
−

2ψij Uij − μiU V ij − μi
V

σijU
2

nij
+ τiU

2 σij
V 2

nij
+ τi

V 2
,

with

ψij =

ρσijUσij
V

nij
+ κ0τiUτi

V

σijU
2

nij
+ τiU

2 σij
V 2

nij
+ τi

V 2
.

The maximize ρML is also the posterior mode under a uniform prior distribution of ρ over 

the interval [−1, 1]. Alternative choices of priors can be adopted to incorporate prior beliefs 

about the correlation (see, for example Bujkiewicz et al11).

The value of κ is required for the calculation of ρMM or ρML, which is often unavailable in 

practice. In MVMA, the between-study correlation, as a parameter in the variance-

covariance matrix for study-specific treatment effects, can be estimated using various 

methods including the maximum likelihood,6,7 the restricted maximum likelihood6,8 and the 

method of moments,12 provided with knowledge of the within-study covariance matrices. In 

a Bayesian setting, Bujkiewicz et al11 used an informative prior distribution of the between-

study correlation based on a separate collection of studies. As mentioned in Section 2.1, the 

κ in our setting is different from that in the MVMA setting. For the IPD reconstruction, we 

only require information on ρ. Knowledge of κ, however, facilitates the estimation of ρ. 

When there is no external information about κ, applying the method of moments to the 

study-level summaries ignoring the within-study sampling variability provides a crude 

estimator for κ, which can be subsequently used to obtain ρ, especially when the individual 

study sizes are large. Lastly, because the value of κ affects the final results only through the 

value of ρ used in the reconstruction, we recommend conducting sensitivity analyses for a 

range of plausible values of ρ when a precise estimate of ρ is unavailable.

2.2.2 Obtain final estimates from multiple reconstructed IPD—The 

reconstruction procedure is repeated M times. Let θ l, V l , l = 1, …, M denote the point and 
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variance estimates obtained from the l-th reconstructed dataset. To combine estimates from 

multiple reconstructed IPD, we follow the Rubin’s rule for combining estimates from 

multiple imputations to obtain the final pooled point estimate of treatment effect on the 

combined outcome30:

θMR = 1
M ∑

l = 1

M
θl .

In the context of multiple imputation, Rubin30 also proposed the following formula for 

obtaining the standard error estimates for the pooled estimator across multiple imputed 

datasets:

s.e. θMR = 1
M ∑

l = 1

M
V l + M + 1

M
∑l = 1

M θ l − θMR
2

M − 1 . (6)

A direct naive application of this estimator does not perform well in our setting for a few 

reasons. First, when ρ is estimated true from the available IPD or AD, s . e ⋅ θMR  is likely to 

un-derestimate the sampling variation because it does not take into account the uncertainty 

in estimating ρ. Second, the accuracy of s . e ⋅ θMR  depends on the variance Vl of θl
obtained from each pseudo IPD. The accuracy of Vl is sensitive to mis-specifications of ρ
used in the reconstruction.

We therefore recommend the use of a bootstrap procedure to estimate the standard errors.37 

Since the observed data D consists of two parts, 

IPD: Uijk, V ijk :k = 1, …, nij, j ∈ ℐ, i = 1, 2 , and AD:  nij, Uij, V ij, sijU, sij
V : j ∈ A, i = 1, 2 , 

we generate bootstrap replicates of each part separately. We first apply non-parametric 

bootstrap to generate replicates of the observed IPD. The same technique has been used by 

Daniels and Hughes38 to estimate the correlation between treatment effects on a clinical 

outcome and its potential surrogate marker. We then generate replicates of AD by applying 

non-parametric bootstrap to the study summary statistics, where we treat 

nij, Uij, V ij, sijU, sij
V , j ∈ A as a random sample from some underlying joint distribution. The 

specific steps for calculating the bootstrap standard errors are given below:

Step 1: Generate a bootstrap replicate of IPD. For each j ∈ ℐ, i ∈ {1,2}, take a 

sample with replacement of size nij from {(Uijk, Vijk) : k = 1, …, nij} to obtain 

Uijk
† , V ijk

† :k = 1, …, nij ;

Step 2: Generate a bootstrap replicate of AD. Sample with replacement from A to 

get a new set of study labels ℒ = j1, …, j A , then form the bootstrap replicate of AD 

correspondingly, i.e. nijr, Uijr
† , V ijr

† , sijr
U †, sijr

V † : jr ∈ j1, …, j A , i = 1, 2 ;

Song et al. Page 13

Res Synth Methods. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Step 3: Repeat the proposed reconstruction and estimation procedures on the 

bootstrap replicate D† = Uijk
† , V ijk

† :k = 1, …, nij, j ∈ ℐ, i = 1, 2
∪ nijr, Uijr

† , V ijr
† , sijr

U †, sijr
V † : jr ∈ j1, …, j A , i = 1, 2

, and obtain a 

new treatment effect estimate θMI
b ;

Step 4: Repeat Step 1–3 B times and obtain θMR
b , b = 1, …, B. Compute the 

bootstrap standard error estimate as

s . e . boot θMR =
∑b = 1

B θMR
b − ∑b′ = 1

B θMR
b′

B

2

B − 1 .
(7)

3 Simulation studies

We evaluated the finite sample performance of the proposed method through simulation 

studies. Data from J two-arm RCTs with two continuous original outcomes U and V were 

generated according to the following hierarchical model.

γijU

γij
V MV N

μiU

μi
V ,

τiU
2 κτiUτi

V

κτiUτi
V τi

V 2 ,

Uijk
V ijk

∣ γijU, γij
V MV N

γijU

γij
V ,

σijU
2 ρσijUσij

V

ρσijUσij
V σij

V 2 ,

i = 1, 2, j = 1, …, J , k = 1, …, nij .

We set μ1
U = 2, μ1

V = 1, μ2
U = μ2

V = 0, σijU = σij
V = 1, for all i, j, and considered a range of 

values for the within-individual correlation: ρ ∈ {0, 0.2, 0.5, 0.8}. The sample size of each 

study ranged from 20 to 200 in steps of 10 with equal number of patients in the treatment 

and control arms.

We applied the proposed method to analyze the following four combined outcomes:

Y1, ijk = Uijk + V ijk,
Y2, ijk = 1 Uijk > 1 + 1 Uijk > 1.5 + 1 V ijk < 1 + 1 V ijk < 2 ,
Y3, ijk = 1 Uijk > 1.5, V ijk < 1 + 1 Uijk > 1.5, V ijk < 2 ,
Y4, ijk = 1 Uijk > 1.5, V ijk > 0.5 .

Here Y1 and Y2 are linear combined outcomes while Y3 and Y4 are non-linear combined 

outcomes. The corresponding parameters of interest are given by:
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θ10: = EG1 θ1j ,  with θ1j: = Ej Y1, 1jk − Ej Y1, 2jk ,
θ20: = EG2 θ2j ,  with θ2j: = Ej Y2, 1jk − Ej Y2, 2jk ,
θ30: = EG3 θ3j ,  with θ3j: = Ej Y3, 1jk − Ej Y3, 2jk ,

θ40: = EG4 θ4j ,  with θ4j: = log
Ej Y4, 1jk 1 − Ej Y4, 2jk
Ej Y4, 2jk 1 − Ej Y4, 1jk

,

where Gl, l = 1, 2, 3, 4 are the underlying distributions of θlj, l = 1, 2, 3, 4, respectively. We 

investigated 20 simulation scenarios with varying parameter values. Results under scenarios 

1 to 8 (see Table 2) are presented in this section. Results under scenarios 9 to 20 are included 

in the web supplementary materials.

3.1 One study provides IPD

We first investigated the case where one of the studies provided complete IPD and the rest 

provided AD. Data were generated under scenario 1 to 4 (see Table 2) with different 

configurations of the number of studies, J, and levels of the between-study heterogeneity, 

τiU
2, τi

V 2, i = 1,2. The sample size of the study that provides IPD was fixed at 20 and the 

value of κ was set at 0.5.

We set the number of multiple reconstructions M to be 10 and the number of bootstrap 

replicates B to be 500, and performed 500 experiments under each parameter configuration. 

Study-specific treatment effect estimates on combined outcomes (calculated from the 

observed or reconstructed IPD) were pooled by applying the DerSimonian and Laird 

random-effects method.

We compared point estimates computed from the multiple reconstructed datasets when ρ
was estimated with Eq.(3), set to the true value of ρ, or set to 0, against the estimates 

obtained from applying the DerSimonian and Laird random-effects model to complete IPD 

of all studies, which corresponded to the ideal situation. The naive standard error estimates 

were calculated according to Eq.(6) with θ l, V l  obtained from applying the DerSimonian 

and Laird random-effects model to the l-th reconstructed dataset. We also calculated the 

average bootstrap standard error estimates (Eq.(7)).

Figure 1 displays the average estimates of treatment effects for the four outcomes in 

simulation scenario 2. Results from scenario 1, 3 and 4 were similar and were included in 

the web supplementary materials. Not surprisingly, for linear outcomes Y1 and Y2, the 

proposed method produced results almost identical to those based on complete IPD 

regardless of the value of ρ used in the reconstruction. For non-linear outcomes Y3 and Y4, 

substantial biases were observed when ρ was set to 0 (purple lines) but the true correlation 

was nonzero. In contrast, the average treatment effect estimates computed from the multiple 

reconstructed datasets using ρIPD (blue lines) or the true value ρ (green lines) were very 

close to the ones obtained from complete data (red lines) across all values of ρ, even though 

the sample size for the study with available IPD was only 20.
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Figure 2 compares the average naive and bootstrap standard error estimates to their 

empirical counterparts, which were calculated as standard deviations of the treatment effect 

estimates across 500 iterations. For each panel, the tabs on the right-hand side (SCN 1–4) 

denote simulation scenarios, the upper tabs (0, 0.2, 0.5, 0.8) represent the true values of ρ 
used in the data generation, and the labels on the bottom x-axis ρ, ρIPD, 0  indicate the 

values taken by ρ in the reconstruction. The naive standard error estimates (blue squares) 

were conservative under most settings, especially when the between-study variances (τU)2, 

(τV)2 were small. The bootstrap standard error estimates (red dots) in general performed 

well, except when the number of studies was very small (J = 7) and the between-study 

variances were relatively large (scenario 2). In such settings, resampling from a small 

number of studies was unlikely to capture the level of variability in the underlying study 

population, leading to the observed downward biases in the bootstrap standard error 

estimates.

3.2 All studies provide AD

We evaluated the performance of our proposed methods when only AD were available for all 

studies. We simulated data under scenario 5 to 8 (see Table 2 with κ set to be 0). For the ρ
required in the reconstruction step, we computed both the moment-based estimator ρMM
and the likelihood-based estimator ρML  using formulae provided in Section 2.2.1 with κ0 

= 0. The truncation points for ρMM were set to be −1 and 1.

Figure 3 presents the treatment effect estimates. Without any IPD, using the true correlation 

ρ (tan lines) in the reconstruction step yielded results virtually identical to those that would 

have been obtained if complete IPD were available (red lines) in all settings. Results based 

on ρMM (the method of moments estimator; green lines) and ρML (the maximum likelihood 

estimator; blue lines) were also indistinguishable. For linear combined outcomes Y1 and Y2, 

all lines coincided regardless the values of ρ used in the reconstruction. For non-linear 

combined outcomes Y3 and Y4, the results were sensitive to the misspecification of ρ: 

substantial biases were associated with setting ρ = 0 when the true ρ deviated from 0 (purple 

lines). Using ρMM or ρML in general performed well except when the number of studies 

was small (J = 13 under scenario 6). When only AD were available, accurate estimation of ρ 
was difficult when the number of studies was too small or when the between-study 

heterogeneity was large. For instance, under scenario 6 with ρ = 0, ρMM was out of range 

and truncated at 1 or −1 in more than 40% of the 500 experiments. In the current setting, we 

set κ0 = 0, based on Eq.(5)):

ρMM = 1
2J ∑

i = 1

2
∑

j = 1

J nij Uij − μiU V ij − μi
V

σijUσij
V .

Therefore, V ar ρMM  depends on the variance of Uij, V ij, μi
U, μi

V , as well as σij
U and σij

V . As 

can be seen from Eq.(4), when the between-study heterogeneity τiU increases, V ar Uij
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increases, and the variance of μi
U also increases. Same holds true for outcome V. Therefore, 

ρMM can be highly variable when the between-study heterogeneity is large.

Results for standard error estimates are presented in Figure 4. For linear combined outcomes 

(top panels), standard error estimates based on the bootstrap approach (red dots) closely 

matched the true empirical standard errors (green dots). For non-linear combined outcomes, 

the bootstrap performed well in general with modest underestimation when the number of 

studies was small. The standard error estimates obtained by a naive application of the 

Rubin’s rule (blue dots) were generally biased and were further away from the empirical 

ones compared the bootstrap standard error estimates. When the number of studies was 

small, ρMM or ρML can be highly unstable, and estimators using ρMM or ρML in the 

reconstruction step were associated with larger variability compared to using the true 

correlation ρ or a fixed value, e.g., 0. In such settings, it would be useful to consider 

sensitivity analyses over a range of plausible values for ρ. We illustrate this with a real-world 

data example in Section 4.1.

As discussed in Section 2.2.1, treatment effect estimates for linear combined outcomes 

remain consistent regardless of the value of ρ used in the reconstruction whereas the 

efficiency can be affected. For outcome Y1, the variance of the treatment effect estimates 

increases as ρ increases (see Eq.(3))). However, this trend was not observed in Figure 4. 

Because the final estimate was an average over multiple sets of reconstructed IPD (here M = 

10), this dependence may be diluted by averaging and became harder to detect. We 

conducted another set of simulations with the same set-up as scenario 18 (see Table 1 in web 

supplementary materials) except that we reduced M from 10 to 1. In the reconstruction step, 

we varied the value of ρ from −1 to 1. The results are displayed in Figure 5. Based on a 

single reconstruction of IPD, the empirical standard errors of treatment effect estimates for 

Y1 increased as ρ increased, as expected from Eq.(3)). In contrast, the empirical standard 

errors of treatment effect estimates for Y2 showed an downward trend as ρ increased.

3.3 The proposed approach vs. MVMA

As discussed previously, if the parameter representing the treatment effect for the combined 

outcomes can be written as a smooth function of treatment effect parameters for the original 

outcomes, MVMA can be applied to obtain treatment effect estimates on the combined 

outcome without the reconstruction of IPD. An example is the outcome Y1. We conducted a 

simulation study to compare the finite-sample performance of our method versus the 

standard random-effects MVMA. We applied two estimation approaches for MVMA: the 

restricted maximum likelihood (REML)6,8 and the method of moments (MM).12 The latter 

is an extension of the DerSimonian and Laird method to the multivariate setting. Data were 

simulated under the same parameter set-up as in scenario 18. For the ease of comparison, we 

assumed that within-study correlations were known. That is, following the notations in 

Section 2.1, we used ρ = ρ during the reconstruction of IPD for the proposed approach, and 

used ρj* for MVMA. For both methods, the within-study variances σijU, σij
V  were estimated 

using the sample standard deviations. Since Y1 is just a linear combination of the two 

original outcomes, the true overall treatment effect for Y1 equals θ10 = 3. Table 3 and 4 
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present the estimated biases and the empirical standard errors. Both the proposed method 

and MVMA produced minimally biased point estimates with similar efficiency.

4 Illustrative examples

4.1 Effect of DPP4-I on HbA1c and weight

A common side effect of anti-diabetic medications such as insulin is weight gain,39 which is 

undesirable in most cases as over 90% of patients with type 2 diabetes are already 

overweight or obese.40 However, an increasing number of therapeutic options are available 

that are weight neutral or even lead to weight loss in addition to their glycemic benefits.39 

Hence, a combined outcome that characterizes both change in glycated hemoglobin 

(HbA1c) and change in body weight would be useful when comparing different 

interventions.

Wu et al41 conducted a network meta-analysis of 360 RCTs examining the effects of 

incretin-based therapies on β-cell function and insulin resistance in type 2 diabetes. From 

their study pool, we identified 13 RCTs that compared the effect of dipeptidyl peptidase-4 

inhibitors (DPP4-I, or treatment) to control and reported both change in HbA1c level (U) 

and change in body weight (V). Group means, standard errors and sample sizes of 

participating studies are summarized in Table 5. Univariate meta-analyses using the 

DerSimonian and Laird random-effects model revealed that patients in the treatment arms 

experienced a greater decline in HbA1c level by 0.67% (95% CI : [−0.90, −0.44], between-

study variance estimate τ2 = 0.16), but a smaller reduction in body weight by 0.36 kg (95% 

CI : [0.05, 0.67], τ2 = 0.11) compared to those in the control arms. We applied the proposed 

method to analyzing the following non-linear combined outcome:

Yijk = 2 × 1 Uijk < 0 + 1 V ijk < 0 + 1 Uijk < 0, V ijk < 0 .

The combined outcome assigns a score in {0,1,2,4} to each of the four possible 

combinations of increased/decreased HbA1c level and increased/decreased body weight, 

with higher score being more desirable. The most desirable response is a decrease in both 

HbA1c and weight (score = 4), followed by a decrease in HbA1c only (score = 2), a 

decrease in weight only (score = 1) and an increase in both outcomes (score = 0).

The parameter of interest θ0 was the difference in means of the combined outcome Y 
between the DPP4-I and control arm, defined as follows:

θj: = Ej Y1jk − Ej Y2jk ,
θ0: = EG θj .

Since only AD were available and prior knowledge on κ was lacking, we calculated ρMM
and ρML as described in Section 2.3.2 by taking κ0 = 0 and imputed pseudo IPD 

accordingly. The resulting ρMM and ρML were both −1. When we plugged in a crude 

estimate of κ obtained by ignoring the within-study sampling variation κ = − 0.756 , 
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ρML = 1 and ρMM was out of range and close to the boundary value 1. In the current setting 

with only 13 studies, it was not surprising that the resulting estimates for ρ were highly 

variable, we therefore conducted sensitivity analyses by plugging in ρ ranging from a very 

strong negative correlation ρ = − 0.8  to a perfect positive correlation ρ = 1 . For each 

value of ρ, we reconstructed M = 50 sets of pseudo IPD. Table 6 shows the treatment effect 

estimates, the bootstrap standard error estimates, and the 95% confidence intervals. The 95% 

CIs were constructed assuming a normal distribution for θ . The bootstrap standard error 

estimates are calculated from B = 1000 bootstrap replicates. Overall, using different ρ
yielded similar results with effect sizes ranging from 0.60 to 0.71.

Although univariate analysis suggested that the treatment was superior in terms of lowering 

patients’ HbA1c level but less effective in weight reduction compared to the control 

intervention, meta-analysis of the HbA1c-weight combined outcome revealed that 

participants in the treatment arms had better outcomes when both were taken into account 

simultaneously. We also note that here we gave more weights to HbA1c reduction than to 

weight reduction in the combined outcome, out of consideration that the primary goal of 

diabetes treatment was glycemic control. But the choice of weights can be tailored to 

personal preference. If one is more concerned with weight reduction, then the weights can 

be adjusted accordingly. The proposed approach provides one way to assess treatment 

effects across multiple outcomes simultaneously.

4.2 Effect of PAP on systolic and diastolic blood pressure

Obstructive Sleep Apnea (OSA) is a sleep disorder where breathing is briefly and repeatedly 

interrupted during sleep, resulting in intermittent hypoxemia and sympathetic nervous 

system activation. It is a highly prevalent chronic condition affecting approximately 27% of 

men and 9% of women.42 Its prevalence among individuals with cardiovascular disease 

(CVD) is even higher.43,44 Multiple epidemiological studies have demonstrated that OSA is 

a significant risk factor for CVD, including stroke, coronary artery disease, heart failure, and 

atrial fibrillation.45–48 Moreover, it has been shown that OSA is an independent risk factor 

for the development of hypertension, a well-recognized risk factor for CVD.49 Over 50% of 

OSA patients have hypertension and approximately 70% of patients with resistant 

hypertension have OSA.43 Therefore, there is compelling evidence to identify the role of 

OSA treatment as a means for primary or secondary prevention of CVD.

Positive Airway Pressure (PAP) therapy is the standard first-line treatment for OSA. A PAP 

machine provides pressurized air to the naso-pharyngeal airway, preventing airway collapse 

that may occur in susceptible individuals with inspiratory breathing efforts, thus stabilizing 

breathing during sleep. While OSA is recognized as a cause of secondary hypertension, the 

extent to which PAP improves blood pressure profile has been an area of active 

investigation. Some research has suggested that OSA differs in its effects on diastolic versus 

systolic blood pressure,50 which has implications on potential mechanisms and intervention 

targets. Given that adverse physiological effects of sleep apnea are most acute during sleep, 

there is also interest in the effect of treatment on 24-hour blood pressure profile.51,52 Schein 

et al53 performed a systematic review of RCTs that compared active PAP versus placebo 

PAP, sham PAP or subtherapeutic PAP in lowering blood pressure among patients with OSA. 
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Six studies (620 patients in total) were identified for a meta-analysis of treatment effects on 

post-intervention 24-hour systolic blood pressure (SBP) and diastolic blood pressure (DBP). 

The comparison of PAP to control groups revealed a non-significant reduction in 24-hour 

SBP (−3.57 mmHg, 95% CI: [−8.58, 1.44]; between-study variance estimate τ2 = 22.86) but 

a significant reduction in 24-hour DBP (−3.46 mmHg, 95% CI: [−6.75, −0.17]; τ2 = 10.64). 

We extracted group-level aggregate data of those studies. In addition, we included individual 

patient data from the Best Apnea Interventions for Research (BestAIR) trial,54 which led to 

a total of 7 studies (see Table 7). The BestAIR trial data are available upon reasonable 

request at https://sleepdata.org. Univariate meta-analyses based on the DL random-effects 

model from all 7 studies gave conclusions consistent with Schein et al53: Compared to 

control arms, PAP resulted in a significant reduction in 24-hour DBP by 3.14 mmHg (95% 

CI: [−5.67, −0.61]; τ2 = 6.59), but the effect of PAP on 24-hour SBP did not reach statistical 

significance (treatment effect −4.01 mmHg, 95% CI: [−8.07, 0.04]; τ2 = 16.81).

Although prior research has considered SBP and DBP separately, hypertensive burden is 

typically examined by considering levels of both systolic and diastolic pressures. Therefore 

we considered the following two combined outcomes. The first one was a binary indicator of 

elevated blood pressure that equals 1 if either the post-intervention 24-hour SBP is greater 

than 130 mmHg or DBP is greater than 80 mmHg and 0 otherwise; The second one was an 

ordinal outcome that equals the summation of the two indicators 1(SBPijk > 130) and 

1(DBPijk > 80), i.e.

Y1, ijk = 1 SBPijk > 130 or DBPijk > 80 ,
Y2, ijk = 1 SBPijk > 130 + 1 DBPijk > 80 .

The threshold values were selected based on the guidelines published by American College 

of Cardiology (ACC) and American Heart Association (AHA) in 2017.55 The guidelines 

classify blood pressures into 5 categories that range from normal to severe hypertension, and 

130/80 mmHg is the cutoff for normal versus elevated blood pressure. Since the first 

outcome was binary, we chose the target parameter to be the mean log odds ratio of elevated 

blood pressure comparing patients treated with PAP versus control:

θ1j: = log
Ej Y1, 1jk 1 − Ej Y1, 2jk
Ej Y1, 2jk 1 − Ej Y1, 1jk

,

θ10: = EG1 θ1j .

And for the second outcome, the parameter of interest was the difference in means:

θ2j: = Ej Y2, 1jk − Ej Y2, 2jk ,
θ20: = EG2 θ2j .

Our literature search revealed a positive correlation between SBP and DBP of magnitudes 

varying from 0.61 to 0.74.56,57 The available IPD from the BestAIR study yielded 

ρIPD = 0.63, which was consistent with published results. We generated M = 50 
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reconstructed datasets to obtain the treatment effect estimate and B = 1000 bootstrap 

replicates to obtain the bootstrap standard error estimate. For Y1, the proposed procedure 

yielded a point estimate of −0.69, corresponding to an odds ratio of 0.50 for post-

intervention elevated blood pressure (SBP > 130 mmHg or DBP > 80 mmHg) comparing 

patients in PAP groups to those in control groups. The protective effect of PAP was 

significant at 0.05 level, with approximate 95% bootstrap confidence interval [0.29, 0.86]. 

We also observed a significant treatment effect on combined outcome Y2, where the mean 

response in PAP groups was estimated to be 0.26 unit lower compared to that in control 

groups with approximate 95% bootstrap confidence interval [−0.06, −0.46]. Meta-analyses 

of both combined outcomes supported the conclusion that PAP can facilitate blood pressure 

control among OSA patients. While univariate analysis based on DBP only did not reach 

statistical significance, meta-analysis based on combined outcomes revealed that PAP 

significantly increased the probability of a reduction in either SBP or DBP.

5 Discussion

In this paper, we develop meta-analysis methods for outcomes combining information across 

multiple endpoints based on reconstructions of IPD. We focus on combined outcomes that 

are functions of two continuous outcomes. For linear combined outcomes, treatment effect 

estimates obtained using the proposed procedure remain consistent regardless of 

misspecification of the within-study correlation ρ in the reconstruction step. In contrast, for 

non-linear combined outcomes, accurate estimation of ρ is essential to ensure consistency of 

the treatment effect estimates.When no previous knowledge of ρ is assumed, a reasonably 

accurate estimate can oftentimes be obtained from even a small sample of IPD. The 

estimation problem becomes difficult when only AD are available, in which case one needs 

to assume a value for the between-study correlation κ in order to estimate ρ and we found 

through simulations that estimators of ρ that were solely based on AD were highly unstable 

when the number of studies was small and the between-study heterogeneity was large. In 

these settings, we recommend conducting sensitivity analyses to examine treatment effect 

estimates for a plausible range of ρ.

When there is between-study heterogeneity in treatment effects for the original outcomes, it 

is reasonable to expect between-study heterogeneity in treatment effects for the combined 

outcomes. It would be of interest to quantify the magnitude of this between-study 

heterogeneity. When IPD are available from all studies, we can obtain the IPD for the 

combined outcomes and the usual measure such as the I2 statistic58 can be calculated in a 

straightforward manner. When IPD are not available from some studies, our approach is 

based on multiply reconstructing IPD. Although it is straightforward to calculate the I2 

statistic or other measures of heterogeneity for each set of pseudo IPD, pooling the estimates 

across multiple reconstructed datasets requires careful consideration. For measures that are 

asymptotically normally distributed, such as the maximum likelihood or restricted maximum 

likelihood estimators of the between-study variance, we can directly apply Rubin’s rule as 

stated in Section 2.2; For measures that are not asymptotically normally distributed, proper 

normalization may be used so that a pooled estimate can be computed based on the 

transformed values and then transformed back to the original scale. Take the I2 statistic as an 

example, we may consider the Fisher z transformation to the square root of I2. The Fisher z 
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transformation has been suggested for R2 in linear regression,59 which is also a measure of 

proportion of variation. Testing the null hypothesis of homogeneity in such settings is also 

possible. For example, under the null hypothesis, the Cochran’s Q statistics follows a chi-

square distribution with (J − 1) degrees of freedom60 (where J is the number of studies), and 

methods for pooling chi-square distributed test statistics from multiple imputed datasets have 

been developed by Rubin30 and Li et al.61 It would be useful to develop metrics that can 

sensibly characterize between-study heterogeneity of treatment effects on combined 

outcomes that are pooled from multiple reconstructed IPD in future research.

Our approach essentially approximates the joint distribution of the original outcomes with a 

bivariate normal distribution through matching the first and second moments. This is a 

convenient choice since group means and associated standard errors are the most commonly 

reported AD, and a normal distribution is completely specified by its first two moments. In 

addition, it is relatively easy to generate normal samples with specified correlations in 

standard statistical software. We expect this approximation to work reasonably well for 

original outcomes with symmetric distributions. When IPD are available for some studies, 

the reconstruction procedure can be generalized to accommodate skewed distributions 

through the use of more flexible distributions, for example, the Fleishman distribution, 

where the first four moments can be matched,62 or non-parametrically through the use of 

kernel density estimators.

The proposed method can be generalized to analyzing combined outcomes constructed from 

more than two original outcomes. It can also be adapted to scenarios where the original 

outcomes are discrete or a mixture of discrete and continuous outcomes, in which case, 

estimation of correlation parameter requires consideration of additional constraints; for 

example, the correlation of two binary variables is bounded above by their marginal success 

probabilities. Lastly, it would be useful to develop Bayesian meta-analytic methods for 

combined outcomes through constructing hierarchical models and placing priors on 

unknown parameters. Pseudo IPD can be reconstructed by sampling from the corresponding 

posterior distributions.

We illustrated our approach using the DerSimonian-Laird random-effects model as it is one 

of the most routinely-used methods for random-effects meta-analysis. However, the idea of 

multiply reconstructing IPD based on reported AD can also be combined with other choices 

of two-stage meta-analysis methods (for example, see Wang et al63) or meta-analysis based 

on IPD directly to allow for more flexible modeling of the variance structure as well as 

treatment-covariate interactions. Previous work has demonstrated both feasibility and 

advantages of fitting regression models to reconstructed IPD when meta-analyzing reported 

outcomes,32,33 we expect similar results from extending the method to combined outcomes.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

In practice, treatment decision-making depends on an overall assessment of patient-level 

outcomes balancing benefit in various domains and potential risks. This calls for meta-

analysis methods for combined outcomes that encompass information from different 

domains. When individual patient data (IPD) are available from each study, the combined 

outcomes can be constructed for each individual and standard meta-analysis methods 

would apply. However, IPD are usually difficult to obtain. In this article, we propose a 

new method that multiply reconstructs pseudo IPD based on the available summary 

statistics reported by each study and then obtains pooled treatment effect estimates for the 

combined outcome. This proposed method is applicable to various settings where meta-

analysis of outcomes that integrates information from multiple variables is of interest.
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Figure 1: 
Treatment effect estimates (scenario 2)

Comparisons of average treatment effect estimates based on various ρ versus those obtained 

from complete IPD. One of the studies provided IPD and the rest provided AD. The 

simulation parameter values were J = 7, τiU
2 = τi

V 2 = 0.5, i = 1, 2, κ = 0.5.
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Figure 2: 
Standard errors (scenario 1–4)

Comparisons of standard error estimates of treatment effect estimates on combined 

outcomes for various ρ. One study provided IPD and the rest provided AD. EMP refers to 

the empirical standard errors, NAV refers to the average standard error estimates obtained by 

a naive application of the Rubin’s rule; BOOT refers to the average bootstrap standard error 

estimates.
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Figure 3: 
Average treatment effect estimates (scenario 5–8)

Comparisons of treatment effect estimates based on various ρ to those obtained from 

complete IPD. All studies provided AD only.
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Figure 4: 
Standard errors (scenario 5–8)Comparisons of standard error estimates of treatment effect 

estimates on combined outcomes for various ρ. All studies provided AD only. EMP refers to 

the empirical standard errors; NAV refers to the average of standard error estimates obtained 

by a naive application of the Rubin’s rule; BOOT refers to the average bootstrap standard 

error estimates.

Song et al. Page 32

Res Synth Methods. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Empirical standard errors for outcomes Y1 and Y2 based on a single reconstruction of 

pseudo IPD. The vertical purple lines indicate the true ρ.
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Table 1:

Comparison of model setups for the proposed approach and the standard MVMA

The proposed approach MVMA

Within-study correlation corr Uijk, V ijk ∣ γijU, γij
V corr U1j − U2j , V 1j − V 2j ∣ γ1j

U , γ2j
U , γ1j

V , γ2j
V

Between-study correlation corr γijU, γij
V corr γ1j

U − γ2j
U , γ1j

V − γ2j
V
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Table 2:

Simulation scenarios

IPD and AD (κ = 0.5) AD only (κ = 0)

Scenario J τiU
2, τi

V 2
Scenario J τiU

2, τi
V 2

1 7 0.05 5 13 0.01

2 7 0.5 6 13 0.05

3 30 0.05 7 50 0.01

4 30 0.5 8 50 0.05
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Table 3:

Comparison of biases of treatment effect estimates on Y1 obtained from multiple reconstructions of IPD (MR) 

and from MVMA

MR MVMA-REML MVMA-MM

ρ = −0.8 0.001 0.005 0.005

ρ = −0.5 0.001 −0.002 −0.002

ρ = −0.2 0.007 −0.001 −0.001

ρ = 0 0.001 −0.008 −0.008

ρ = 0.2 −0.007 0.004 0.004

ρ = 0.5 0.006 −0.004 −0.004

ρ = 0.8 0.002 −0.006 −0.005
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Table 4:

Comparison of empirical SEs of treatment effect estimates on Y1 obtained from multiple reconstructions of 

IPD (MR) and from MVMA

MR MVMA-REML MVMA-MM

ρ = −0.8 0.087 0.087 0.087

ρ = −0.5 0.093 0.090 0.090

ρ = −0.2 0.098 0.096 0.096

ρ = 0 0.101 0.098 0.098

ρ = 0.2 0.107 0.104 0.104

ρ = 0.5 0.111 0.110 0.110

ρ = 0.8 0.115 0.111 0.111
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Table 5:

Aggregate data on HbA1c level and body weight

Study Intervention N Δ HbA1c (%) Δ Weight (kg)

Mean SE Mean SE

Derosa, 201464 DPP4-I 101 −1.40 0.07 −3.50 0.56

Control 96 0.50 0.12 −0.80 0.62

Derosa, 201265 DPP4-I 86 −1.40 0.08 −2.50 0.64

Control 83 −0.70 0.07 −2.30 0.67

Ahren, 201466 DPP4-I 89 −0.56 0.12 −2.05 0.44

Control 16 −0.46 0.21 −3.61 0.87

Iwamoto, 201067 DPP4-I 70 −0.69 0.06 0.10 0.18

Control 73 0.28 0.06 −0.50 0.18

Mohan, 200968 DPP4-I 352 −0.71 0.05 0.60 0.09

Control 169 0.31 0.10 0 0.19

Nonaka, 200869 DPP4-I 75 −0.65 0.08 −0.10 0.18

Control 75 0.41 0.08 −0.70 0.15

Gul, 201170 DPP4-I 28 −0.30 0.14 −2.00 3.16

Control 16 −0.10 0.19 −2.20 2.74

Roden, 201371 DPP4-I 223 −0.53 0.06 0.10 0.20

Control 228 0.13 0.06 −0.43 0.20

Samocha-Bonet, 201472 DPP4-I 13 −0.20 0.08 −0.20 4.22

Control 13 −0.10 0.11 0.10 4.34

Tian, 201673 DPP4-I 88 −0.36 0.06 −0.40 0.86

Control 45 0.02 0.11 −0.40 0.96

Vilsboll, 201074 DPP4-I 322 −0.59 0.05 0.10 0.13

Control 319 −0.03 0.06 0.10 0.16

Violante, 201275 DPP4-I 111 −0.68 0.08 −2.20 0.24

Control 97 −0.38 0.09 −2.58 0.25

Yoon, 201276 DPP4-I 161 −2.37 0.09 4.80 0.51

Control 149 −1.86 0.09 4.10 0.54
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Table 6:

Meta-analysis of the HbA1c-weight combined outcome

ρ θ Bootstrap SE 95% CI

1 0.595 0.156 [0.290, 0.900]

0.8 0.598 0.157 [0.290, 0.905]

0.5 0.603 0.159 [0.292, 0.914]

0.2 0.608 0.160 [0.295, 0.921]

0 0.618 0.161 [0.301, 0.932]

−0.2 0.627 0.161 [0.310, 0.943]

−0.5 0.649 0.163 [0.327, 0.966]

−0.8 0.661 0.165 [0.338, 0.985]

Assume κ0 = 0

ρML = − 1 0.699 0.153 [0.398, 0.999]

ρMM = − 1 0.705 0.160 [0.392, 1.018]
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Table 7:

Aggregate data on post-intervention 24-hour SBP and DBP

Study Intervention N SBP(mmHg) DBP (mmHg)

Mean SE Mean SE

Becker, 200377 PAP 16 126 3.50 73 2.50

Control 16 137 2.75 82 2.25

Campos-Rodrigues, 200678 PAP 34 131 2.06 77 1.54

Control 34 130 2.74 77 1.54

Duran-Camtola, 201079 PAP 169 128 1.00 81 0.69

Control 171 128 0.99 82 0.69

Hui, 200680 PAP 23 123 3.13 80 2.29

Control 23 120 6.26 81 1.88

Kohler, 200881 PAP 51 128 1.96 81 1.40

Control 51 139 2.66 89 1.12

Robinson, 200682 PAP 16 137 4.00 84 3.00

Control 16 139 4.50 87 3.00

Zhao, 201754 PAP 69 123 1.22 71 0.93

Control 68 128 1.58 74 1.04
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