Skip to main content
. 2020 Nov 9;11:589416. doi: 10.3389/fpls.2020.589416

Table 1.

Summary of all discussed bacteria, predicted function, and secreted molecules in this review. Some molecules are secreted from different bacteria.

Bacterial strain Molecules Predicted function References
Plant growth promoting
Enterobacter, Bacillus, Pseudomonas Organic acids Phosphate solubilization Jha et al., 2012; Goswami et al., 2014
Pseudomonas spp. GRP3A, PRS9, Pseudomonas chlororaphis ATCC 9446 Siderophores Fe acquisition Sharma and Johri, 2003; Trapet et al., 2016
Azospirillum brasilense SP245 IAA production Induction of root hair formation Cohen et al., 2008; Molina et al., 2018
Leifsonia soli SE Gibberellin Induction of plant growth and seed germination Kang et al., 2014
Pseudomonas fluorescens G20-18 Cytokinins Suppression of disease resistance, cell elongation Großkinsky et al., 2016
Root nodulation
Rhizobium leguminosarum bv. viciae A34 Exopolysaccharide (EPS)-glycanases PlyA and PlyB Biofilm maturation Russo et al., 2006; Bogino et al., 2013
Sinorhizobium meliloti TolC protein Nodules production Cosme et al., 2008; Srinivasan et al., 2015; Mergaert, 2018
Rhizobium leguminosarum bv. trifolii R200, Rhizobium etli RapA1 Biofilm formation Mongiardini et al., 2009; Ho et al., 2014; Poole et al., 2018
Rhizobium leguminosarum spp. NodO Signaling for nodulation Finnie et al., 1997; Krehenbrink and Allan, 2008
Sinorhizobium fredii HH103 NopD Regulating expression of plant proteins Hubber et al., 2004; Rodrigues et al., 2007; Nelson and Sadowsky, 2015
Bradyrhizobium japonicum USDA110, Sinorhizobium fredii NGR234, HH103, USDA257 NopL Induction of plant immune response Pedley and Martin, 2005; Zhang et al., 2011
Bradyrhizobium japonicum USDA110, Sinorhizobium fredii NGR234, HH103 NopM Ubiquitination process Rohde et al., 2007; Burkinshaw and Strynadka, 2014; Zheng and Shabek, 2017
Rhizobium etli CNPAF512, Sinorhizobium fredii NGR234, HH103, USDA257 NopP Phosphorylated by plant kinases Bartsev et al., 2004; Skorpil et al., 2005; Gourion et al., 2015
Sinorhizobium fredii NGR234 NopT Cysteine protease activity Dai et al., 2008; Kambara et al., 2009; Gourion et al., 2015; Nelson and Sadowsky, 2015
Rhizobium sp. NGR234 NopJ Inactivates MAP kinases Mukherjee et al., 2006; Kambara et al., 2009; Gourion et al., 2015
Mesorhizobium loti R7A Msi059 Regulating expression of plant proteins Rodrigues et al., 2007; Nelson and Sadowsky, 2015
Mesorhizobium loti R7A Msi061 Protein degradation of VirE2 and Vip1 Nelson and Sadowsky, 2015
Bradyrhizobium strain ORS3257 ErnA An unknown function in the plant nucleus Teulet et al., 2019
Biocontrol
Pseudomonas spp., Bacillus spp. Antibiotics Virulence against phytopathogens Guilleroux and Osbourn, 2004; Daval et al., 2011; Cao et al., 2018
Pseudomonas fluorescens Pf29Apr DAPG Downregulation of pathogenic enzymes Daval et al., 2011
Pseudomonas fluorescens MFE01 T6SS related- toxins Virulence against phytopathogens Decoin et al., 2014
Pseudomonas brassocaecearum Q8r196 RopAA, RopB, RopM, DAPG Induction of plant immune responses Mavrodi et al., 2011
Bacillus subtilis BBG111 Cyclic lipopeptides (CLCPs) Induction of plant immune responses Ongena et al., 2005; García-Gutiérrez et al., 2013; Farace et al., 2015
Bacillus velezensis Lipopeptide compounds Antifungal Cao et al., 2018