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A B S T R A C T

The use of plant and plant products in the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles
(AuNPs) is made possible because of the natural inherent phytochemicals responsible for the reduction of
respective metallic salts to nanoparticle forms, and ensuring therapeutic applicability. In this study, synthesis of
AgNPs and AuNPs was performed using two different aqueous extraction methods for Crassocephalum rubens:
maceration using laboratory method of extraction (cold aqueous extract of Crassocephalum rubens (AECR)), and
decoction using traditional healer's method of extraction (hot aqueous crude extract of Crassocephalum rubens
(CECR)). The synthesized nanoparticles were characterized using various methods, and in vitro antioxidant po-
tential were thereafter investigated. The characterization results indicated the formation of mostly spherical-
shaped AgNPs and AuNPs with surface plasmon resonance (SPR) band of 470 nm and 540 nm, respectively.
The nanoparticles possess high antioxidant potentials but AECR synthesized AuNPs exhibited the least phyto-
chemical contents and antioxidant potential when compared to other nanoparticles. It can therefore be concluded
that extraction method and nanoparticle type are important factors that could influence the antioxidant properties
of the nanoparticles. Further studies using these nanoparticles as anticancer or anti-inflammatory agent in both in
vitro and in vivo are underway.
1. Introduction

Metallic nanoparticles, including gold nanoparticles (AuNPs) and
silver nanoparticles (AuNPs), have received much attention because of
the catalytic, electrical, magnetic, and optical properties exhibited when
compared to their respective bulk metallic state [1]. Physical and
chemical methods have been employed for the synthesis of nanoparticles,
but several associated limitations have led to the use of biological
methods, including the use of microorganisms and plants/plant products.
These limitations include time consumption during synthesis and the use
of chemicals which might produce toxic nanoparticles, and are not
eco-friendly [2, 3].

Plant and plant products are currently used in the synthesis of AuNPs
and AgNPs, because of their naturally inherent phytochemicals. It has
been shown that extract of medicinal plants may be used in the synthesis
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of metallic nanoparticles, most especially AuNPs and AgNPs, and several
biological activities of the biosynthesized nanoparticles have been re-
ported [4, 5, 6, 7, 8].

Crassocephalum rubens belongs to the family Asteraceae. Among the
Yorubas in Nigeria, it is called Ebolo. It is found in many African coun-
tries, especially in West and Central Africa. The leaves are eaten raw or
cooked in sauce. The leaves have shown to possess anticancer and hep-
atoprotective properties [9, 10]. It is used in the treatment of indigestion,
liver and heart problems, cough, allergies, and as purgative [11].
Phytochemical such as coumarins, flavonoids, mucilage, proanthocya-
nidin, steroids, tannins, and reducing compounds have been found in the
leaves of C. rubens [12]. Methanolic extract of the leaves of C. rubens have
been reported to exhibit in vitro and in vivo antioxidant activity [13].

Decoction (using traditional) and maceration (using laboratory)
methods of aqueous extraction were considered in this study because it
dewale).
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has been reported that combination of phytochemicals in plant diet may
be more efficient than isolated compounds in cancer chemoprotection
[9]. In quest for finding possible solution to free radical related diseases,
it is imperative to try several means to explore cost efficient, less toxic,
and targeted therapies. Aqueous medium was considered in this study, as
it is the most preferred medium for household consumption and tradi-
tional herbal preparation. It is, therefore, necessary to synthesize nano-
particles using aqueous medium for C. rubens extraction, and investigate
the in vitro antioxidant activities of the biosynthesized AuNPs and AgNPs.
This will provide preliminary information on the effect of the bio-
synthesized nanoparticles in vivo, and thus its potential use in
nanomedicine.

2. Materials and methods

2.1. Chemicals

Chemicals including 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), meth-
anol, phosphate buffer, potassium ferricyanide (C6N6 FeK3), Trichloro-
acetic acid (C2HCl3O2), Iron (III) chloride (FeCl3), hydrochloric acid
(HCl), nitric acid (HNO3), sodium phosphate, Ammonium molybdate
((NH4)2MoO4), Di-methylsulfoxide (CH3)2SO, and gold (III) chloride
trihydrate (HAuCl4⋅3H2O), silver nitrate (AgNO3) were purchased from
Sigma Aldrich, USA. All glassware was rinsed with aqua regia before used
for the synthesis of AuNPs. All reagents used were of analytical grade.

2.2. Plant preparation

The leaves of Crassocephalum rubens were obtained from Oyi farm-
land, Ora-Igbomina, Osun State Nigeria. The leaves were authenticated at
the Forestry Research Institute of Nigeria, Ibadan Nigeria. A sample of
the plant portion was deposited at the Institute's Herbariumwith voucher
number FHI 112047. The leaves were plucked out from the stem, and air-
dried at 25 �C. The dried leaves were then ground.

2.3. Plant extraction

Two different aqueous extraction methods (maceration and decoc-
tion) were considered for Crassocephalum rubens. In the maceration, using
laboratory extraction method, 10 g of powdered dried leaves of Crasso-
cephalum rubens was soaked in 100 mL of distilled water at room tem-
perature for 24 h. It was then filtered using cheese cloth, followed by
Whatman filter paper (number 1). This was freeze dried and the
concentrate (cold aqueous extract of Crassocephalum rubens (AECR)) was
stored at 4 �C until use. In the decoction, using traditional extraction
method, 10 g of C. rubens leaves was boiled in 100 mL distilled water at
100 �C for 45 min. This was thereafter filtered using cheese cloth, and
thereafter withWhatman filter paper (number 1), and then centrifuged at
10000 x g for 10 min, to remove undissolved particulates. The superna-
tant (hot aqueous crude extract of C. rubens (CECR)) was kept at 4 �C until
further use.

2.4. Biosynthesis of nanoparticles

The biosynthesis of AgNPs and AuNPs was performed following
methods described by Huo et al. [5] and Jin et al. [4], with some
modifications.

2.4.1. Synthesis and characterization of green synthesized AgNPs using
extracts of C. rubens leaves

Green synthesis of AgNPs was carried out by adding 10 mL AECR (0.1
g extract/mL distilled water) or CECR (from section 2.3 above) to a
beaker containing 90 mL aqueous solution of AgNO3 (1 mM) solution on
a hot plate at 50 �C, and continuously stirred for 20 min using a magnetic
stirrer. The synthesized nanoparticles were centrifuged twice at 15,000 x
g for 15 min after each washing with distilled water. This was done to
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remove unbound and excess plant materials in the mixture. The pellet
was left overnight at room temperature to air dry, and then kept at 4 �C
until further use.

The reactionmixture used in the synthesis of AgNPs was optimized by
using five different volumes of AECR/CECR (0.1 g extract/mL) to
aqueous solutions of AgNO3 (1 mM) at synthesis ratio 10:90, 20:80,
30:70, 40:60, 50:50, respectively. The addition was performed in a single
step. This is because bio-reduction of metal ions usually occur readily in
solution, resulting in stable nanoparticles [14]. The concentration (10
mL, 0.1 g extract/mL) of AECR/CECR in 90 mL aqueous solutions of
AgNO3 (1 mM) was used, as increased volumes resulted in aggregation of
the nanoparticles.

2.4.2. Synthesis and characterization of green synthesized AuNPs using
extracts of C. rubens leaves

Either 10 mL of AECR (0.1 g extract/mL distilled water) or CECR
(from section 2.3 above) was added to a beaker containing aqueous so-
lution of gold (III) chloride trihydrate (190 mL, 1 mM) on a hot plate at
50 �C, and the reaction was continuously stirred for 10 min using a
magnetic stirrer. The resultant nanoparticles were centrifuged twice at
15,000 x g for 15 min, after each washing with distilled water, to remove
unbound and excess plant materials in the mixture. The pellet was
thereafter left overnight at room temperature to air dry and kept at 4 �C
until further use.

The reaction mixture ratio was optimized by measuring five
different volumes of AECR/CECR (0.1 g extract/mL) were added to
aqueous solutions of gold (III) chloride trihydrate (1 mM) at synthesis
ratio 10:190, 20:180, 30:170, 40:160, 50:150, respectively. The
addition was performed in a single step. This is because bio-reduction
of metal ions usually occur readily in solution, resulting in stable
nanoparticles [14]. The concentration (10 mL, 0.1 g extract/mL) of
AECR/CECR in 190 mL aqueous solutions of gold (III) chloride tri-
hydrate (1 mM) was used, as increased volumes resulted in aggre-
gation of the nanoparticles.

2.4.3. Characterization of synthesized AuNPs and AgNPs
The ultraviolet-visible (UV-Visible) spectroscopy of the AgNPs and

AuNPs was performed using UV-Vis spectrophotometer, to assess the
wavelength and stability of the nanoparticles. The sizes, shapes, and
morphology of the synthesized AgNPs and AuNPs were investigated by
transmission electron microscopy (TEM) and scanning electron micro-
scopy (SEM). The presence of functional groups was detected by the
Fourier transform infrared (FTIR) spectroscopy using dried pellets of
these nanoparticles.

2.5. Quantitative phytochemical analysis

2.5.1. Total phenolic contents
The total phenolic contents (TPC) of the extract and nanoparticles

was determined using Folin Ciocalteu's reagent, as described by [15].
Each sample (100 μL, 100 μg/mL) or gallic acid (100 μL, 100 μg/mL) was
mixed with 500 μL Folin Ciocalteu's reagent and 1.5 mL sodium car-
bonate (20%). Themixture was shaken thoroughly andmade up to 10mL
with distilled water. The mixture was allowed to stand for 2 h. The
absorbance was determined at 765 nm against a blank containing all
reagents without samples or gallic acid at the same conditions. All de-
terminations were carried out in duplicates. The total phenolic contents
were calculated from standard curve obtained using varying concentra-
tions of gallic acid (5–20 μg/mL), and result presented in mg gallic acid
equivalent (GAE) per g sample.

2.5.2. Total flavonoid contents
The total flavonoid contents (TFC) of the extract and nanoparticles

were measured by aluminum chloride colorimetric assay according to a
method described by Zhishen et al. [16], with slight modifications.
Extract or nanoparticles (1.0 mL, 105 μg/mL) was mixed with 1.0 mL



Figure 1. UV-Visible spectrum of C. rubens synthesized nanoparticles of different volume of C. rubens extract to (a) aqueous solution of AgNO3 (1 mM) at 10:90, 20:80,
30:70, 40:60, 50:50 (b) aqueous solution of gold (III) chloride trihydrate (1 mM) at 10:190, 20:180, 30:170, 40:160, 50:150.
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AlCl3 (5%). The mixture was allowed to stand at room temperature for 5
min, after which 2.0 mL NaNO2 (7%) was added. Thereafter, 1.0 mL
sodium hydroxide (1%) was added to the reaction mixture, and the
absorbance was read at 510 nm against a blank. Results were calculated
from standard curve obtained using varying concentrations of quercetin
(5–20 μg/mL) in methanol and expressed in mg of quercetin equivalent
(QE) per g sample.

2.6. In vitro antioxidants determination of nanoparticles and extract

2.6.1. 1,1-Diphenyl-2-picrythydrazyl (DPPH) radical scavenging assay
The DPPH� assay was performed according to a method described by

Shirwaikar et al. [17], with some modifications. Two mL solution of 0.1
mMDPPH� (in methanol) was added to 2 mL of various concentrations of
each nanoparticle, plant extract, or ascorbic acid (standard). An equal
amount of DPPH� and methanol served as control. The reaction mixture
was kept in the dark at 30 �C for 20 min, and the absorbance recorded
read at 517 nm. The experiment was performed in duplicates. The %
scavenging activity was determined by Eq. (1):

% DPPH radical scavenging activity ¼ [(Abs of control –Abs of sample) / (Abs
of control)] x 100 (1)

where Abs of control ¼ absorbance of DPPH radical þ methanol, Abs of
sample ¼ absorbance of DPPH radical þ sample/standard.
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

300 400 500 600 700

Ab
so

rb
an

ce

Wavelength (nm)

a

Figure 2. UV-Visible spectrum of C. rubens synthesize
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2.6.2. Inhibition of lipid peroxidation
The ability of the nanoparticles to inhibit lipid peroxidation was

carried out according to a method described by Ruberto et al. [18], with
some modifications. Briefly, 0.1 mL of egg yolk homogenate (10% v/v)
was added to 0.5 mL of varying concentrations of the nanoparticles,
extract or ascorbic acid (standard) in test tubes. The volume in each test
tube was made up to 1 mL with distilled water. Afterwards, 0.05 mL
ferrous sulfate was added and incubated at 37 �C for 30 min. Then, 0.5
mL acetic acid-thiobarbituric acid reagent prepared in dimethyl sulfoxide
was added. The resulting mixture was incubated at 95 �C for 1 h. The
mixture was then allowed to cool and centrifuged at 650 � g for 5 min.
The absorbance of the supernatant was read at 532 nm, and the per-
centage inhibition was calculated using Eq. (2) below:

% Inhibition ¼ (Abs of blank – Abs of sample)/Abs of blank � 100. (2)

2.7. Statistical analysis

Data were analyzed using SPSS software package for Windows, and
values were expressed as Mean � SD. One-way analysis of variance
(ANOVA) was used to determine the levels of significance, followed by
multiple comparison by Tukey's tests. P values <0.05 was considered as
statistically significant.
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Figure 3. Energy dispersive X-ray spectrum of C. rubens synthesized (a) silver
nanoparticles, (b) gold nanoparticles.
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3. Results and discussion

3.1. Visual observation and characterization of the biosynthesized AgNPs
and AuNPs

Increased volumes of the plant extract resulted in aggregation of the
nanoparticles within 24 h and broader SPR bands (Figure 1a and b). The
Figure 4. TEM images of C. rubens sy
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20:80, 30:70, 40:60 and 50:50 (plant extract: AgNO3 solution), and
20:180, 30:170, 40:160, 50:150 (plant extract: gold (III) chloride trihy-
drate solution) produced aggregation of the nanoparticles upon forma-
tion, and were not considered further in this study. Agglomeration of
nanoparticles have been reported to produce more irregular shapes,
which could be linked to increase concentration of reducing agent [19].
The combination of 10 mL of AECR/CECR and 90 mL aqueous solution of
AgNO3 (1 mM) or 10 mL of AECR/CECR and 190 mL aqueous solution of
gold (III) chloride trihydrate (1 mM) were more suited for the synthesis
of AgNPs and AuNPs with sharp intense peaks at 470 and 540 nm,
respectively (Figure 2a and b).

The formation of AgNPs and AuNPs from extracts of C. rubens were
monitored by a reaction change in colour to light brown within 30 min
for AgNPs, and to purple within 20 min for AuNPs. These colour changes
suggest reduction and the synthesis of the nanoparticles, which are
related to the surface plasmon resonance (SPR) band of both AgNPs and
AuNPs [5]. The SPR bands of the biosynthesized AgNPs and AuNPs using
C. rubens were within the range of previously synthesized AgNPs [5, 20],
and AuNPs [5, 21, 22] from various medicinal plants.

Further, elemental composition of synthesized AgNPs and AuNPs was
determined by energy dispersive X-ray (EDX) spectrum, and higher
percentage of silver signals when compared to other elements was
revealed (Figure 3a and b, respectively). The AgNPs spectrum reveals
strong signals (Figure 3a) in the silver region (92.78%), which indicates
the formation of AgNPs. However, elements such as oxygen, sulphur and
carbon are present at low concentrations, which could have resulted from
the compounds present in the extract. For the AuNPs, it was noted that
gold (79.50%) was the major element, with some other elements at low
percentages (Figure 3b), which might be from the compounds from the
extract. This indicates the reduction of gold ions to elemental gold.
Strong signal of gold metal have reportedly been observed around 2 keV,
which is a characteristic peak of AuNPs [4, 23], and around 3 keV for
silver metal, which is a characteristic peak of silver nanocrystalline [5,
24].

The TEM and SEM images (Figures 4 and 5) revealed the shape, size,
and morphology features of the biological synthesized AuNPs and
AgNPs. The size range was found to be 15–25 nm for AgNPs, and pre-
sented mostly spherical shapes and some hexagonal shapes. On the
other hand, the size of AuNPs was ranging from 10 – 20 nm in diameter,
and were mostly spherical in shape (Figure 4 a, b). Polydispersed
nanoparticles were also noted by the TEM and SEM images, which could
result from the presence of several reducing phytochemicals in the
extract of C. rubens. Similar observations have previously been reported
[4, 25].

As shown in Figures 6 and 7, the FTIR spectra of CECR and CECR-
AuNPS, respectively, were recorded in the frequency range between
nthesized (a) AgNPs, (b) AuNPs.



Figure 5. SEM images of C. rubens synthesized (a) AgNPs, (b) AuNPs.
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4400 and 350 cm�1 in the % transmittance (%T). It was shown that there
were slight shifts in the FTIR peaks of C. rubens leaves extract (4384,
3969, 3768, 3426, 2391.38, 2074, 1638.03, 1483.5, 1354.66, 1245,
1080.42, 581.82 cm�1) and the synthesized AuNPs (3970, 3763.3, 3366,
2385, 2072, 1638.13, 1481.29, 1095, 565 cm�1). The absence of some
peaks (4384, 1354.66 and 1245 cm�1) in the synthesized AuNPs
compared to the CECR, and the slight shifts noted in the peaks suggests
the involvement of some functional groups in the reduction process. The
bands from 4384 up to 3426 cm�1 in the FTIR spectra corresponds to
O–H stretching vibration, which indicates the presence of alcohol and
phenol. It was reported that hydroxyl groups (O–H) have stronger
binding ability with gold ions [26]. The peaks at 582.82 and 565 cm�1

corresponds to C–H bond.
The FTIR spectra of CECR-AgNPs is shown in Figure 8 at the

frequency range between 4400 and 350 cm�1 in the % trans-
mittance (%T). It was noted that there were shifts in the FTIR
peaks of C. rubens synthesized AgNPs (4015, 3424, 1641,
1195.85, 1047.95, 875.85, 413.89 cm�1) when compared to
C. rubens leaves extract (Figure 6). This suggests the presence of
6

various functional groups responsible for the reduction of silver
ion to the nanoparticles.

3.2. Phytochemical analysis and in vitro antioxidant activities of
biosynthesized AuNPs and AgNPS

3.2.1. Phytochemical screening
Phytochemicals have been reported to have a major impact in the

biosynthesis of nanoparticles using medicinal plants. The total phenolics
and flavonoids contents were estimated and compared. It was noted that
CECR-AuNPs possessed significantly (p < 0.05) higher TPC and TFC
when compared to AECR-AuNPs and the AgNPs (Table 1), although, the
CECR had significantly (p < 0.05) higher TPC and TFC compared to
CECR-AuNPs and other nanoparticles. These differences might be linked
to the involvement of these phytochemicals in the reduction of gold or
silver ions to the nanoparticles [27, 28], and also acting as capping
agents. These was also confirmed by the FTIR spectra of the samples
(Figures 6, 7, and 8). It was also noted that CECR possessed higher TPC
and TFC when compared to AECR.
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Table 1. Total phenolics and total flavonoid contents.

Phenolics (mg gallic acid equivalent/g sample) Flavonoids (mg quercetin equivalent/g sample)

CECR-AgNPs 19.4 � 2.3a 5.5 � 1.4a

CECR-AuNPs 26.0 � 0.2b 15.5 � 0.8b

AECR-AgNPs 15.6 � 1.7a 19.4 � 0.1bc

AECR-AuNPs 3.5 � 1.2c 12.6 � 0.3b

AECR 37.5 � 0.3d 23.2 � 1.0cd

CECR 42.7 � 2.2e 27.0 � 4.3d

Values represent Mean � SD (n ¼ 3). p < 0.05, at different alphabet in the same column.

O.B. Adewale et al. Heliyon 6 (2020) e05501
CECR-AgNPs (Crude extract of Crassocephalum rubens-silver nano-
particles); CECR-AuNPs (Crude extract of Crassocephalum rubens-gold
nanoparticles); AECR-AgNPs (Aqueous extract of Crassocephalum rubens-
silver nanoparticles); AECR-AuNPs (Aqueous extract of Crassocephalum
rubens-gold nanoparticles); CECR (Crude extract of Crassocephalum
rubens).

3.2.2. In vitro antioxidant activities
The free radicals released during various biological processes are

involved in pathogenicity. The antioxidant activities of nanoparticles and
CECR were carried out against DPPH radical. As shown in Figure 9, the
7

extract (CECR) and the nanoparticles exhibited good DPPH radical
scavenging activity at all tested concentrations in a dose dependent
manner, except for AECR-AuNPs that rarely exhibited DPPH radical
scavenging activity at lower concentrations (20 and 40 μg/mL). At the
highest tested concentration (100 μg/mL), the exhibition of DPPH radical
scavenging activity was in the following order: Ascorbic acid (85.30%)>
CECR-AuNPs (78.69%) > CECR (78.29%) > CECR-AgNPs (72.81%) >
AECR-AgNPs (68.47%) > AECR-AuNPs (66.87%) (Figure 9). Noted dif-
ferences in the activities could be linked to the extraction method,
indicating higher antioxidant potential with traditional extraction of the
C. rubens leaves. These phytochemicals also contributed to the stabilizing
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of the nanoparticles. Higher DPPH radical scavenging activity was re-
ported in Glycyrrhiza uralensis synthesized silver chloride nanoparticles
(Gu-AgClNPs) when compared to Glycyrrhiza uralensis synthesized gold
nanoparticles (Gu-AuNPs) [5]. Contradictions noted compared with our
study could be due to differences in phytochemicals present in both
plants (G. uralensis and C. rubens).

Values represent Mean � SD (n ¼ 3). CECR-AgNPs (Crude extract of
Crassocephalum rubens-silver nanoparticles); CECR-AuNPs (Crude extract
of Crassocephalum rubens-gold nanoparticles); AECR-AgNPs (Aqueous
extract of Crassocephalum rubens-silver nanoparticles); AECR-AuNPs
(Aqueous extract of Crassocephalum rubens-gold nanoparticles); CECR
(Crude extract of Crassocephalum rubens).

From the results in Figure 10, the CECR and the nanoparticles
have the ability to inhibit lipid peroxidation in a dose-dependent
manner, like the standard antioxidant (ascorbic acid). Only the
AECR-AuNPs showed reduced inhibition of lipid peroxidation at
all concentrations. Inhibition of lipid peroxidation at the highest
concentration tested is in the following order: AECR-AgNPs (90%)
8

> CECR-AgNPs (90%) > CECR (88%) > CECR-AuNPs (87.22%) >

Ascorbic acid (87.05%) > AECR-AuNPs (69.71%) (Figure 10). It
can be suggested that the extract of C. rubens and the synthesized
nanoparticles could act as reducing agents, and have antioxidant
defense capabilities, thereby inhibiting peroxidation of lipids.
These properties are reportedly found with ascorbic acid, and is
regarded as powerful scavenger of free radicals [29]. The result
from this study supports the findings of Ruttkay-Nedecky et al.
[30], where biological method of synthesis (green synthesis) of
silver nanoparticles using green tea and coffee extracts showed
higher antioxidant and free radical quenching abilities when
compared to citrate reduction method.

Values represent Mean � SD (n ¼ 3). CECR-AgNPs (Crude extract of
Crassocephalum rubens-silver nanoparticles); CECR-AuNPs (Crude extract
of Crassocephalum rubens-gold nanoparticles); AECR-AgNPs (Aqueous
extract of Crassocephalum rubens-silver nanoparticles); AECR-AuNPs
(Aqueous extract of Crassocephalum rubens-gold nanoparticles); CECR
(Crude extract of Crassocephalum rubens).
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4. Conclusions

From the results obtained in this study, it can be concluded that the
leaves of Crassocephalum rubens contains a wide variety of secondary
metabolites that could serve as reducing and capping agent in the syn-
thesis of nanoparticles. These compounds also enhance the antioxidant
capabilities of the synthesized nanoparticles based on the in vitro anti-
oxidant assays performed. Overall, it can be deduced from this study that
AECR-AuNPs presented the least antioxidant capabilities to scavenge free
radicals. As observed in this study, extraction method is a major factor
that influences antioxidant properties of the nanoparticles. It can there-
fore be suggested that extraction of C. rubens through the decoction
method is more suitable than the maceration method for the synthesis of
AuNPs, while either of the methods for the synthesis of AgNPs. Further
studies would be carried out to investigate the biomedical applications of
these nanoparticles, including the anti-inflammatory and anticancer
potentials in vivo.
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