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Successful DNA replication requires carefully regulated
mechanisms to overcome numerous obstacles that naturally
occur throughout chromosomal DNA. Scattered across the ge-
nome are tightly bound proteins, such as transcription factors
and nucleosomes, that are necessary for cell function, but that
also have the potential to impede timely DNA replication. Using
biochemically reconstituted systems, we show that two tran-
scription factors, yeast Reb1 and Tbf1, and a tightly positioned
nucleosome, are strong blocks to the strand displacement DNA
synthesis activity of DNA polymerase d. Although the block
imparted by Tbf1 can be overcome by the DNA-binding activity
of the single-stranded DNA-binding protein RPA, efficient
DNA replication through either a Reb1 or a nucleosome block
occurs only in the presence of the 5’-3’ DNA helicase Pif1. The
Pif1-dependent stimulation of DNA synthesis across strong
protein barriers may be beneficial during break-induced repli-
cation where barriers are expected to pose a problem to efficient
DNA bubble migration. However, in the context of lagging strand
DNA synthesis, the efficient disruption of a nucleosome barrier
by Pif1 could lead to the futile re-replication of newly synthetized
DNA. In the presence of FEN1 endonuclease, the major driver of
nick translation during lagging strand replication, Pif1-dependent
stimulation of DNA synthesis through a nucleosome or Reb1 bar-
rier is prevented. By cleaving the short 5’ tails generated during
strand displacement, FEN1 eliminates the entry point for Pif1.
We propose that this activity would protect the cell frompotential
DNA re-replication caused by unwarranted Pif1 interference dur-
ing lagging strand replication.

Impeded DNA replication can lead to replication fork stall-
ing and, potentially, genomic instability (1, 2). Yet many bar-
riers must be overcome during DNA replication, such as DNA
secondary structures and tightly bound proteins. During DNA
replication, nucleosomes are recycled from the parental strand
and redeposited randomly on the two daughter strands (3–8),
thus ensuring efficient restoration of the proper epigenetic
landscape. As lagging strand replication proceeds in the oppo-
site direction of the replication fork, rebinding of transcription
factors and reassembly of nucleosomes would form barriers to
the lagging strand DNA polymerase d (Pol d). Indeed, nucleo-
somes appear to block Pol dDNA synthesis both in vivo (9) and
in vitro (10), and possibly limit strand displacement synthesis
to prevent excessive re-replication, whereas still allowing

primer removal. However, in yeast long 5’-flaps can arise during
Okazaki fragment maturation and be extended by the 5’-3’
DNA helicase Pif1, necessitating the endonuclease activity of
the nuclease/helicase Dna2 to cleave the extended flap (11, 12).
The flaps extended by Pif1 in vivo can reach lengths of hun-
dreds (13) to thousands (14) of nucleotides, suggesting that
during this process Pif1 may displace nucleosomes assembled
on downstream Okazaki fragments. This possibility remains to
be tested using reconstituted systems.
Interestingly, genome wide analysis of Okazaki fragment

junctions showed that their position correlates with the posi-
tion of the binding sites of the general transcription factors
Abf1, Reb1, and Rap1 (9), consistent with these being a barrier
to the progression of lagging strand DNA synthesis. Indeed, we
showed that in vitro a single Rap1 tightly bound to a high-affin-
ity DNA-binding site is a strong block to the strand displace-
ment DNA synthesis activity of yeast DNA polymerase (Pol)
and DNA replication through a single or an array of DNA-
bound Rap1 molecules requires the helicase activity of Pif1
(15). It remains to be tested whether other transcription factors
are also a strong block to DNA synthesis by Pol d, and, if so,
which ones impart a requirement for the activity of the Pif1
helicase for efficient DNA synthesis by Pol d.
Here we show that Saccharomyces cerevisiae Reb1 and Tbf1

bound to dsDNA are both strong polar blocks to the strand dis-
placement DNA synthesis activity of Pol d. However, binding of
the ssDNA-binding protein RPA to a 5’-ssDNA flap of the dis-
placed strand is sufficient to stimulate strand displacement
DNA synthesis by Pol d through the block imparted by a bound
Tbf1. The same is not true for Reb1, which remains a strong
block even in the presence of RPA and requires the activity of
the Pif1 helicase for its removal. These findings suggest that a
subset of DNA-bound transcription factors may necessitate the
activity of the Pif1 helicase for efficient progression of replica-
tion. We also show that a positioned nucleosome is a strong
block to both strand displacement DNA synthesis by Pol d and
FEN1-mediated nick translation, requiring both the ssDNA-
binding protein RPA and Pif1 helicase for through-replication.
In the presence of the FEN1 nuclease, Pif1 no longer stimulates
DNA synthesis through a nucleosome, as FEN1 removes the
entry point for the helicase. On the other hand, whereas RPA
bound to a 5’-flap only moderately inhibited FEN1, it was suffi-
cient to promote Pif1 unwinding through a protein block, even
in the presence of FEN1. We propose that one function of
FEN1 during Okazaki fragment maturation is to prevent the
potentially deleterious activity of Pif1.
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Results

General transcription factors are strong replication barriers
that differ in their requirement for Pif1 to allow through-
replication

In vitro primer extension assays were performed with DNA
substrates that contain a 1-nt gap to monitor successful base
incorporation by the polymerase, and a downstream duplex
region with a centrally positioned sequence recognition motif
to direct binding of each transcription factor tested. The sub-
strates also contain a 25-nt long 5’ poly(dT) flap that prevents
PCNA from sliding off the substrate, whereas also providing a
binding site for RPA and an entry point for Pif1 5’-3’ helicase.
The scheme for the assay is depicted in Fig. 1A. Briefly, PCNA
is loaded on theDNA substrate by RFC, followed by the binding
of the specific transcription factor being tested, in the presence
or absence of the single-stranded DNA-binding protein RPA.
DNA synthesis is initiated by the addition of Pol d and dNTPs
and the helicase when tested. The formation of the extension
products from the labeled primer is monitored over time.

WT Pol d is stalled by Reb1 bound to the downstream duplex
(Fig. S1A). Because of its exonuclease activity, the enzyme idles,
cyclically cleaving and resynthesizing DNA close to the block,
and results in a distribution of stalled products, which makes
their analysis difficult. Thus, we used an exonuclease-deficient
variant of Pol d (Pol dDV) to better quantify stall sites and frac-
tions of extension products. Fig. 1,B andC, show representative
primer extension assays and the quantifications of the fraction
of full-length DNA synthesis products, respectively. The pres-
ence of Reb1 bound to the downstream duplex inhibits forma-
tion of full-length extension products, with most of the DNA
synthesis stalling 2-3 nt prior to the Reb1 recognition sequence
motif (Fig. 1, B, central panel, and D, forward orientation).
Thus, Reb1 is a strong block to the strand displacement DNA
synthesis activity of Pol dDV.
Importantly, whereas binding of RPA to the 5’-flap of the

substrate stimulates DNA synthesis by Pol d (Fig. S1B), this
stimulation is not sufficient to allow replication through the
block imparted by the DNA-bound Reb1 (Fig. 1, B and C). Fur-
thermore, Reb1 bound in a reverse orientation relative to the

Figure 1. The activity of the Pif1 helicase is required for DNA synthesis through a Reb1 block. A, schematic of primer extension assays performed with
Reb1 or Tbf1 blocks. B, representative sequence gels of primer extension assays performed using Pol dDV in the presence of RPAwith and without Reb1 or Pif1,
monitored over time (10 sec, 30 sec, 1, 2, 5, and 10 min). Dashed lines have been added for visibility. C, quantification of full-length product formation for the
substrate with the forward orientation of the Reb1 logo, performed using Pol dDV with andwithout Reb1, RPA, and Pif1.D, quantification of the fraction of stall-
ing products (forward:115-16 nt; reverse:17-8 nt) formed by Pol dDV in the presence of RPA and the Reb1 binding logo either in the forward or reverse orien-
tations. E, same as in B, but for a DNA substrate with the Reb1 binding logo on the opposite strand (“reverse” substrate). In C–E, the error bars are the mean6
S.D. from 3 independent replicates.
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directionality of DNA synthesis still significantly delays Pol dDV

(Fig. 1E and Fig. S1C). However, when bound in the reverse ori-
entation Reb1 is a weaker replication block compared with the
forward orientation, as indicated by both the larger fraction of
full-length DNA synthesis products (Fig. 1E) and by the tran-
sient accumulation of the intermediate stalling products (Fig.
1D). Independent of orientation, it is only with the addition of
the 5’-3’ DNA helicase Pif1 that efficient DNA replication
occurs past the Reb1 block, consistent with Pif1 removing the
DNA-bound Reb1 downstream of the advancing polymerase.
The requirement of Pif1 for efficient DNA synthesis by Pol d

past the Reb1 block is similar to what we reported for Rap1
(15), and is consistent with the activity of a 5’-3’ helicase being
required whenever DNA replication must proceed timely and
efficiently through a strong protein barrier. However, this ob-
servation raises the question of whether any protein tightly
bound to DNA is a block to DNA synthesis and, thus, requires
the helicase activity of Pif1 for its removal. To address this
question we tested whether this conclusion would also hold
true for the general transcription factor Tbf1 that tightly binds
to DNA (16).
Similar to what we observed for Reb1, the DNA-bound Tbf1

is also a block to the strand displacement DNA synthesis activ-
ity of Pol dDV, with one of theDNA-bound orientations display-
ing a higher ability to impede DNA synthesis (Fig. 2). However,
in stark contrast to the Reb1 block, binding of RPA to the 5’-
flap of the substrate and its stimulation of DNA synthesis is
enough to allow replication past the Tbf1 block, to the same
extent as Pif1 stimulated DNA synthesis (Fig. 2). These findings
suggest that, in the presence of abundant RPA, not all proteins
that are tightly bound to DNA would pose a significant barrier
to DNA replication and require the activity of a helicase for
their removal.

DNA synthesis by DNA polymerase d through a nucleosome
requires Pif1

Next, we tested whether a tightly positioned nucleosome
would block DNA replication, and whether the helicase activity
of Pif1 would be needed to remove or reposition the nucleo-
some to allow DNA synthesis to proceed. For this, we designed
a DNA substrate containing the strong nucleosome positioning
601 Widom sequence (17) placed 20 bp from a nick, followed

by either a short (3 bp) or long (50 bp) tail to monitor potential
sliding of the nucleosome toward the end of the substrate (Fig.
3A). As the DNA substrate is Cy3 labeled prior to nucleosome
assembly, it is important that for our experiments all free DNA is
assembled into nucleosomes to avoid the contribution from
unimpeded DNA synthesis on bare DNA. As shown in Fig. S2A,
nucleosome assembly was complete, as no free DNA was
detected following nucleosome assembly. On these DNA sub-
strates, Pol dWT showed limited strand displacement synthesis
activity, even in the presence of RPA, and failed to reach the
nucleosome (Fig. S2B). Therefore, exonuclease-deficient Pol dDV

was again used to precisely quantify the polymerase stall sites.
On a nucleosome-free substrate, Pol dDV carries out strand

displacement DNA synthesis as indicated by formation of both
intermediate and full-length DNA synthesis products (Fig. 3B,
panel 1). Again, binding of RPA to the growing 5’-flap formed by
Pol dDV stimulated strand displacement DNA synthesis, as indi-
cated by the extension of all the intermediate products to full-
length (Fig. 3B, panel 2, and Fig. S2C). However, on a nucleo-
some-bound substrate, few full-length products are formed, and
Pol dDV is clearly halted at the front edge of the nucleosome (Fig.
3B, panel 3). Importantly, RPA does not stimulate DNA synthesis
through the nucleosome, although it promotes synthesis about 8
nt further into it (Fig. 3B, panels 3 and 4). These data are pre-
sented quantitatively by monitoring the rate of accumulation of
full-length DNA synthesis products (Fig. S2C) and by quantifying
the band intensities of all the DNA synthesis products for each
reaction condition at 30min (Fig. 3C).
Next, we tested whether the unwinding activity of Pif1 would

be sufficient to remove the stably positioned nucleosome and
allow through-replication. Surprisingly, Pif1 was able to disrupt
the stably bound nucleosome and promote through-replica-
tion, especially in the presence of RPA (Fig. 3B, panels 5 and 6).
In the absence of RPA, Pif1 stimulates about 10% formation of
full-length product (Fig. S2C), and DNA synthesis by Pol dDV

stalls just before the nucleosome dyad (Fig. 3B, panel 5). On the
other hand, the combined unwinding activity of Pif1 and bind-
ing of RPA to the growing 5’ ssDNA flap resulted in the near
elimination of stalling just prior to the nucleosome dyad (Fig.
3C, panel 6), and in a rate of accumulation of full-length DNA
synthesis product that is similar to the one observed for naked
DNA (Fig. S2C).

Figure 2. RPA is sufficient to stimulate DNA synthesis through a Tbf1 block. A, quantification of full-length product formation during primer extension
assays performed using Pol dDV with and without Tbf1, RPA, and Pif1. B, same as A, but for a DNA substrate with the Tbf1 binding logo on the opposite strand
(reverse substrate). C, quantification of the fraction of stalling products (forward:113-16 nt; reverse:17-10) formed by Pol dDV in the absence of RPA and with
Tbf1 binding logo either in the forward or reverse orientations. In A–C, the error bars are themean6 S.D. from 3 independent replicates.
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The stimulation of DNA synthesis through a nucleosome by
Pif1 raises the question of whether the nucleosome is simply
being removed as Pif1 unwinds the duplex DNA ahead of the
polymerase or, because of the linear nature of the DNA sub-
strate used, the nucleosome is being pushed off the end of the
DNA. To test this latter possibility, we generated an otherwise
identical DNA substrate that contains an extended region of 50
bp rather than 3 bp past the nucleosome positioning sequence.
We reasoned that if the nucleosome was pushed downstream
by Pif1 along the longer DNA, synthesis should stall further
into the duplex, resulting in an offset of the position of the in-
termediate DNA synthesis products. In the absence of Pif1 and
independent of RPA, Pol dDV stalled at the same positions on
either substrate (Fig. S3A, panels 1-4). These data indicate that
the nucleosome is properly positioned at the same location on
both DNA substrates and that the polymerase itself cannot
push the nucleosome. Independent of the downstream length
past the 601 sequence, DNA synthesis by Pol dDV in the pres-
ence of Pif1 stalled at similar positions (Fig. S3A, panels 5-8).
We take this as an indication that the nucleosome is not being
pushed downstream by Pif1 but, rather, it is removed during

unwinding. The mechanism by which this happens remains to
be elucidated.

FEN1 nuclease prevents Pif1 stimulation of DNA replication
through a protein block

The results in the previous sections suggest that the ability of
the Pif1 helicase to efficiently disrupt tightly bound proteins
and nucleosomes should allow unperturbed DNA replication
through most protein barriers. However, this activity of Pif1
may need to be controlled to avoid potentially deleterious con-
sequences during DNA replication, such as excessive flap gener-
ation and unwarranted removal of nucleosomes. Nucleosome
disruption during lagging strand replication could lead to loss of
epigenetic information or futile re-replication of downstream
Okazaki fragments. During Okazaki fragment maturation, FEN1
travels along with Pol d to promote nick translation: a repetitive
cycle of short-range strand displacement by Pol d and flap cleav-
age by FEN1, as depicted in Fig. 3A (18). Thus, we sought to test
whether the activity of the FEN1 nuclease would be sufficient to
remove the entry point for Pif1 and thereby prevent excessive
replication through barriers during nick translation.

Figure 3. Pif1 disrupts nucleosomes to allow through-replication. A, schematic of primer extension assays performed on DNA substrates with a nucleo-
some assembled on a 601 Widom sequence placed 20 bp from a nick. B, representative sequencing gels of primer extension assays performed using Pol dDV

with or without a nucleosome, RPA, and/or Pif1 and monitored over time (1, 2, 5, 10, 20, and 30 min). C, lane plots of the band intensity of the 30-min time
point for primer extension assays on nucleosome-bound substrates in B.
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To measure nick translation under physiologically relevant
conditions, primer extension assays were performed with WT
Pol d. On naked DNA, FEN1 allows Pol dWT to efficiently synthe-
size full-length DNA products (Fig. 4, B, panel 1, and D). How-
ever, on a nucleosome-bound substrate, nick translation was
blocked at the edge of the nucleosome (Fig. 4C, panel 1), thus pre-
venting synthesis of full-length products (Fig. 4E). These findings
are in agreement with previous results (10), and show that nick
translation is halted by a strongly positioned nucleosome.
Next, we performed the same assays in the presence of the

Pif1 helicase. Without FEN1 present, Pif1 promotes replication
by Pol dWT through a nucleosome (Fig. 4E and Fig. S2B). How-
ever, the situation is quite different when FEN1 is present in the
reaction. FEN1 prevents Pif1 from stimulating Pol dWT DNA
synthesis even on a nucleosome-free substrate (Fig. 4, B and C,
compare panels 1 and 2). Nick translation by FEN1 and Pol
dWT is characterized by many intermediate products as Pol
dWT cyclically polymerizes a few nucleotides and idles to allow
FEN1 cleavage of the short displaced flap. This patterning of
DNA products was unaffected by the presence of Pif1. Further-
more, Pif1 had no effect on the rate of full-length product for-
mation in reactions that contained FEN1 (Fig. 4, D and E). We
interpret these results as indicative of FEN1 preventing Pif1
from acting on the DNA substrate by continuously cleaving the
5’-flap that is used as an entry point by Pif1. Thus, when Pol d
synthesizes DNA from a nick, the catalytic activity of FEN1 is
sufficient to prevent stimulation of DNA synthesis by Pif1.

FEN1 effectively prevented Pif1 stimulation of DNA synthe-
sis through a nucleosome. However, during Okazaki fragment
processing, long flaps can form (14) and become inhibitory to
FEN1 cleavage if bound by RPA (11). Thus, we tested the ability
of FEN1 to protect against Pif1 stimulation on a substrate with
a long 5’-flap in the presence or absence of RPA. To test this,
we used the DNA substrate that contains a Reb1-binding site in
the downstream dsDNA (Fig. 5) and all the experiments were
performed in the presence of Reb1 to slow full-length product
formation. Interestingly, FEN1 has a slight stimulatory effect
on DNA synthesis through Reb1, regardless of the absence (Fig.
5A) or presence (Fig. 5B) of RPA. This was unexpected because
in the presence of RPA, FEN1 was expected to be inhibited and,
thus, not be able to stimulate Pol dWT. To test whether RPA
inhibits FEN1 in our system, the 5’-flap was radiolabeled and
cleavage by FEN1 was monitored directly (Fig. S3B). FEN1
cleaves at the base of the 5’-flap; however, at the low RPA con-
centration used in our reactions RPA only partially inhibits
FEN1. Although our findings may appear to be at odds with the
commonly accepted idea in the field that RPA inhibits FEN1,
the RPA concentration dependence of FEN1 inhibition showed
that a large excess of RPA relative to the DNA is needed for sig-
nificant inhibition to occur (19, 20). Regardless, we found that
RPA has a significant impact in promoting Pif1 unwinding over
FEN1 cleavage. Without RPA, FEN1 and Pif1 compete for
access to the 5’-flap and results in full-length product formation
being intermediate of what achieved with Pif1 or FEN1 alone

Figure 4. FEN1 endonuclease activity prevents Pif1 stimulation of replication through a nucleosome. A, schematic of nick translation performed during
primer extension assay involving FEN1. B and C, representative primer extension assays using Pol dWT and FEN1with or without Pif1 on nucleosome-free (B) or
nucleosome-bound (C) substrates, monitored over time (15 sec, 1, 2, 5, 10, 20, and 30 min). Dashed lines are added for visibility. D and E, quantification of full-
length product formation of reactions with or without FEN1 and Pif1 on nucleosome-free (D) or nucleosome-bound (E) substrates. The error bars are the
mean6 S.D. from 3 independent replicates.
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(Fig. 5A). However, in the presence of RPA, reactions contain-
ing Pif1 behave identically whether or not FEN1 is present (Fig.
5B), consistent with the finding that RPA inhibition of FEN1
was amplified by Pif1 (11). This result suggests that weak inhi-
bition of FEN1 by RPA bound to a long flap is sufficient to favor
Pif1 binding and unwinding, and suggests that for FEN1 to be
effective in cleaving the 5’ entry point for Pif1 it must do so
before a long flap can form and interact with RPA.
Together, these results reveal that the cyclical actions of Pol

dWT and FEN1 during nick translation are sufficient to prevent
Pif1 from acting on the DNA substrate. However, the presence
of a long RPA bound 5’-flap blocks FEN1 from cleaving the 5’-
flap and protecting the substrate from Pif1 entry.

Discussion

In this work, we showed that two transcription factors from
S. cerevisiae, Reb1 and Tbf1, are strong blocks to DNA replica-
tion by Pol d. Removal of the block imparted by Reb1 requires
the activity of the Pif1 helicase to allow progression of DNA
synthesis, similar to what we had observed for Rap1 (15). Unlike
Rap1, which forms a closed complex on DNA (21), crystal
structures of Schizosaccharomyces pombe Reb1 suggest that
Reb1 binds DNA without forming a closed complex (22), yet
we show here that it still forms a significant block to DNA syn-
thesis that can only be removed by the activity of a helicase. On
the other hand, whereas Tbf1 also forms a strong barrier to Pol
d DNA synthesis, the binding of RPA to the ssDNA flap of the
substrate is all that is required to overcome the Tbf1 block and
stimulate the DNA-synthesis activity of the polymerase. Thus,
we conclude that in the absence of additional factors Rap1,
Reb1, and Tbf1 are all strong barriers to the intrinsic strand dis-
placement DNA-synthesis activity of Pol d, independent of
their DNA-binding affinity or specific configuration adopted
on DNA. Interestingly, different additional factors are needed
for their removal; either the simple binding of RPA and its stim-
ulation of DNA synthesis or the ATP-dependent DNA-
unwinding activity of an accessory helicase, such as Pif1.
Although it remains to be determined how the DNA-binding
affinity and/or specific DNA binding modes of transcription
factors may contribute to defining their ability to act as a barrier

to DNA replication, our data strongly suggest that not all tran-
scription factors that can block Pol d DNA synthesis will be a
block to DNA replication when RPA is abundant.
During DNA replication, nucleosomes are removed from in

front of the replication fork and redeposited behind the fork,
randomly distributed between the two daughter strands (3–8).
This process of nucleosome recycling deposits nucleosomes
directly in the path of lagging strand replication. It is possible
that nucleosomes may serve as a barrier to prevent excessive
re-replication by obstructing Pol d strand displacement synthe-
sis during lagging strand DNA synthesis. Indeed, in vivo iso-
lated Okazaki fragments were found to display length periodic-
ity similar to micrococcal nuclease-treated nucleosome arrays
(9). Furthermore, genome wide alignment of Okazaki fragment
junctions to nucleosome positioning was highly correlative (9).
A similar phenomenonwas observed in an in vitro bidirectional
replication system in which replication of chromatin resulted
in short lagging strand Okazaki fragments similar to lengths
seen in vivo (100-300 nt), whereas on bare DNA, much longer
and heterogeneous lengths were observed (10). Although in
our assay WT Pol d was not able to perform sufficient strand
displacement DNA synthesis to reach the nucleosome, its exo-
nuclease-deficient variant did and showed that a nucleosome is
indeed a strong barrier to DNA synthesis by Pol d.
Here we show that, in addition to removing tightly bound

transcription factors, the Pif1 helicase stimulates efficient DNA
replication through a nucleosome in the presence of RPA.
Because Pif1 disrupts nucleosomes that are highly stable when
positioned with the 601 Widom sequence (17), we would
expect Pif1 to displace naturally bound nucleosomes as well.
Furthermore, our data strongly suggest that Pif1 ejects a nucle-
osome rather than pushing and/or repositioning it along the
DNA. This may be due to the strong interaction of the nucleo-
some with the optimal configuration of the artificially selected
601 sequence (17, 23), which makes sliding out of position less
favorable (24). In cells, nucleosome assembly on random
genomic DNA and the activity of nucleosome remodelers (23,
25–27) may favor sliding and, in this context, the nucleosomes
may be pushed along DNA as the Pif1 helicase unwinds the
duplex to allow replication.
The activity of the Pif1 helicase is implicated in multiple

processes involving DNA synthesis, such as processing of long
flaps together with the Dna2 helicase/nuclease during Okazaki
fragment maturation (11, 12, 14, 28, 29) and bubble migration
during break-induced replication (30, 31). In the latter, the sis-
ter chromatid is used as a template to copy the genetic informa-
tion via strand displacement DNA synthesis from the invading
3’ end (32, 33). Thus, nucleosomes and select transcription fac-
tors on the sister chromatid must be removed to circumvent
their strong blocking activity on DNA synthesis. In this sce-
nario, we propose that one of the functions of the Pif1 helicase
during break-induced replication is to remove protein barriers
to facilitate DNA replication. Our data show that when coupled
to DNA synthesis the helicase activity of Pif1 can deal with any
protein obstacle we have tested so far.
Although the activity of Pif1 is clearly important for long flap

processing (11, 12, 14, 28, 29), the stimulation of DNA synthesis
and efficient removal of protein barriers raises the question

Figure 5. RPA bound to a pre-formed 5’-flap is sufficient to bypass FEN1
inhibition and favor the Pif1-dependent stimulation of DNA synthesis
through a protein barrier. A, quantification of primer extension assays per-
formed using Pol dWT with a Reb1-bound substrate with a preformed 5’-flap,
the presence or absence of FEN1 and Pif1. B, same as A, but in the presence
of RPA. The error bars are themean6 S.D. from 3 independent replicates.

DNA replication through protein barriers

15888 J. Biol. Chem. (2020) 295(47) 15883–15891



whether in general Pif1 is actively prevented from acting during
Okazaki fragment maturation. First, based on our observation
that Pif1 efficiently removes protein barriers in front of Pol d,
we would not expect the strong genome wide correlation of the
positions of transcription-binding sites and nucleosomes with
the position of Okazaki fragment junctions (9). Second, during
lagging strand DNA synthesis, uncontrolled activity of Pif1 at
the Okazaki fragments would lead to extensive DNA re-synthe-
sis, which would be uneconomical for the cell. Consistent with
these arguments, we provided experimental evidence that
shows that FEN1 nuclease could play a protective role in pre-
venting unwarranted Pif1-stimulated re-replication. Our data
shows that a nucleosome is a block to FEN1-mediated nick
translation, consistent with a recent study (10). In addition,
FEN1 suppresses the Pif1-dependent stimulation of DNA syn-
thesis on naked or nucleosomal DNA. By repetitively cleaving
short flaps generated by the strand displacement activity of Pol
d, FEN1 removes the 5’ entry point for Pif1. On the other hand,
whereas RPA bound to a long pre-formed flap only moderately
inhibits FEN1 cleavage, this inhibition is sufficient to allow Pif1
access to the flap and promote Pif1-stimulated synthesis
through a protein block. Fig. 6 depicts our current model for
how the interplay between FEN1 activity, RPA binding, Pif1
unwinding, and stimulation of DNA synthesis allows DNA rep-
lication past a protein barrier, whereas at the same time pro-
tecting the cell from excessive re-replication. Our findings
emphasize the importance of FEN1 during lagging strand repli-
cation in limiting Pif1 activity and, thus, preventing re-replica-
tion and potential epigenetic loss.

Experimental procedures

Proteins and DNA substrates

S. cerevisiae DNA polymerase d, Pol dWT, and the exonucle-
ase-defective Pol dDV (D520V) were purified from a yeast over-
expression system as described previously (15). S. cerevisiae
RPA (34), PCNA (35), RFC (36), and FEN1 (37) were purified as

previously described. S. cerevisiae Pif1 was purified as previ-
ously described (38). The coding sequences of full-length Reb1
and Tbf1 were PCR amplified from S. cerevisiae genomic DNA
from strain S288C, cloned into pGEX-6p-1 and overexpressed
in BL21 cells. The cells were grown in LBmedia, induced with 1
mM isopropyl 1-thio-b-D-galactopyranoside, and grown over-
night at 16 °C. The pellet was resuspended in lysis buffer A (50
mM sodium phosphate, 400 mM NaCl, 0.5 mM EDTA, 10% (v/v)
glycerol, 1 mM DTT, and 1 mM phenylmethylsulfonyl fluoride)
and lysed by sonication. The cell lysate was centrifuged at
12,000 rpm for 30 min at 4 °C and batch bound to glutathione-
S-transferase (GST) beads pre-equilibrated with buffer A over-
night at 4 °C. Following washing, protein-bound beads were
packed in a column and eluted with elution buffer B (20 mM

Tris, pH 7.3, 400 mM NaCl, 1 mM EDTA, 10% (v/v) glycerol, 5
mM DTT, and 25 mM GSH). The GST tag was cleaved during
overnight dialysis in dialysis buffer C (20 mM Tris, pH 7.3, 200
mMNaCl, 10% (v/v) glycerol, 1 mM EDTA, 5 mM DTT) with 3C
protease. Dialyzed and cleaved Reb1 was loaded on a heparin
column pre-equilibrated with buffer C, washed with buffer C
containing 350 mM NaCl, and eluted in buffer C containing
450-600 mM NaCl. Purified Reb1 was concentrated, dialyzed
into storage buffer D (20 mM HEPES, pH 7.4, 400 mM NaCl, 1
mM EDTA, 1 mM DTT, 40% (v/v) glycerol), and stored at280 °
C. Tbf1 was purified in the same way as Reb1, although it eluted
from the heparin column in buffer C containing 300-450 mM

NaCl.
Reb1 and Tbf1 DNA substrates were purchased from Inte-

grated DNA Technologies (Coralville, IA) and their sequences
are listed in Table S1. The 3’ biotinylated DNA template strand
was annealed to a 5’ fluorescently labeled primer and unlabeled
top strand in the presence of 20 mM HEPES, pH 8.0, 100 mM

NaCl, 2 mM MgCl2. The reaction was heated to 95 °C and
allowed to slowly reach room temperature. To generate the
DNA substrate containing the 601 Widom sequence (17) a
DNA sequence containing a NtBbvCI nickase site 20 bp
upstream from the 601 Widom sequence was synthesized into

Figure 6. Model of FEN1 and nucleosomeprotection from re-replication during Okazaki fragmentmaturation. Predominantly, traveling alongwith Pol
d, FEN1 will cleave short flaps formed by Pol d strand displacement activity, removing Pif1’s access point for unwinding. However, a delay in endonucleolytic
cleavage by FEN1 could result in an extended 5’-flap that could bind RPA and promote Pif1 unwinding. Pif1 unwinding could cause replication through a
downstream nucleosome and cause potential loss of epigenetic information or re-replication of downstreamOkazaki fragments.
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pUC57 by GenScript. Using this plasmid as a template, the
DNA substrate was generated by PCR using Phusion polymer-
ase (New England Biolabs) and a 5’ biotinylated and fluores-
cently labeled forward primer and either an unlabeled or a 5’ bi-
otinylated reverse primer. The PCR product was purified using
the QIAquick PCR Purification Kit from Qiagen (Hilden, Ger-
many). Purified PCR product was nicked using NtBbvCI nick-
ase fromNew England Biolabs (Ipswich,MA) at 37 °C and puri-
fied again. Nicked and purified 601 DNA substrate was
quantified by measuring the absorbance at 260 nm on a Varian
Cary-100 spectrophotometer. Human octamers were pur-
chased from EpiCypher (Durham, NC). Nucleosome in vitro as-
sembly was performed using salt dialysis similar to as previ-
ously described (39) with a 1.8-fold excess of human octamer to
DNA. Briefly, the DNA and human octamer were combined
and dialyzed sequentially for 50 min in dialysis buffer (10 mM

Tris, pH 7.5, 1 mM EDTA, 1 mM DTT) with the following salt
(NaCl) concentrations: 2, 1.8, 1.6, 1, 0.8, 0.6, 0.4, 0.2, 0.1, and
0.05 M. The sample was collected and stored at 4 °C.

Primer extension assays

Primer extension assays were carried out in Buffer TM (20
mM Tris-HCl, pH 7.8, 8 mM MgAc2, 1 mM DTT, 0.1 mg/ml of
BSA) with 50 mM NaCl for Reb1 and Tbf1 assays and 100 mM

NaCl for nucleosome assays. Replication assays were per-
formed with 20 nM of the DNA substrate. A standard loading
protocol was followed (35) using the following final concentra-
tions of each component. RFC (20 nM) and PCNA (20 nM) were
allowed to react with the biotinylated DNA substrate in the
presence of streptavidin (20 nM) and ATP (1 mM) for 2 min at
30 °C, followed by 30 s incubation of RPA (40 nM) and Reb1 (40
nM) or Tbf1 (80 nM), where mentioned. The reactions were
started with the addition of Pol d (20 nM) and dNTPs (100 mM),
with or without Pif1 (40 nM) or FEN1 (20 nM). Use of Pol dDV or
Pol dWT is stated in the figure legends. At the indicated times,
the reactions were stopped by the addition of 80mM EDTA and
0.08% SDS and incubated at 55 °C for 10min. After the addition
of formamide (50% final) and bromphenol blue, the samples
were heated at 95 °C for 2 min and analyzed on a 12% denatur-
ing polyacrylamide gel, pre-run for 1.5 h in 0.53 TBE. The gels
were scanned using a Typhoon 9400 Variable Mode Imager
(GE Healthcare), monitoring the Cy3 fluorescence of the la-
beled primer. Accumulation of the full-length product was
quantified using ImageQuant; the background was subtracted
using the rubber-band option in ImageQuant and the intensity
of full-length product was normalized to the intensity of the
lane. The reported values in the figures are the mean 6 S.D.
from three independent replicates. Reactions performed with
the 601 substrate were performed similarly, except the concen-
trations of the proteins were doubled. Furthermore, the DNA
from each time point was ethanol precipitated prior to loading
on an 8% denaturing polyacrylamide gel that was pre-run for
1.5 h in 13 TBE.

FEN1-cleavage assay

The FEN1-cleavage assays were performed on the Reb1 for-
ward substrate in the presence of 200 nM RPAwhen tested. The

5’-flap of the top strand was radiolabeled with [g-32P]ATP
using T4-PNK from New England Biolabs (Ipswich, MA). The
assay was performed similarly to primer extension assays on
Reb1 substrates using Pol dWT and FEN1 but in the absence of
dNTPs to prevent DNA synthesis. Samples were run on 12%
gels that were dried and developed on a PhosphorImager.

Data availability

All data are contained within themanuscript.
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