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Abstract

Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like 

spikes that project from their surface, an unusually large RNA genome and a unique replication 

strategy. CoVs cause a variety of diseases in mammals and birds ranging from enteritis in cows 

and pigs and upper respiratory tract and kidney disease in chickens to potentially lethal human 

respiratory infections. Here we provide a brief introduction to CoVs discussing their replication, 

pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks 

of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and 

Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV).
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Classification

CoVs, the largest group of viruses within the Nidovirales order, comprises Coronaviridae, 

Arteriviridae, Roniviridae and Mesoniviridae families. The Coronavirinae include one of 

two subfamilies in the Coronaviridae family, with the other subfamily being Torovirinae. 

The Coronavirinae are further subdivided into four genera: the α, β, γ and δ-CoVs. The 

viruses were initially sorted into these groups based on serology but now are divided by 

phylogenetic clustering and pair-wise evolutionary distances in seven key domains of the 

replicase-transcriptase polyprotein. The arteriviruses consist of five genera of mammalian 

pathogens. The roniviruses, which infect shrimp and the mosquito-borne mesoniviruses have 

invertebrate hosts.

All viruses in the Nidovirales order are enveloped, non-segmented positive-sense RNA 

viruses. They share a significant number of common features include: a) a highly conserved 

genomic organization, with a large replicase gene upstream of structural and accessory 

genes; b) expression of many non-structural protein genes by ribosomal frameshifting; c) 

several unique or unusual enzymatic activities encoded within the large replicase-

transcriptase protein product; and d) expression of downstream genes by synthesis of 3′ 
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nested sub-genomic mRNAs. In fact, the Nidovirales order name is derived from these 

nested 3′ mRNAs as nido is Latin for “nest”. The major differences within the four 

Nidovirus families are in the numbers, types, and sizes of their structural proteins and 

significant alterations in the structure and morphology of their virions and nucleocapsids.

Genomic Organization

Nidoviruses, which include CoVs, have the largest identified RNA genomes; CoVs contain 

approximately 30 kilobases (kb). The genome contains a 5′ cap structure along with a 3′ 
poly(A) tail, allowing it to act as a mRNA for translation of the replicase polyproteins. The 

replicase gene encoding the non-structural proteins (nsps) occupies two-thirds of the 

genome, about 20 kb, as opposed to the structural and accessory proteins, which make up 

about 10 kb of the viral genome. The 5′ end of the genome contains a leader sequence and 

untranslated region (UTR) that contains multiple stem loop structures required for RNA 

replication and transcription. Additionally, at the beginning of each structural or accessory 

gene are transcriptional regulatory sequences (TRSs) that are required for expression of each 

of these genes. The 3′UTR also contains RNA structures required for replication and 

synthesis of viral RNA. The organization of the CoVs genome is 5′-leader-UTR-replicase-S 

(Spike)–E (Envelope)-M (Membrane)-N (Nucleocapsid)-3′UTR-poly (A) tail with 

accessory genes interspersed within the structural genes at the 3′ end of the genome (see 

Figure 1). As shown using reverse genetics with deletion of these accessory genes, accessory 

proteins are almost exclusively non-essential for replication in tissue culture; however, some 

have been shown to have profound roles in viral pathogenesis(1–5). In some cases, 

accessory proteins inhibit the host defense response, especially innate immune mechanisms. 

For example, during MERS-CoV infection, accessory ORFs 3–5 antagonize the innate 

immune response (6); ORF4a binds to dsRNA, inhibiting type I interferon (IFN-I) 

expression and prevents the antiviral stress response (7, 8); ORF4b inhibits IFN-I 

expression(9) and blocks NF-kB signaling (10). ORF4b also encodes a cyclic 

phosphodiesterase, which blocks RNaseL activation (11).

Virion Structure

CoVs virions are spherical with diameters of approximately 125 nm as depicted in studies 

by cryo-electron tomography and cryo-electron microscopy (12, 13). The most prominent 

feature of CoVs is the club-shape spike projections emanating from the surface of the virion. 

These spikes are a defining feature of the virion and give them the appearance of a solar 

corona, prompting the name, CoVs. Within the envelope of the virion is the nucleocapsid. 

CoVs have helically symmetrical nucleocapsids, which is uncommon among positive-sense 

RNA viruses but far more common for negative-sense RNA viruses.

CoVs virus particles contain four main structural proteins. These are the spike (S), 

membrane (M), envelope (E), and nucleocapsid (N) proteins, all of which are encoded 

within the 3′ end of the viral genome. The distinctive spike structure on the surface of CoV 

is comprised of trimers of S molecules (14, 15). The S protein is a class I viral fusion protein 

(16). It binds to host cell receptors and mediates the earliest infection steps. In some case it 

also induces cell-cell fusion in late infection. The S monomer is a transmembrane protein 
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with mass ranging from 126 to 168 kDa and is heavily N-linked glycosylated, increasing the 

apparent molecular weight by some 40 kDa. In most, but not all CoVs S is cleaved by a host 

cell furin-like protease into two separate polypeptides, S1 and S2 (17–19). The S protein 

contains a very large ectodomain and a small endodomain. The ectodomain structures of 

representative viruses from each genus of CoV, MHV(20), HCoV-HKU1 (21), HCoV-

NL63(22), MERS-CoV (23), PDCoV (24), and IBV (25), have been determined by high 

resolution cryo-electron microscopy (cryo-EM) and were found to share a common 

architecture.

The M protein is the most abundant structural protein in the virion (26) and is thought to 

give the virion its shape. The M monomer, which ranges from 25 to 30 kDa, is a polytopic 

protein with three transmembrane domains(27). It has a small N-terminal ectodomain, and a 

C-terminal endodomain that accounts for the major part of the molecule and is situated in 

the interior of the virion or on the cytoplasmic face of intracellular membranes (28). M is 

usually modified by N-linked glycosylation(29, 30), although a subset of β-CoVs and δ-

CoVs M proteins exhibit O-linked glycosylation(31). M protein glycosylation has been 

shown to affect both organ tropism and the IFN inducing capacity of certain CoVs (32, 33). 

Despite being co-translationally inserted in the ER membrane, most M proteins do not 

contain a signal sequence. Rather, the first or the third transmembrane domain of the MHV 

and IBV M proteins suffices as a signal for insertion and anchoring of the protein in its 

native membrane orientation (34, 35). M proteins of the α-CoVs species do contain 

cleavable amino-terminal signal peptides, but it is still not clear if these are necessary for 

membrane insertion (36). One study suggested that the M protein exists as a dimer in the 

virion and adopts two different conformations, allowing it to promote membrane curvature 

as well as bind to the nucleocapsid (37). The M protein of MHV binds to the packaging 

signal in nsp15 and in conjunction with the N protein is likely the primary determinant of 

selective packaging(38).

The E protein is a small protein with a size 8 to 12 kDa and is found in small quantities 

within the virion (39). E proteins from different CoVs are highly divergent but share a 

common architecture: a short hydrophilic N-terminal, followed by a large hydrophobic 

region, and, lastly, a large hydrophilic C-terminal tail. The membrane topology of E protein 

is not completely resolved(40–42), but most data suggest that it is a transmembrane protein. 

The E protein has ion channel activity and were observed to assemble into homo-oligomers, 

ranging from dimers through hexamers(43), and a pentameric α-helical bundle structure has 

been solved for the hydrophobic region of SARS-CoV E protein(44). An oligomeric form is 

consistent with the ion channel activity of the E protein, but the monomeric form of E may 

also play a separate role. As opposed to other structural proteins, recombinant viruses 

lacking the E protein are not always lethal, although this is virus type dependent (45, 46). 

The E protein facilitates assembly and release of the virus but also has other functions. For 

instance, SARS-CoV E protein is not required for viral replication but is required for 

pathogenesis (47, 48).

The N protein constitutes the only protein present in the helical nucleocapsid. It is composed 

of two independently folding domains, an N-terminal domain (NTD) and a C-terminal 

domain (CTD), both capable of binding RNA in vitro, but each domain uses different 

Wang et al. Page 3

Methods Mol Biol. Author manuscript; available in PMC 2020 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanisms to bind RNA. It has been suggested that optimal RNA binding requires 

contributions from both domains (49, 50). N protein is heavily phosphorylated (51), which 

may be important for triggering a structural change enhancing the affinity for viral versus 

non-viral RNA, and is ADP ribosylated (52). N protein binds the viral genome in a beads-

on-a-string type conformation. Two specific RNA substrates have been identified for N 

protein: the transcription-regulating sequences (TRSs) (53) and the genomic packaging 

signal. The genomic packaging signal has been found to bind specifically to the second, or 

C-terminal RNA binding domain (38). N protein also binds to nsp3 (50, 54), a key 

component of the replicase-transcriptase complex (RTC), and to the M protein (26). These 

protein interactions serve to tether the viral genome to the RTC and subsequently package 

the encapsidated genome into viral particles.

Hemagglutinin-esterase (HE), a fifth structural protein, is present only in a subset of β-

CoVs, which include MHV, BCoV, HCoV-OC43, and HCoV-HKU1. The protein acts as a 

hemagglutinin, binds sialic acids on surface glycoproteins, and contains acetyl-esterase 

activity (55). These activities are thought to enhance S protein-mediated cell entry and virus 

spread through the mucosa (56). Interestingly, HE enhances murine hepatitis virus (MHV) 

neurovirulence (1); however, it is selected against in tissue culture for unknown reasons (57).

Coronavirus Life Cycle

Attachment and Entry

The initial attachment of the virion to the host cell is initiated by interactions between the S 

protein and its receptor. This interaction is the primary determinant controlling CoVs host 

species range and tissue tropism. Individual CoVs usually infects one or a few closely-

related hosts. S protein includes two subunits, the comparatively variable S1 subunit 

mediates the binding to receptor and the more conserved S2 subunit undergoes large 

conformational changes that results in fusion of virion and cell membranes. The sites of 

receptor binding domains (RBD) within the S1 region of a CoVs S protein vary depending 

on the virus: the RBD located at the N-terminal of S1 (MHV) in some cases (58) while it is 

present in the C-terminal of S1 in the case of SARS-CoV(59), MERS-CoV (60, 

61),HCoV-229E (62), HCoV-HKU1(63), HCoV-NL63 (64) and TGEV (65).

MHV enters cells by binding to its receptor (carcinoembryonic antigen-related adhesion 

molecule 1, CEACAM1), the CoVs receptor that was first discovered (66–68). CEACAM1 

has different isoforms which contains two and four Ig-like domains. The diversity of the 

receptor isoforms expressed in different genetic backgrounds results in a wide range of 

pathogenicity of MHV in mice (69). Many α-CoVs and δ-CoVs utilize aminopeptidase N 

(APN) as their cellular receptor (70–75). APN (also called CD13), a heavily glycosylated 

homodimer, is a cell-surface, zinc-binding protease that is resident in respiratory and enteric 

epithelia and in neural tissue. The α-CoVs receptor activities of APN homologs are not 

interchangeable among species (76, 77) while the δ-CoV PDCoV can use APN homologs 

from multiple mammalian and avian species as a receptor(73).

SARS-CoV uses angiotensin-converting enzyme 2 (ACE2) as its receptor(78). ACE2 is 

mainly expressed in epithelial cells of the lung and the small intestine, the primary targets of 
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SARS-CoV, and also in heart, kidney and other tissues(79). ACE2 is a cell-surface, zinc-

binding carboxypeptidase and plays a role in regulation of cardiac function and blood 

pressure. ACE2 also serves as the receptor for the α-CoV HCoV-NL63(80).

MERS-CoV uses dipeptidyl-peptidase 4 (DPP4) as its cellular receptor(81). DPP4, also 

called CD26, is a membrane-bound exoprotease with a wide tissue distribution; it cleaves 

dipeptides from hormones, chemokines, and cytokines and plays multiple other 

physiological functions(81). DPP4 includes an N-terminal eight-blade β-propeller domain 

and a C-terminal catalytic domain. Structure analysis of the MERS-CoV RBD-DPP4 

complex indicates that the receptor binding surface of the RBD is a four-stranded β-sheet 

that contacts blades 4 and 5 of the DPP4 propeller domain (61, 82). Further, key residues of 

camel and human DPP4 critical for binding to the RBD are highly-conserved facilitating 

zoonotic transmission of MERS-CoV (82). (See Table 1 for a list of known CoVs receptors).

Many CoVs S proteins are cleaved during exit from the producer cells, often by a furin-like 

protein (17). This cleavage separates the RBD and fusion domains of the S protein (83). 

Following receptor binding, the virus must next gain access to the host cell cytosol. This is 

generally accomplished by a second proteolytic cleavage of the S protein by TMPRRS2, a 

cathepsin or another protease (84, 85). Following cleavage at S2′, a fusion peptide is 

exposed, which is followed by joining of two heptad repeats in S2 forming an antiparallel 

six-helix bundle (16). The formation of this bundle allows for the mixing of viral and 

cellular membranes, resulting in fusion and ultimately release of the viral genome into the 

cytoplasm. Fusion generally occurs at the plasma membrane or in some cases, within 

acidified endosomes (86).

The S protein is the major target for anti-virus neutralizing antibodies and its binding to host 

cell receptor is critical for a productive infection and for cross-species transmission. This 

was illustrated during the SARS epidemic, when the S protein showed extensive adaptation 

to the human ACE2 receptor(87). In contrast, the MERS S protein has changed little during 

the course of the MERS outbreak(88), except during the Korean outbreak when there was a 

single point introduction of virus(89). Remarkably, virus mutated so that the S protein 

exhibited reduced affinity of the DPP4 receptor (90). This may have been driven by the anti-

virus neutralizing antibody response, but this is not certain. One interpretation is that, in the 

case of MERS-CoV, receptor binding is less important than other parts of the entry process, 

such as S protein cleavage by host cell proteases, particularly TMPRSS2(91).

Replicase Protein Expression

The next step in the CoVs lifecycle is the translation of the replicase gene from the virion 

genomic RNA. The replicase gene encodes two large ORFS, rep1a and rep1b, which express 

two co-terminal polyproteins, pp1a and pp1ab (Figure 1). In order to express both 

polyproteins, the virus utilizes a slippery sequence (5′-UUUAAAC-3′) and an RNA 

pseudoknot that cause ribosomal frameshifting from the rep1a reading frame into the rep1b 

ORF. In most cases, the ribosome unwinds the pseudoknot structure and continues 

translation until it encounters the rep1a stop codon. Occasionally the pseudoknot blocks the 

ribosome from continuing elongation, causing it to pause on the slippery sequence, changing 

the reading frame by moving back one nucleotide (−1 frameshift) before the ribosome is 
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able to melt the pseudoknot structure and extend translation into rep1b, resulting in the 

translation of pp1ab (92, 93). In vitro studies predict the incidence of ribosomal 

frameshifting to be as high as 25%, but this has not been determined in the context of virus 

infection. Viruses probably utilize frameshifting to control the precise ratio of rep1b:rep1a 

proteins or delay the production of rep1b products until the products of rep1a have created a 

suitable environment for RNA replication (94).

Polyproteins pp1a and pp1ab contain the nsps 1–11 and 1–16 respectively. In pp1ab, nsp11 

from pp1a becomes nsp12 following extension of pp1a into pp1b. However, γ-CoVs do not 

contain a comparable nsp1. These polyproteins are subsequently cleaved into individual nsps 

(95). There are two types of polyprotein cleavage activity. One or two papain-like proteases 

(PLpro), which are situated within nsp3, carry out the relatively specialized separations of 

nsp1, nsp2, and nsp3. Many PLpro also have deubiquitinase activity, which counters some 

host antiviral defenses(96). nsp5, the main protease (Mpro), performs the remaining 11 

cleavage events(97, 98). Mpro is often designated the 3C-like protease (3CLpro) to denote 

its distant relationship to the 3C proteins of picornaviruses. Since PLpro and Mpro have 

pivotal roles early in infection, they present attractive targets for antiviral drug design(96, 

99).

Next, many of the nsps assemble into the replicase-transcriptase complex (RTC) to create an 

environment suitable for RNA synthesis including replication and transcription of sub-

genomic RNAs(100). Notably, products of rep 1a, nsp3,nsp4 and nsp6 each contain multiple 

transmembrane helices which anchor the RTC to intracellular membranes (101, 102). They 

are responsible for remodeling membranes to form organelles which are dedicated to viral 

RNA synthesis(103). Among them, nsp3 is the largest RTC proteins by far(104). It contains 

a hypervariable acidic N-terminal region that is a ubiquitin-like domain (Ubl1) and a highly 

conserved C-terminal region which is designated the Y domain and contains three metal-

binding clusters of cysteine and histidine residues(105). Ubl1 interacts with the serine and 

arginine-rich region (SR region) of the N protein; this interaction may tether the genome to 

the RTC, facilitating formation of the RNA synthesis initiation complex (54, 106, 107). Also 

located within nsp3 is a conserved macrodomain (Mac1), that exhibits ADP-ribose-protein 

hydrolase activity(108). The macrodomain nonessential for viral replication but critical for 

viral pathogenesis(109). The nsps also have other functions important for RNA replication. 

For example, nsp10, a small non-enzymatic viral protein contributes to CoV replication 

fidelity by regulating nsp14 and nsp16 activity during virus replication(110); nsp12 encodes 

the RNA-dependent RNA polymerase (RdRp); nsp13 encodes the RNA helicase and RNA 

5′-triphosphatase; nsp14 encodes the exoribonuclease (ExoN) involved in replication 

fidelity (111–113) and N7-methyltransferase activity(114); and nsp16 harbors 2′-O-

methyltransferase activity(115). In addition to roles in replication, nsp1 blocks innate 

immune responses by direct inhibition of translation or by promoting degradation of host 

IFN mRNA by nsp1(116); nsp15 contains an endoribonuclease domain that mediates 

evasion of host dsRNA sensors(117, 118). For a list of non-structural proteins and their 

putative functions, see Table 2. Ribonucleases nsp15-NendoU and nsp14-ExoN activities are 

unique to the Nidovirales order and are considered genetic markers for these viruses (119).
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Replication and Transcription

Viral RNA synthesis follows the translation and assembly of the viral replicase complexes. 

Viral RNA synthesis produces both genomic and sub-genomic RNAs. Sub-genomic RNAs 

serve as mRNAs for the structural and accessory genes which reside downstream of the 

replicase genes in Orf1. All positive-sense sub-genomic RNAs are 3′ co-terminal with the 

full-length viral genome and thus form a set of nested RNAs, a distinctive property of the 

order Nidovirales. Both genomic and sub-genomic RNAs are produced through negative-

strand intermediates. These negative-strand intermediates are only about 1% as abundant as 

their positive-sense counterparts and contain both poly-uridylate and anti-leader sequences 

(120).

Many cis-acting sequences are important for the replication of viral RNAs. Within the 5′ 
UTR of the genome are seven stem-loop structures that may extend into the replicase 1a 

gene (121–124). The 3′ UTR contains a bulged stem-loop, a pseudoknot, and a 

hypervariable region (125–128). The stem-loop and the pseudoknot at the 3′ end overlap, 

and thus cannot form simultaneously (126, 129). Therefore, these different structures are 

proposed to regulate alternate stages of RNA synthesis, although exactly which stages are 

regulated and their precise mechanism of action are still unknown.

Perhaps the most novel aspect of CoV replication is how the leader and body TRS segments 

fuse during production of sub-genomic RNAs. Leader-TRS joining occurs during the 

discontinuous extension of negative-strand RNA (130). The current model proposes that the 

RdRp pauses at body TRS sequences (TRS-B); following this pause, the RdRp either 

continues elongation to the next TRS or switches to amplifying the leader sequence at the 5′ 
end of the genome guided by complementarity of the TRS-B to the leader TRS (TRS-L). 

Furthermore, nucleocapsid phosphorylation and RNA helicase DDX1 recruitment was 

shown to facilitate the transition from discontinuous to continuous transcription (131). 

However, many questions remain. For instance, how does the RdRp bypass all of the TRS-B 

sequences to produce full-length negative-strand genomic RNA? Also, how are the TRS-B 

sequences directed to the TRS-L and how much complementarity is necessary? Answers to 

these questions and others will be necessary to gain a full perspective of how RNA 

replication occurs in CoVs. Eventual development of an in vitro replication system will be 

required to fully understand these processes.

Finally, CoVs are also known for their ability to recombine by both homologous and non-

homologous recombination (132, 133). The ability of these viruses to recombine is tied to 

the strand switching ability of the RdRp. Recombination likely plays a prominent role in 

viral evolution and is the basis for targeted RNA recombination(134), a reverse genetics tool 

used to engineer viral recombinants at the 3′ end of the genome.

Assembly and Release

Following replication and sub-genomic RNA synthesis, the viral structural proteins, S, E, 

and M are translated and inserted into the endoplasmic reticulum (ER). These proteins move 

along the secretory pathway into the endoplasmic reticulum-Golgi intermediate 
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compartment (ERGIC) (135, 136). There, viral genomes encapsidated by N protein bud into 

membranes of the ERGIC containing viral structural proteins, forming mature virions (137).

The M protein directs most protein-protein interactions required for assembly of CoVs. M 

protein is not sufficient for virion formation as virus-like particles (VLPs) cannot be formed 

by M protein expression alone. However, when M protein is expressed along with E protein, 

VLPs are formed, suggesting these two proteins function together to produce CoV envelopes 

(138). N protein enhances VLP formation, suggesting that fusion of encapsidated genomes 

into the ERGIC enhances viral envelopment (139). The S protein is incorporated into virions 

at this step but is not required for assembly. The ability of the S protein to traffic to the 

ERGIC and interact with the M protein is critical for its incorporation into virions.

While the M protein is relatively abundant, the E protein is only present in small quantities 

in the virion. Thus, it is likely that M protein interactions provide the impetus for envelope 

maturation. E protein may assist the M protein in virion assembly either by inducing 

membrane curvature (46, 140, 141), preventing the aggregation of M protein (142), or by an 

uncharacterized mechanism. The E protein may also have a separate role in promoting viral 

release by altering the host secretory pathway (143).

The M protein also binds to the nucleocapsid, and this interaction promotes the completion 

of virion assembly. These interactions have been mapped to the C-terminus of the 

endodomain of M with CTD 3 of the N-protein (144). However, it is unclear exactly how the 

nucleocapsid complexed with virion RNA traffics from the RTC to the ERGIC to interact 

with M protein and become incorporated into the viral envelope. Another outstanding 

question is how the N protein selectively packages only positive-sense full-length genomes 

among the many different RNA species produced during infection. A packaging signal for 

MHV is present in the nsp15 coding sequence (38). Mutation of this signal drastically 

increases sgRNA incorporation into virions, and while virus production in cultured cells is 

negligibly affected, the mutant virus elicits a stronger IFN response in mice (145). 

Furthermore, most CoVs do not contain similar sequences at this locus, indicating that 

packaging may be virus specific.

Following assembly, virions are transported to the cell surface in vesicles and released by 

exocytosis. It is not known if the virions use a traditional pathway for transport of large 

cargo from the Golgi or if the virus has diverted a separate, unique pathway for its own exit. 

Genome-wide screening has identified a host protein, valosin-containing protein (VCP/p97) 

that is required for release of CoV from endosomes(146). In several CoVs, S protein that 

does not assemble into virions transits to the cell surface where it mediates cell-cell fusion 

between infected cells and adjacent, uninfected cells. This leads to the formation of 

multinucleated cells, which allows the virus to spread within an infected organism without 

being detected or neutralized by virus-specific antibodies.
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Pathogenesis

Animal Coronaviruses

CoVs cause a large variety of diseases in animals, and their ability to cause severe disease in 

livestock and companion animals such as pigs, cows, chickens, dogs, and cats led to 

significant research on these viruses in the last half of the 20th century. For instance, 

Transmissible Gastroenteritis Virus (TGEV) and Porcine Epidemic Diarrhea Virus (PEDV) 

cause severe gastroenteritis in young piglets, leading to significant morbidity, mortality, and 

ultimately economic losses. Recently an novel HKU2-related bat CoV, swine acute diarrhoea 

syndrome coronavirus (SADS-CoV), was shown to cause an outbreak of fetal swine disease 

(147). Porcine hemagglutinating encephalomyelitis virus (PHEV) causes enteric infection 

but has the ability to infect the nervous system, causing encephalitis, vomiting and wasting 

in pigs. Feline enteric coronavirus (FCoV) causes a mild or asymptomatic infection in 

domestic cats, but during persistent infection, mutation transforms the virus into a highly 

virulent strain of FCoV (Feline Infectious Peritonitis Virus, FIPV) that leads to development 

of a lethal disease called feline infectious peritonitis (FIP). FIPV is macrophage tropic and is 

believed to cause aberrant cytokine and/or chemokine expression and lymphocyte depletion, 

resulting in lethal disease(148). Bovine CoV, Rat CoV, and Infectious Bronchitis Virus 

(IBV) cause mild to severe respiratory tract infections in cattle, rats, and chickens 

respectively. Bovine CoV causes significant losses in the cattle industry and also has spread 

to infect a variety of ruminants, including elk, deer and camels. In addition to severe 

respiratory disease, the virus causes diarrhea (‘winter dysentery’ and ‘shipping fever’), all 

leading to weight loss, dehydration and decreased milk production(149). Some strains of 

IBV, a γ-CoV, also infect the urogenital tract of chickens causing renal disease. IBV 

significantly diminishes egg production and weight gain, causing substantial losses in the 

chicken industry each year(150). Interestingly, a novel CoV (SW1) was identified in a 

deceased Beluga whale(151) and shown to be a γ-CoV based on phylogenetic analysis. This 

is the first example of a non-avian γ-CoV, but it is not known whether this virus actually 

causes disease in whales.

In addition, there has been intense interest in identifying novel bat CoVs, since these are the 

likely ultimate source for most CoV, including SARS-CoV and MERS-CoV(152, 153). 

Hundreds of novel bat CoV have been identified over the past decade(154), including the 

agent of SADS, described above. Another novel, non-CoVs group of nidoviruses, 

Mesoniviridae, were recently identified as the first ones to exclusively infect insect hosts 

(155, 156). These viruses are highly divergent from other nidoviruses but are most closely 

related to the roniviruses. In size, they are ~20 kb, falling in between large and small 

nidoviruses. Consistent with this relatively small size, these viruses do not encode for an 

endoribonuclease, which is present in large nidoviruses. Recently a novel nidovirus, 

planarian secretory cell nidovirus (PSCNV), was identified and shown to have a 41.1 kb 

genome, making it the largest RNA viral genome yet discovered. The genome contains the 

canonical nidoviral genome organization and key replicative domains. It encodes a predicted 

13556 aa polyprotein in an unconventional single ORF(157).
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The most heavily studied animal CoV is murine hepatitis virus (MHV), which causes 

multiple diseases in mice, including respiratory, enteric, hepatic, and neurologic infections. 

For instance, MHV-1 causes severe respiratory disease in susceptible A/J and C3H/HeJ 

mice, A59 and MHV-3 induce hepatitis, and JHMV causes encephalitis and acute and 

chronic demyelinating diseases. MHV-3 induces cellular injury through the activation of the 

coagulation cascade via a fgl2/fibroleukin dependent way(158). A59 and attenuated versions 

of JHMV cause chronic demyelinating diseases that bears similarities to multiple sclerosis 

(MS), making MHV infection one of the best models for this debilitating human disease. 

Early studies suggested that demyelination was dependent on viral replication in 

oligodendrocytes in the brain and spinal cord (159, 160); however, more recent reports 

clearly demonstrate that the disease is immune-mediated. Irradiated mice or 

immunodeficient (lacking T and B cells) mice do not develop demyelination, but addition of 

virus-specific T cells restores the development of demyelination(161–163). Additionally, 

demyelination is accompanied by a large influx of macrophages and microglia that can 

phagocytose infected myelin (164). Microglia are especially important in the initial host 

defense to MHV since mice succumb to the infection if these cells are depleted(165).

Human Coronaviruses

Prior to the SARS-CoV outbreak, CoVs were only thought to cause mild, self-limiting 

respiratory infections in humans. Two of these human CoVs are α-CoVs (HCoV-229E and 

HCoV-NL63) while the other two are β-CoVs (HCoV-OC43 and HCoV-HKU1). 

HCoV-229E and HCoV-OC43 were isolated nearly 50 years ago (166–168), while HCoV-

NL63 and HCoV-HKU1 were only identified following the SARS-CoV outbreak (169, 170). 

HCoV-229E and HCoV-NL63 arose from a common ancestor and diverged 200 years 

ago(171). HCoV-OC43 is closely related to BCoV and may have crossed species from 

bovids, or alternatively, may have been transmitted from humans to cows. These viruses are 

endemic in the human populations, causing 15–30% of upper respiratory tract infections 

each year. They cause more severe disease in neonates, the elderly, and in individuals with 

underlying illnesses, with a greater incidence of lower respiratory tract infection in these 

populations(172). HCoV-NL63 is also associated with acute laryngotracheitis (croup) (173). 

One interesting aspect of these viruses is their differences in tolerance to genetic variability. 

HCoV-229E isolates from around the world have only minimal sequence divergence (174), 

while HCoV-OC43 isolates from the same location but isolated in different years show 

significant genetic variability (175). Based on the ability of MHV to cause demyelinating 

disease, it has been suggested that human CoVs may be involved in the development of 

multiple sclerosis (MS)(176). However, no evidence to date suggests that human CoVs play 

significant roles in MS.

SARS-CoV, a group 2b β-CoV, was identified as the causative agent of the Severe Acute 

Respiratory Syndrome (SARS) epidemic that originated in 2002–2003 in the Guangdong 

Province of China. During the 2002–2003 outbreak, approximately 8098 cases occurred 

with 774 deaths, resulting in a mortality rate of 9%. This rate was much higher in aged 

individuals, with mortality rates approaching 50% in individuals over 60 years of age while 

no patients under 24 years died from the infection(177). Furthermore, the outbreak resulted 

in the loss of nearly $40 billion dollars in economic activity as the virus nearly completely 
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shut down many activities in Southeast Asia and Toronto, Canada for several months. The 

epidemic began in wet markets in Guangzhou, likely originating in bats. It is widely 

accepted that SARS-CoV is a bat virus as a large number of Chinese horseshoe bats contain 

sequences of SARS-related CoVs and contain serologic evidence for a prior infection with a 

related CoV (178, 179). Further, two novel bat SARS-related CoVs were later identified that 

are more similar to SARS-CoV than any other virus identified to date, further supporting a 

bat origin for SARS-CoV (180).

SARS-CoV then spread from infected bats to intermediate animals such as Himalayan civet 

cats and raccoon dogs present in the markets and then to humans (181). An individual was 

infected in Guangzhou and then stayed at a hotel in Hong Kong, spreading the infection to 

others staying at the hotel, and ultimately, throughout the world. Although some human 

individuals within wet animal markets had serologic evidence of SARS-CoV infection prior 

to the outbreak, these individuals had no apparent symptoms (181). Thus, it is likely that 

SARS-like CoV circulated in the wet animal markets for some time before a series of factors 

facilitated its spread into larger human populations.

Transmission of SARS-CoV was relatively inefficient, as it largely spread through large 

droplets and direct contact with infected individuals and transmission only occurred after the 

onset of clinical illness. Thus, the outbreak mostly occurred within households and 

healthcare settings (182), except in a few cases of superspreading events where one 

individual was able to infect multiple contacts due to high viral burdens or an ability to 

aerosolize virus. As a result of the relatively inefficient transmission of SARS-CoV, the 

outbreak was controllable through the use of quarantining. Only a small number of SARS 

cases occurred after the outbreak was controlled in June 2003(183).

SARS-CoV primarily infects epithelial cells within the lung(184). The virus is capable of 

entering macrophages and dendritic cells but only causes an abortive infection (185, 186). 

Despite this, infection of these cell types may be important in inducing pro-inflammatory 

cytokines that may contribute to disease (187). In fact, many cytokines and chemokines are 

produced by these cell types and are elevated in the serum of SARS-CoV infected patients 

(188). Viral titers decrease when severe disease develops in both humans and in several 

animal models of the disease, suggesting that the host response is responsible for much of 

the clinical signs and symptoms. Furthermore, animals infected with rodent-adapted SARS-

CoV strains show similar clinical features to the human disease, including an age-dependent 

increase in disease severity (189). These animals also show increased levels of 

proinflammatory cytokines and reduced T-cell responses, consistent with a possible 

immunopathological mechanism of disease (190, 191).

While the SARS-CoV epidemic was controlled in 2003, and the virus has not since returned, 

a novel human CoV emerged in the Middle East in 2012. This virus, named Middle East 

Respiratory Syndrome-CoV (MERS-CoV) is a group 2b β-CoV and was found to be the 

causative agent of a highly lethal respiratory tract infection in Saudi Arabia and other 

countries in the Middle East (153, 192). Since its emergence, the virus has spread to over 27 

countries, including to South Korea in 2015, where it caused 186 cases and 38 deaths(193). 

Among those cases, 83% were transmitted from five super spreading events and 44% were 
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due to nosocomial transmission at 16 hospitals(194). As of September 2019, there have been 

a total of 2468 laboratory-confirmed cases of MERS-CoV, with 851 associated deaths and a 

case fatality rate of approximately 35%, as reported to the World Health Organization 

(https://www.who.int/emergencies/mers-cov/en/). The majority of cases early in the 

outbreak resulted from nosocomial transmission. As better infection control measures were 

instituted, approximately 50% of cases are considered primary, with infection resulting from 

direct or indirect contact with camels, the zoonotic source of the infection(195). Serological 

studies have identified MERS-CoV antibodies in dromedary camels in the Middle East and 

Africa from samples obtained as early as 1983(196). Supporting evidence for camel to 

human transmission comes from studies identifying nearly identical MERS-CoVs in camels 

and humans in nearby proximities in Saudi Arabia (5, 23, 197). In one of these studies the 

human case had direct contact with an infected camel and the virus isolated from this patient 

was nearly identical to the virus isolated from the camel (5). MERS-CoV likely originated in 

bats because it is related to two previously identified bat CoV, HKU4 and HKU5 (198). 

Furthermore, new evidence has emerged to support the hypothesis that bats are the 

evolutionary source of MERS-CoV since a MERS-like CoV was identified from a 

Pipistrellus cf. hesperidus bat sampled in Uganda(199).

MERS-CoV utilizes Dipeptidyl peptidase 4 (DPP4) as its receptor (81). The virus is only 

able to use the receptor from certain species such as bats, humans, camels, rabbits, and 

horses to establish infection. While the virus is unable to naturally infect mouse cells due to 

differences in the structure of DPP4, several mouse models expressing human DPP4 have 

been developed which can successfully be infected with MERS-CoV (200–203).

Diagnosis, Treatment, and Prevention

In most cases of self-limited infection, diagnosis of CoVs is unnecessary. However, it is 

important in certain clinical and veterinary settings or in epidemiological studies to identify 

an etiological agent. Diagnosis is also important in locations where a severe CoV outbreak is 

occurring, such as, at present, in the Middle East, where MERS-CoV continues to circulate. 

The identification of cases will guide the development of public health measures to control 

outbreaks. It is also important to diagnose cases of severe veterinary CoV-induced disease, 

such as PEDV and IBV, to control these pathogens and protect food supplies. The primary 

methods to diagnose CoV infection use molecular techniques such as RT-PCR. RT-PCR has 

become the method of choice for diagnosis of human CoV, as multiplex real-time RT-PCR 

assays, such as RT-RTPA, and RT-LAMP, have been developed. They are able to detect all 

four respiratory human CoVs and could be further adapted to detect novel CoVs (204, 205). 

Serologic assays are important in cases where RNA is difficult to isolate, virus is no longer 

present, and for epidemiological studies. Because rapid and accurate diagnosis of MERS is 

important, several diagnostic tests including one in which RT-LAMP is combined with 

vertical flow visualization (RT-LAMP-VF) (206) have been developed.

To date, there are no antiviral therapeutics that specifically target human CoVs, so 

treatments are only supportive. IFNs have been used in some patients, without evidence of 

therapeutic benefit(207). Studies in mice indicate that the relative timing of IFN 

administration and virus replication are critical to either protective or pathogenic effects 
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after infection with SARS-CoV(208) or MERS-CoV(209), which may explain the variable 

results that are observed in patients. The SARS and MERS outbreaks have stimulated 

research on these viruses, and this research has identified a large number of suitable antiviral 

targets, such as viral proteases, polymerases, and entry proteins but so far no specific 

treatment has been licensed. Multi-target treatment should be a priority as for antiviral 

treatment(210, 211). Significant work remains to develop drugs that target these processes 

and are useful in infected patients.

Many CoV-specific vaccines have been developed and some targeting veterinary CoV 

pathogens have been licensed. Vaccines have been approved for IBV(212), TGEV(213), and 

canine CoV, but these vaccines are not always used because they are either not very 

effective, or in some cases, have resulted in the selection of novel pathogenic CoVs via 

recombination of circulating strains(214). In general, it is thought that live attenuated 

vaccines are most efficacious in targeting CoVs. This was illustrated in the case of TGEV, 

where an attenuated naturally appearing variant, porcine respiratory coronavirus (PRCoV), 

appeared in Europe in the 1980s. This variant only caused mild disease and protected swine 

from lethal TGEV. This attenuated virus has prevented the recurrence of severe TGEV in 

Europe and the U.S. over the past 30 years (215).

In the case of SARS-CoV, several potential vaccines have been developed. The spike 

protein, which elicits a neutralizing antibody response, has been a major target of vaccine 

development (216, 217). Therapeutic SARS-CoV neutralizing human monoclonal antibodies 

have been generated and stockpiled (218). These antibodies would be useful for passive 

immunization of healthcare workers and other high-risk individuals in the event of another 

SARS outbreak (219). Similarly, efforts have been made to develop vaccines against MERS-

CoV. Several vaccine approaches have been tried, including subunits vaccines, DNA 

vaccines, viral vector vaccines and live attenuated and inactivated vaccines(220, 221). Some 

of these have shown efficacy in animal testing and several are in clinical trials. For example, 

a MERS-CoV DNA vaccine recently underwent phase I Clinical Trials (222, 223), While it 

induced MERS-CoV-specific neutralizing antibody titers, these tended to decline 

substantially by 60 weeks after immunization.

Owing to the lack of effective therapeutics or vaccines, the best measures to contain human 

CoVs outbreaks remain a strong public health surveillance system coupled with rapid 

diagnostic testing and quarantine when necessary. For international outbreaks, cooperation 

of governmental entities, public health authorities and health care providers is critical. 

During outbreaks of veterinary CoV that are readily transmitted, such as PEDV, more drastic 

measures such as culling of entire herds of pigs may be necessary to prevent transmission of 

these deadly viruses.

Conclusions

Over the last half century, several varieties of CoVs have emerged to cause human and 

veterinary diseases. It is likely that these viruses will continue to emerge and evolve, and 

cause both human and veterinary outbreaks owing to their ability to recombine, mutate, and 

infect various animal species and cell types.
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Critical problems remain to be resolved in future research. One focus should be to 

understand viral replication and pathogenesis in greater detail. Another is to explore the 

propensity of these viruses to cross species and the features that facilitate or inhibit cross-

species transmission and to identify CoVs reservoirs, which will enhance our ability to 

predict potential future epidemics. So far, bats seem to be a primary reservoir for these 

viruses, but they do not develop clinically evident disease, for reasons that require further 

investigation. Additionally, many of the non-structural and accessory proteins encoded by 

CoVs are only partly characterized, and it will be important to identify their mechanisms of 

action and their role in viral replication and pathogenesis. These studies will help identify 

more suitable therapeutic targets. Finally, additional studies should probe CoV-induced 

immunopathological disease and delineate the relationship between CoVs and the host 

immune response. These will guide efforts to design vaccines and drugs that prevent and 

treat CoV infections.
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Figure 1. Genome Organization of Representative α, β, γ and δ-CoVs.
An illustration of the MHV genome is shown on top. The replicase gene constitutes two 

ORFs, rep 1a and rep 1b, which are expressed by a ribosomal frameshifting mechanism. The 

expanded regions below show the structural and accessory proteins in the 3′ regions of α-

CoVs (HCoV-229E), β-CoVs (MHV, SARS-CoV, and MERS-CoV), γ-CoVs (IBV) and δ-

CoVs (PDCoV). The total genome size is given for each virus. The sizes and positions of 

accessory genes are indicated, relative to the basic genes S, E, M, and N. The size of the 

genome and individual genes are approximated using the legend at the top of the diagram 

but are not drawn to scale.
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Table 1.

The Known Receptors for Coronaviruses

Virus Receptor References

α-CoVs

CCoV Canine APN (cAPN) (76)

FCoV I Unknown, but not fAPN (224)

FCoV II, FIPV Feline APN (fAPN) (72)

HCoV-229E Human APN (hAPN) (71)

HCoV-NL63 ACE2 (80)

PEDV Unknown, but not pAPN (225, 226)

PRCoV Porcine APN (pAPN) (75)

TGEV Porcine APN (pAPN) (70)

β-CoVs

MHV Murine CEACAM1 (67)

BCoV Neu5,9Ac2 (227)

HCoV-OC43 Neu5,9Ac2 (228)

SARS-CoV ACE2 (78)

MERS-CoV DPP4 (81)

γ-CoVs

IBV alpha-2,3-linked sialic acid (229)

δ-CoVs

PDCoV Porcine APN (73, 74)

APN, aminopeptidase N; ACE2, angiotensin-converting enzyme 2; BCoV, bovine coronavirus; CCoV, canine coronavirus; CEACAM, 
carcinoembryonic antigen-related adhesion molecule 1; DPP4, dipeptidyl peptidase 4; HCoV, human coronavirus; PRCoV, porcine respiratory 
coronavirus; TGEV, transmissible gastroenteritis virus; PEDV, porcine epidemic diarrhea virus; FIPV, feline infectious peritonitis virus; MHV, 
murine hepatitis virus; SARS-CoV, severe acute respiratory syndrome coronavirus; MERS-CoV, Middle East respiratory syndrome coronavirus; 
Neu5,9Ac2, N-acetyl-9-O-acetylneuraminic acid; PDCoV,Porcine Delta-Coronavirus.
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Table 2.

Functions of Coronaviruses Non-Structural Proteins

Protein Function References

nsp1

• Blocks host cell mRNA translation or promotes cellular mRNA degradation of host mRNA, 
including IFN mRNA

• Inhibits IFN induction and signaling
(116, 230, 231)

nsp2 • No known function, binds to prohibitin proteins (232, 233)

nsp3

• Ubiquitin-like1 (Ubl1) and acidic domains, interact with N protein

• Papain-like protease (PLpro)/Deubiquitinase domain blocks IRF-3 activation and NF-κB 
signaling

• Mac2, Mac3, PLpro block p53 action

• Mac1, Mac2, Mac3 (macrodomains have ADP-ribosylhydrolase activity), interferes with 
IFN-induced antiviral activity, promotes host proinflammatory cytokine expression

• Ubl2, NAB, G2M, Y domains, unknown functions

(105, 234–240)

nsp4 • Potential transmembrane scaffold protein, important for proper structure of DMVs (241, 242)

nsp5

• Main protease (Mpro), cleaves viral polyprotein

• Inhibits IFN induction (243, 244)

nsp6 • Potential transmembrane scaffold protein (101)

nsp7

• Acts as cofactor with nsp8 to bind to nsp12.

• Is responsible for the replication and transcription of the viral genome (245, 246)

nsp8

• Acts as a cofactor with nsp7 to bind to nsp12.

• Is responsible for the replication and transcription of the viral genome (245, 246)

nsp9 • RNA binding protein (247, 248)

nsp10

• Cofactor for nsp16 and nsp14, forms heterodimer with both and stimulates ExoN and 2-O-
MT activity;

• Contributes to CoV replication fidelity
(110, 249, 250)

nsp12

• RNA-dependent RNA polymerase (RdRp)

• Binds to its essential co-factors, nsp7 and nsp8 to assemble RNA-synthesis complex (246, 251)

nsp13

• RNA helicase

• 5′ triphosphatase (252, 253)

nsp14

• N7 methyltransferase, adds 5′ cap to viral RNAs

• Viral exoribonuclease activity (ExoN), proofreading activity.

• Interferes with IFN-induced antiviral activity
(111–114, 254, 255)

nsp15

• Viral endoribonuclease (NendoU)

• Evades RNA sensing (117, 118, 256–258)
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Protein Function References

nsp16

• 2’-O-Methyltransferase (2′-O-MT)

• Shields viral RNA from MDA5 recognition (115, 259)

NAB, nucleic acid binding; DMVs, double-membrane vesicles; MDA5, Melanoma differentiation associated protein 5.
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