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Endeavoring toward a transferable, predictive coarse-grained
explicit-chain model for biomolecular condensates underlain by
liquid–liquid phase separation (LLPS) of proteins, we conducted
multiple-chain simulations of the N-terminal intrinsically disor-
dered region (IDR) of DEAD-box helicase Ddx4, as a test case, to
assess roles of electrostatic, hydrophobic, cation–π, and aromatic
interactions in amino acid sequence-dependent LLPS. We evalu-
ated three different residue–residue interaction schemes with a
shared electrostatic potential. Neither a common hydrophobicity
scheme nor one augmented with arginine/lysine-aromatic cation–
π interactions consistently accounted for available experimental
LLPS data on the wild-type, a charge-scrambled, a phenylalanine-
to-alanine (FtoA), and an arginine-to-lysine (RtoK) mutant of
Ddx4 IDR. In contrast, interactions based on contact statistics
among folded globular protein structures reproduce the over-
all experimental trend, including that the RtoK mutant has a
much diminished LLPS propensity. Consistency between simu-
lation and experiment was also found for RtoK mutants of
P-granule protein LAF-1, underscoring that, to a degree, impor-
tant LLPS-driving π-related interactions are embodied in classical
statistical potentials. Further elucidation is necessary, however,
especially of phenylalanine’s role in condensate assembly because
experiments on FtoA and tyrosine-to-phenylalanine mutants sug-
gest that LLPS-driving phenylalanine interactions are signifi-
cantly weaker than posited by common statistical potentials.
Protein–protein electrostatic interactions are modulated by rela-
tive permittivity, which in general depends on aqueous protein
concentration. Analytical theory suggests that this dependence
entails enhanced interprotein interactions in the condensed phase
but more favorable protein–solvent interactions in the dilute
phase. The opposing trends lead to only a modest overall impact
on LLPS.

biomolecular condensates | membraneless organelles | phase separation

A preponderance of recent advances demonstrate that liquid–
liquid phase separation (LLPS) of intrinsically disordered

proteins (IDPs), proteins containing intrinsically disordered
regions (IDRs), folded proteins, and nucleic acids is a general
biophysical mechanism to achieve functional spatial and tem-
poral organization of biomolecules in both intracellular and
extracellular organismal space (1–9). LLPS underpins forma-
tion of a variety of biomolecular condensates (10), including
intracellular bodies, such as nucleoli and stress granules, that
are often referred to as membraneless organelles (4, 11), and
precursor of extracellular materials as in the case of sand-
castle worm adhesive (12) and elastin in vertebrate tissues
(8). These dynamic, phase-separated condensates perform ver-
satile functions, as underscored by their recently elucidated
roles in synapse formation and plasticity (7, 13), organiza-
tion of chromatin (14), regulation of translation (15, 16), B
cell response (17), and autophagosome formation (18). The
pace of discovery in this very active area of research has been
accelerating (19–28).

While experimental progress has been tremendous, theory for
the physicochemical basis of biomolecular condensates is still
in its infancy. Biomolecular condensates in vivo are complex,
involving many species of proteins and nucleic acids maintained
often by nonequilibrium processes (10, 19, 29–31), rendering
atomistic modeling impractical. Facing this challenge, promis-
ing initial theoretical steps using coarse-grained approaches were
made to tackle simpler in vitro LLPS systems as their elucida-
tion is a prerequisite for physical insights into more complex
in vivo condensates. These recent efforts encompass analytical
theories at various levels of approximation (32–42), field theory
simulations (43–46), and lattice (47–50) or continuum (51–54)
coarse-grained explicit-chain simulations that account for either
individual amino acid residues (47, 52, 53, 55) or, at lower struc-
tural resolution, groups of residues (56, 57)—including using
patchy particle representations (58, 59). The different theo-
retical/computational approaches are complementary and were
applied to address how amino acid composition [number/fraction
of hydrophobic (54), aromatic (39, 60), or charged (4) residues]
and the sequence pattern of charge (34, 48, 53, 61), hydrophobic
(50, 51, 54), or aromatic (60) residues affect LLPS propensity
of heteropolymers as well as pertinent impact of temperature
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(20, 43, 51, 54), hydrostatic pressure (62–64), salt (41, 46), and
osmolyte (27, 63), offering physical insights into the LLPS behav-
iors of, for example, the DEAD-box RNA helicase Ddx4 (34, 65),
RNA-binding protein fused in sarcoma (FUS) (52), prion-like
domains (60), and postsynaptic densities (64).

Developing LLPS models with transferable interaction poten-
tials applicable to a wide range of amino acid sequences is
essential for advancing fundamental physical understanding of
natural biomolecular condensates and engineering of bioinspired
materials (66). In this endeavor, the rapidly expanding reper-
toire of experimental data offers critical assessment of theoret-
ical and computational approaches. Building on aforementioned
progress (34, 41, 52, 53), the present study evaluates a variety of
interaction schemes for coarse-grained residue-based chain sim-
ulations of LLPS of IDPs or IDRs, including but not limited to
schemes proposed in the literature (52). We do so by first com-
paring their sequence-specific predictions against experiment on
the RNA helicase Ddx4 for which extensive LLPS data on the
wild-type (WT) and three mutant sequences are available to
probe the contribution of hydrophobic, electrostatic (4), cation–
π, and possibly other π-related (4, 65, 67) interactions. We use
these data to benchmark the relative strengths of different types
of interaction in our model. Of particular interest are the aro-
matic (68) and other π-related (67) interactions, which have
significant impact on folded protein structure, conformational
distribution of IDPs, and LLPS properties (4, 34, 39, 60, 69–73)
but are often not adequately accounted for in model poten-
tials (67). Interestingly, a simple statistical potential based upon
folded protein structures (74, 75) accounts for the general trend
of LLPS properties of the four Ddx4 IDR sequences, including
that LLPS is more favored by arginine than lysine despite their
essential identical electric charges, but that a model potential
that relies solely on hydrophobicity (76) does not. This find-
ing indicates that at the coarse-grained level of residue–residue
interactions, IDP/IDR LLPS is governed largely by similar
forces—including the π-related ones—that drive protein fold-
ing. Analogous agreement between statistical potential model
prediction and experiment with respect to the arginine/lysine
contrast is also found for the N-terminal RGG domain of
P-granule RNA Ddx3 helicase LAF-1 (77). However, experimen-
tal data on tyrosine-to-phenylalanine mutants of LAF-1 and FUS
(39) indicate that the contribution of the large aromatic residue
phenylalanine to LLPS is overestimated by statistical poten-
tials, most likely because the interactions involving phenylalanine
in the sequestered hydrophobic core of globular proteins are
not sufficiently representative of more solvent-accessible LLPS-
driving interactions, pointing to a crucial aspect of LLPS energet-
ics toward which future investigations should be directed. To gain
further insights into the electrostatic driving forces for LLPS,
we have conducted explicit-water simulation and developed ana-
lytical theory which suggests, at variance with previous analyses
(35, 37), that the physically expected dependence of effective
permittivity on IDR concentration may have a modest instead
of drastic impact on LLPS propensity because of a tradeoff
between solvent-mediated electrostatic interchain interactions
and self-interactions. These findings and their ramifications are
discussed below.

Results and Discussion
As described in Materials and Methods and SI Appendix, SI Text,
our coarse-grained protein chain model for IDP LLPS basically
follows the approaches in refs. 52, 53, which in turn are based on
a recently proposed efficient simulation protocol (78). In the first
step of our analysis, we critically assess the models against the
experimental data on the Ddx4 IDR (SI Appendix, Fig. S1), which
indicate that all three Ddx4 IDR mutants—the charge scrambled
(CS), phenylalanine-to-alanine (FtoA), and arginine-to-lysine
(RtoK) variants—have significantly reduced LLPS propensities

relative to the WT (4, 65, 67). The CS, FtoA, and RtoK variants
are useful probes for LLPS energetics. They were constructed
specifically to study the experimental effects of sequence charge
pattern (the arrangement of charges along CS sequence is less
blocky than that in WT while the amino acid composition is
unchanged), the relative importance of aromatic/π-related vs.
hydrophobic/nonpolar interactions (all 14 Phe residues in WT
Ddx4 IDR are mutated to Ala in FtoA), and the role of Arg vs
Lys (all 24 Arg residues in WT IDR are mutated to Lys in RtoK)
on the LLPS of Ddx4.

Assessing Biophysical Perspectives Embodied by Different Coarse-
Grained Interaction Schemes for Modeling Biomolecular Conden-
sates. We consider the potential functions in the hydrophobicity-
scale (HPS) and the Kim–Hummer (KH) models in Dignon et al.
(52) as well as the HPS potential with augmented cation–π terms
(72), all of which share the same bond energy term, Ubond, for
chain connectivity and screened electrostatic term, Uel, for pairs
of charged residues, as described in SI Appendix, SI Text. We
focus first on the pairwise contact interactions between amino
acid residues, which correspond to the Uaa energies of either the
HPS or KH model (excluding Ubond and Uel).

The HPS model assumes that the dominant driving force for
IDP LLPS is hydrophobicity as characterized by a scale for the
20 amino acid residues. Pairwise contact energy is taken to be
the sum of the hydrophobicities of the two individual residues of
the pair. The HPS model adopts the scale of Kapcha and Rossky,
in which the hydrophobicity of a residue is a composite quan-
tity based on a binary hydrophobicity scale of the atoms in the
residue (76).

In contrast, the KH model (79) relies on knowledge-based
potentials derived from contact statistics of folded protein struc-
tures in the Protein Data Bank (PDB). As such, it assumes
that the driving forces for IDP LLPS are essentially identi-
cal to those for protein folding at a coarse-grained residue-
by-residue level, as obtained by Miyazawa and Jernigan (75),
without singling out a priori a particular interaction type as being
dominant.

The HPS model has been applied successfully to study the FUS
low-complexity domain (80), the RNA-binding protein TDP-43
(81), and the LAF-1 RGG domain as well as its charge shuffled
variants (77). A temperature-dependent version of HPS (HSP-T)
(51) was also able to rationalize the experimental LLPS proper-
ties of artificial designed sequences (82). When both the HPS
and KH models were applied to FUS and LAF-1, the predicted
phase diagrams were qualitatively similar for a given sequence,
although they exhibited significantly different critical temper-
atures (52), which should be attributable to the difference in
effective energy/temperature scale of the two models. Here we
conduct a systematic assessment of the two models’ underlying
biophysical assumptions by evaluating their ability to provide a
consistent rationalization of the LLPS properties of a set of IDR
sequences.

The scatterplot in Fig. 1A of HPS and KH energies indicates
that despite an overall correlation, there are significant outliers.
The most conspicuous outliers are interactions involving Arg
(red), which are much less favorable in HPS than in KH. By
comparison, most of the interactions involving Pro, as depicted
by the 16 outlying blue circles as well as the single yellow and
single green circles to the left of the main trend, are consider-
ably more favorable in HPS than in KH. Interactions involving
Phe (yellow) and Lys (green) essentially follow the main trend.
Those involving Phe are favorable to various degrees in both
models. However, some interactions involving Lys are attractive
in HPS but repulsive in KH. For example, Lys–Lys interac-
tion is attractive at ≈−0.1 kcal mol−1 for HPS but is repulsive
at≈+0.2 kcal mol−1 for KH. Fig. 1B underscores the difference
in interaction pattern of the two models for the WT Ddx4 IDR.
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Fig. 1. Comparing two amino acid residue-based coarse-grained potentials. (A) Scatterplot of 210 pairwise contact energies (in units of kcal mol−1) in the
HPS (horizontal variable) versus those in the KH (vertical variable) model (52). Eij(r0)s are the pairwise potential energies Uaa|HPS(r) or Uaa|KH(r) (SI Appendix,
SI Text), between two residues of types i, j separated by rij = r0 where the Lennard–Jones component of the potential is minimum (i, j here stand for labels for
the 20 amino acid types). Energies of contacts involving Arg (red circles), Lys (green circles), and Phe (yellow-filled black circles) are colored differently from
others (blue circles). (B) Contact energies between residue pairs at positions i, j of the n = 236 sequence of WT Ddx4 IDR [Ddx4N1 (4)] in the two potentials
are color coded by the scales. The vertical and horizontal axes represent residue positions i, j≤ n. The i 6=j contact energies in the HPS and KH models are
provided in the 2D plot, whereas the i = j contact energies are shown alongside the model potentials’ respective color scales.

The KH pattern is clearly more heterogeneous with both attrac-
tions and repulsions, whereas the HPS pattern is more uniform
with no repulsive interactions. These differences should lead to
significantly different predictions in sequence-dependent LLPS
properties, as will be explored below.

Because of the importance of cation–π interactions in protein
folded structure (69) as well as conformational distribution of
IDP and LLPS (4, 39, 72, 73, 77), we study another set of model
interaction schemes—in addition to HPS and KH, referred to as
HPS + cation–π—that augment the HPS potentials with terms
specific for cation–π interactions between Arg or Lys and the
aromatic Tyr, Phe, or Trp (Fig. 2). As explained in SI Appendix,
SI Text, we consider two alternate scenarios: 1) the cation–π
interaction strength is essentially uniform, irrespective of the

cation–aromatic pair (Fig. 2A), as suggested by an earlier anal-
ysis (69), and 2) the cation–π interaction strength is significantly
stronger for Arg than for Lys (Fig. 2B). The latter scheme is
motivated by recent experiments showing that Arg to Lys sub-
stitutions reduce LLPS propensity, as in the cases of the RtoK
mutant of Ddx4 IDR (67) and variants of FUS (39) and LAF-1
(77), as well as a recent theoretical investigation pointing to dif-
ferent roles of Arg and Lys in cation–π interactions (83). Contact
statistics of PDB structures, including those of Miyazawa and
Jernigan (74, 75) on which the KH potential is based, may also
suggest that Arg–π attractions are stronger than Lys–π interac-
tions. Indeed, among a set of 6,943 high-resolution X-ray protein
structures (67), we find that an Arg–aromatic pair is at least
75% more likely than a Lys–aromatic pair to be within a Cα–Cα
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Fig. 2. Possible cation–π interaction potentials. (A) Sum of the coarse-grained HPS potential and a model cation–π interaction with a uniform (εcπ)ij =

3.0 kcal mol−1 as a function of residue–residue distance for the residue pairs Arg–Tyr, Arg–Phe, Arg–Trp, Lys–Tyr, Lys–Phe, and Lys–Trp, wherein Tyr, Phe,
and Trp are labeled as red, green, and blue, and Arg and Lys are represented by solid and dashed curves. (B) An alternate cation–π potential in which
Arg–Tyr/Phe/Trp is significantly more favorable (solid curve; (εcπ)ij = 1.85 kcal mol−1) than Lys–Tyr/Phe/Trp (dashed curve; (εcπ)ij = 0.65 kcal mol−1). Note
that the plotted curves here—unlike those in A—do not contain the HPS potential. (C) Normalized Cα–Cα distance-dependent contact frequencies for the
aforementioned six cation–π pairs (color coded as in A) computed using a set of 6,943 high-resolution X-ray protein crystal structures (resolution ≤ 1.8 Å)
from a published nonredundant set (67). Contact pair statistics are collected from residues on different chains in a given structure and residues separated
by ≥ 50 amino acids along the same chain. Cα–Cα distances are divided into 0.2-Å bins. For each bin, the relative frequency is the number of instances of
a cation–π-like contact (defined below) divided by the total number of residue pairs with Cα–Cα distances within the narrow range of the bin. Thus, the
shown curves quantify the tendency for a given pair of residues to engage in cation–π interaction provided that the pair is spatially separated by a given
Cα–Cα distance. Here a cation–π-like contact is recognized if either a Lys NZ or an Arg NH1 nitrogen atom is within 3.0 Å of any one of the points 1.7 Å
above or below an sp2 carbon atom along the normal of the aromatic ring in a Tyr, Phe, or Trp residue. This criterion is exemplified by the molecular drawing
(Inset) of a contact between an Arg (at the top) and a Phe (at the bottom). Colors of the chemical bonds indicate types of atom involved, with carbon in
black, oxygen in red, and nitrogen in blue. The red dots here are points on the exterior surfaces of the electronic orbitals farthest from the sp2 carbons in
the aromatic ring. The blue, green, and red lines emanating from a corner of the aromatic ring constitute a local coordinate frame, with the blue line being
the normal vector of the plane of the aromatic ring determined from the positions of its first three atoms. The yellow lines mark spatial separations used to
define the cation–π-like contact. These yellow lines do not represent chemical bonds.
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distance of ≤ 6.5 Å (SI Appendix, Fig. S2), a separation that is
often taken as a criterion for residue–residue contact (74). On
top of that, given an Arg–aromatic and a Lys–aromatic pair sep-
arated by the same Cα–Cα distance (Fig. 2C), the Arg–aromatic
pair (solid curves) is more likely than the Lys–aromatic pair
(dashed curves) to adopt configurations consistent with a cation–
π interaction. We emphasize, however, that although a signifi-
cantly stronger Arg- than Lys-associated cation–π interaction is
explored here as an alternate scenario, it is probable, as argued
by Gallivan and Dougherty using a comparison between Lys-like
ammonium–benzene and Arg-like guanidinium–benzene inter-
actions, that the strengths of the pure cation–π parts of Arg– and
Lys–aromatic interactions are similar despite the relative abun-
dance of Arg–aromatic contacts due to other factors (69) such as
π–π effects (67).

Hydrophobicity, Electrostatics, and Cation–π Interactions Are Insuffi-
cient by Themselves to Rationalize Ddx4 LLPS Data in Their Entirety.
We begin our assessment of models by applying the HPS and
HPS + cation–π potentials to simulate the phase diagrams of the
four Ddx4 IDRs (SI Appendix, Fig. S1), the sequence patterns of
which are illustrated in Fig. 3A using a style employed previously,
e.g., in refs. 4, 34, 39. The phase diagrams presented here are
coexistence curves. When the overall average IDR density lies
in between the left and right arms of the coexistence curve at a
given temperature, the system phase separates into a dilute phase
and a condensed phase with IDR densities given by the low-
and high-density values, respectively, of the coexistence curve at
the given temperature. When the average IDR density is not in
the region underneath the coexistence curve, the system is not
phase separated (see, e.g., refs. 20, 35, 84 for introductory discus-
sions). Consistent with experiments (4, 65), the simulated phase
diagrams (Fig. 3B) exhibit upper critical solution temperatures,
which is a maximum temperature above which phase separation
does not occur (corresponding to the local maxima of the coexis-
tence curves at IDR density ≈ 200 mg/mL in Fig. 3). We empha-
size, however, that although the simulated critical temperatures

are assuringly in the same range as those deduced experimen-
tally (65), the model temperature (in K) of our simulated phase
diagrams in Figs. 3B and 4 should not be compared directly with
experimental temperature. This is not only because of uncertain-
ties about the overall model energy scale but also because the
models do not account for the temperature dependence of effec-
tive residue–residue interactions (20, 43, 51). For simplicity, our
models include only temperature-independent energies as they
are purposed mainly for comparing the LLPS propensities of dif-
ferent amino acid sequences on the same footing rather than for
highly accurate prediction of LLPS behaviors of any individual
sequence.

Fig. 3 B, Left, provides the HPS phase diagrams at relative per-
mittivity εr =80 (approximately equal to that of bulk water, as in
ref. 52). The predicted behaviors of the CS and FtoA variants
are consistent with experiments in that their LLPS propensities
are reduced relative to WT (4, 65), but the predicted enhanced
LLPS propensity of RtoK is opposite to the experimental finding
of Vernon et al. that the LLPS propensity of RtoK is lower than
that of WT (67). This shortcoming of the HPS model is a conse-
quence of its assignment of much less favorable interactions for
Arg than for Lys, as noted in Fig. 1A.

Fig. 3 B, Right, provides the HPS + cation–π phase diagrams.
They are computed for εr =80, 40, and 20 to gauge the effect of
electrostatic interactions relative to other types of interactions.
The εr-dependent results are also preparatory for our subsequent
investigation of the effect of IDR concentration-dependent per-
mittivity (35, 37) on predicted LLPS properties. All of the
HPS + cation–π phase diagrams here still disagree with exper-
iment (65, 67) as they all predict a higher LLPS propensity
for the RtoK variant than for WT. Apparently, the bias of the
HPS potential against Arg interactions is so strong that it can-
not be overcome by additional Arg–aromatic interactions that
are reasonably more favorable than Lys–aromatic interactions
(Fig. 2B). The εr =80 results for both uniform and variable
cation–π strength exhibit an additional mismatch: contrary to
experiments (4, 65), they predict similar LLPS propensities for
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Fig. 3. Simulated phase behaviors of Ddx4 IDR variants in a hydrophobicity-dominant potential augmented by cation–π interactions. (A) Sequence patterns
of the WT and its charge-scrambled (CS), Phe to Ala (FtoA) and Arg to Lys (RtoK) variants. Select residue types are highlighted: Ala (orange), Asp and Glu
(red), Phe (magenta), Lys (cyan), and Arg (dark blue); other residue types are not distinguished. (B) Simulated phase diagrams of WT, CS, FtoA, and RtoK
Ddx4 IDR at various relative permittivities (εr) as indicated, using the HPS model only (Left) and the HPS model augmented with cation–π interactions (Right)
with either (Top) a uniform (εcπ)ij as described in Fig. 2A or (Bottom) different (εcπ)ij values for Arg and Lys as given in Fig. 2B.
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Fig. 4. Simulated phase behaviors of Ddx4 IDR variants using an interaction scheme based largely on PDB-derived statistical potentials. Phase diagrams
were computed using the KH model at three different relative permittivities (εr ).

the CS variant and WT, suggesting that under this dielectric con-
dition, electrostatic interactions are unphysically overwhelmed
by the presumed cation–π interactions. The εr =20 results for
variable cation–π also indicate an additional mismatch; in this
case they fail to reproduce the experimental trend of a signif-
icantly lower LLPS propensity of the FtoA variant relative to
that of WT (4), probably because the relatively weak cation–π
contribution is overwhelmed by strong electrostatic interactions
in this low-εr situation. Taken together, although a perspective
involving only electrostatic and cation–π interactions was ade-
quate to account for sequence-specific LLPS trend of WT and
CS (and possibly also FtoA) before the RtoK experiment was
performed (34), such a perspective is incomplete when RtoK
enters the picture. Fig. 3B shows that the HPS + cation–π model,
which takes into account hydrophobic, charged, and cation–π
interactions, cannot account for the general trend of available
Ddx4 LLPS data. It follows that these interactions—at least when
hydrophobicity is accorded by the particular scale (76) adopted
by HPS—are insufficient by themselves to account for LLPS of
IDRs in general.

Structure-Based Statistical Potentials Provide an Approximate
Account of π-Related Driving Forces for Ddx4 LLPS. In contrast to
the HPS and HPS + cation–π models, direct application of the
KH model—without augmented cation–π terms—leads to an
overall trend largely in agreement with experiments (4, 65, 67)
for the εr values tested; i.e., all three Ddx4 IDR variants are
predicted by the KH potential to have lower LLPS propensi-
ties than WT (Fig. 4). For WT at εr =80 and T =300 K, the
simulated condensed phase density of∼ 500 mg mL−1 is compa-
rable to the experimental value of∼ 400 mg mL−1 with [NaCl] =
100 mM at the same temperature (65). Similar KH- and HPS-
simulated condensed phase densities were obtained for FUS and
LAF-1 IDRs (52). Illustrations of our simulated chain config-
urations are provided in Fig. 5. Time-dependent mean-square
deviation of molecular coordinates has been used to verify liquid-
like chain dynamics in the condensed phase of HPS and KH
models (52). Examples of similar calculation are provided in SI
Appendix, Figs. S3 and S4, for the Ddx4 IDRs examined in this
work.

This success of the KH model suggests that empirical,
knowledge-based statistical potentials derived from the PDB
may capture key effects governing both protein folding and IDR
LLPS without prejudging the dominance of, or lack thereof,
particular types of energetics such as hydrophobicity in the
HPS model. In this respect, it would not be surprising that
cation–π and other π-related interactions are reflected in these
knowledge-based potentials as well. After all, the importance
of cation–π interactions in folded protein structure (69) and
π–π interactions in IDR LLPS (67) is recognized largely by
bioinformatics analyses of the PDB.

As discussed above, a major cause of the shortcoming of
HPS in accounting for the LLPS of Ddx4 IDRs (Fig. 3B)
is the high degree of unfavorability it ascribes to Arg inter-

actions. Its hydrophobicity scale, based on the atomic partial
charges in the OPLS (optimized potentials for liquid simula-
tions) force field, posits that Arg has the least hydrophobicity
value of +14.5, and the next-least hydrophobic is Asp with +7.5,
whereas Lys has +5.0, and the most hydrophobic is Phe with
−4.0 (76). This assignment results in highly unfavorable Arg-
associated interactions relative to Lys-associated interactions. In
the HPS model, when one of the residues, i , in the pairwise
energy Eij (r0) (Fig. 1A) is Arg, the average of Eij (r0) over j
for all amino acids except the charged residues Arg, Lys, Asp,
and Glu is equal to −0.0762 in units of kcal mol−1, whereas
the corresponding average for Lys is much more favorable at
−0.1276. When the charged residues are included, the trend is
the same with the average being −0.0677 for Arg and −0.119
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Fig. 5. Illustrative snapshots of Ddx4N1CS phase behaviors simulated using
the KH potential for εr = 40. (A) A non–phase-separated snapshot at model
temperature 375 K, wherein the amino acid residues are colored using the
default VMD scheme (91, 92) as provided by the key below the snapshot. (B)
Same as A except the color scheme (as shown) is essentially identical to that
in Fig. 3A. (C) Same as A and B except all residues along the same chain share
the same color. Neighboring chains are colored differently to highlight the
diversity of conformations in the system. (D–F) A phase-separated snapshot
at model temperature 325 K. The color schemes are the same as those in
A–C, respectively.
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for Lys. In contrast, for the KH model, the trend is opposite with
Arg-associated interactions much more favorable: the corre-
sponding average is −0.123 for Arg and −0.041 for Lys when
charged residues are excluded in the averaging and −0.0990 for
Arg and−0.0161 for Lys when charge residues are included. This
trend echoes an earlier eigenvalue analysis of the Miyazawa–
Jernigan energies (75) (which underlie the KH potential) indicat-
ing that Arg has a significantly larger projection than Lys along
the dominant eigenvector (85).

Whereas correlation among hydrophobicity scales inferred
from different methods is limited (86–89) with significant vari-
ations especially for the nonhydrophobic polar and charged
residues (87), the extremely low hydrophobicity assigned by HPS
(52, 76) to Arg relative to Lys is unusual. For instance, Lys is
substantially less hydrophobic than Arg in two of the three scales
tabulated and compared in ref. 89. In a commonly utilized scale
based on the free energies of transfer of amino acid derivatives
from water to octanol measured by Fauchère and Plǐska (90)
(the second scale tabulated in ref. 89), Arg is only slightly less
hydrophobic (+5.72 kJ mol−1) than Lys (+5.61 kJ mol−1), and
thus, essentially, Arg and Lys are deemed to possess equally low
hydrophobicities. Accordingly, this scale affords a better correla-
tion with the Miyazawa–Jernigan energies (75) (figure 3b of ref.
89) than that exhibited in Fig. 1A.

It is reasonable to expect the 210 (or more) residue–residue
contact energy parameters in PDB structures-based potentials to
contain more comprehensive energetic information than merely
the hydrophobicities of the 20 types of amino acid residues. In
this regard, it is notable that a higher propensity for Arg than
Lys to engage favorably with another residue appears to be a
robust feature of PDB statistics. It holds for the cation–aromatic
pairs we analyze in SI Appendix, Fig. S2, for the KH potential,
and also for the original Miyazawa–Jernigan energies put forth
in 1985 (74). According to table V of ref. 74, the contact ener-
gies eij between Arg and aromatic or negatively charged residues
are −3.54, −3.56, −2.75, −2.07, and −1.98kBT for Arg–Phe,
Arg–Trp, Arg–Tyr, Arg–Glu, and Arg–Asp, respectively (kB is
Boltzmann constant, and T is absolute temperature), whereas
the corresponding contact energies are weaker for Lys at −2.83,
−2.49,−2.01,−1.60, and−1.32kBT for Lys–Phe, Lys–Trp, Lys–
Tyr, Lys–Glu, and Lys–Asp, respectively. All 20 Arg interactions
are more favorable than the corresponding Lys interactions. The
average eij over all Arg-associated pairs is −2.22kBT , which is
substantially more favorable than the corresponding average of
−1.4795kBT for the Lys-associated pairs. It is apparent from
the present application of KH to the Ddx4 IDRs that this fea-
ture is crucial, at least at a coarse-grained level, for an adequate

accounting of the π-related energetics of biomolecular LLPS.
Physically, the general preference for Arg–π over Lys–π contacts
is underpinned in part by the Arg geometry which allows for
favorable guanidinium–aromatic coplanar packing (71), as dis-
cussed recently by Wang et al. (ref. 39 and references therein),
and that Arg–aromatic is less attenuated by the aqueous dielec-
tric medium because it is less dominated than Lys–aromatic
interactions by electrostatics (83). Consistent with this perspec-
tive, R to K mutants of FUS (39) and LAF-1 RGG (77) also
exhibit substantially reduced LLPS propensity relative to WT.

Phenylalanine Interactions in Liquid Condensates, Expected to Be
More Solvent-Exposed, Are Weaker than Statistical Estimates Based
on Mostly Core Phenylalanine Contacts in Folded Proteins. To assess
further the generality of the KH model, we apply it to simulate
the phase behavior of WT LAF-1 and its RtoK and tryosine-to-
phenylalanine (YtoF) mutants (Fig. 6 and SI Appendix, Fig. S5).
Simulation studies of LLPS of full-length and the RGG IDR
(52) of LAF-1, including the latter’s charge shuffled variants (77),
have been conducted extensively using the HPS (52, 77) and KH
(52) models to gain valuable insights, but phase behaviors of the
RtoK and YtoF LAF-1 RGG mutants have not been simulated
using these models. Recent experiments indicate that the RtoK
mutant does not phase separate under the conditions tested,
whereas the LLPS propensity of the YtoF mutant is reduced
relative to that of WT (77). As for the case of Ddx4 IDR, the KH-
predicted coexistence curve for RtoK LAF-1 RGG in Fig. 6 (pur-
ple curve) is consistent with the experimental trend as it has a far
lower critical temperature than that of the WT (red curve). How-
ever, KH posits a significantly higher LLPS propensity for YtoF
(green dashed curve with a much higher critical temperature),
which is opposite to experimental observation. On closer inspec-
tion, the basic feature that causes this shortcoming is that KH
deems Phe interactions more favorable than Tyr interactions.
According to KH, Eij (r0) for i =Phe averaged over j for all
amino acids is −0.453 kcal mol−1 for Phe, which is significantly
more negative than the corresponding average Eij (r0) of−0.281
kcal mol−1 for Tyr. For this reason, KH is unlikely to repro-
duce the experimentally observed reduced LLPS propensities
for any other YtoF mutant either, including the YtoF mutants
of FUS (39).

This overestimation of the favorability of Phe-related interac-
tions in the LLPS context also causes the KH-predicted LLPS
propensity of the FtoA mutant of Ddx4 IDR (Fig. 4, green
curves) to be substantially lower than that of the RtoK mutant
(purple curves). Experimentally, however, FtoA mutant LLPS
is observed at ∼ 350 mg mL−1 protein concentration, but the
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Fig. 6. Simulated phase diagrams of LAF-1 IDRs computed by the KH model at εr = 40 for the three sequences in SI Appendix, Fig. S5. (A) Sequence patterns
of the WT and two variants. Highlighted residues are Phe (magenta); Lys (cyan); Arg (dark blue), as in Fig. 3A; and Tyr (pink); other residue types, including
Ala, Asp, and Glu which were highlighted in Fig. 3A, are not distinguished here. (B) Phase diagrams for WT and mutant sequences are plotted in different
colors as indicated.
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RtoK mutant does not phase separate up to 400 mg mL−1 (in
comparison, LLPS of WT is observed at 25 mg mL−1) (67). In
other words, the KH-predicted rank ordering of LLPS propen-
sities of Ddx4 FtoA and RtoK is opposite to experiment. This
is because the KH energy Eij (r0) for Ala averaged over all 20
residue types, at −0.160 kcal mol−1, is much less favorable than
the corresponding −0.453 kcal mol−1 for Phe and the change in
average KH Eij (r0) from Phe to Ala (−0.160+0.453=+0.293
kcal mol−1) is far larger than the corresponding change of
−0.0161+0.0990=+0.0829 kcal mol−1 from Arg to Lys.

Interestingly, while these Ala-, Tyr-, and Phe-related KH ener-
gies do not reproduce experimental observations for YtoF and
FtoA mutants, the KH energies are largely in line with rank
ordering in common hydrophobicity scales. For instance, in the
water-to-octanol scale of Fauchère and Plǐska (90), the trans-
fer free energies for Ala, Tyr, and Phe are −1.76, −5.44, and
−10.1 kJ mol−1, respectively. By comparison, the average inter-
action energies in the HPS model for Ala, Tyr, and Phe differ
less, being−0.141,−0.154, and−0.168 kcal mol−1, respectively,
but Phe-related interactions are still generally more favorable
than Tyr-related interactions. Thus, HPS is not only insufficient
to account for RtoK experiments (Fig. 3), HPS is not expected to
capture the observed YtoF trend either.

The above consideration underscores once again that the ener-
getic contributions of amino acid residues to LLPS are not
necessarily dominated by their hydrophobicities. Phe is gener-
ally considered to be more hydrophobic than Tyr. However, even
for the globular proteins ribonuclease Sa and Sa3, 14 out of 16
YtoF single-site substitutions destabilize the folded state. One
of the physical reasons for this behavior is that the Tyr hydroxyl
group—which is absent in Phe—makes a hydrogen bond with the
Nε atom of an Arg residue (93). It would be enlightening to inves-
tigate whether similar hydrogen bonding effects account to any
degree for the preference for Tyr–Arg over Phe–Arg interactions
in the LLPS context.

For a relatively large residue that possesses both hydrophobic
and aromatic properties such as phenylalanine, the character of
its LLPS-driving contributions can also differ significantly from
those stabilizing the well-packed core of a folded protein because
most residue–residue contacts in the LLPS context are at least
partially exposed to solvent even in the condensed phase. This
observation offers a perspective to understand KH’s inability to
capture LLPS behaviors of YtoF and FtoA mutants because KH
is derived from statistical potentials which in turn are based upon
contact frequencies in folded proteins. Since Phe is one of the
most buried residues in folded proteins with on average 0.88 of
its surface area inaccessible to solvent upon folding (the corre-
sponding fractions for Tyr, Ala, Lys, and Arg are 0.76, 0.74, 0.52,
and 0.64, respectively) (94), the difference in character between
Phe’s LLPS-driving and folded-state-stabilizing interactions is
expected to be more prominent.

Indeed, it has long been recognized that pair interactions in
solvent-exposed environments have properties—including ther-
modynamic signatures (95, 96)—that are distinctly different from
those of bulk interactions quantified by common hydrophobicity
measurements (97). In this regard, computational evidence sug-
gests that Phe-related interaction in a highly solvent accessible
environment—which is more pertinent to LLPS—is not sub-
stantially stronger than Ala-related interactions. For instance,
using ethane and ethylbenzene as models for Ala and Phe,
respectively, explicit-TIP3P (3-point transferable intermolecu-
lar potential) water simulations of pairwise potentials of mean
force (PMFs) at 298 K by Makowski et al. indicate that the
lowest free energies at the ethane–ethane, ethane–ethylbenzene
(98), and ethylbenzene–ethylbenzene (99) contact minima are
all ≈−1 kcal mol−1 [Tyr was not considered in these studies
(98, 99)]. Thus, in contrast to the vastly different Ala–Ala, Ala–
Phe, and Phe–Phe interaction strengths in KH, with Eij (r0)=

−0.142,−0.425, and−0.756 kcal mol−1, respectively (52), these
explicit-water PMFs suggest a more modest difference in inter-
action strength between Ala and Phe in the LLPS context, which
would be in line with the FtoA experiment. With this knowledge,
future investigations should tackle hitherto overlooked features
of solvent-accessible contacts among amino acid residues to
improve coarse-grained interaction potentials for LLPS.

IDR Concentration Can Significantly Affect the Dielectric Environ-
ment of Condensed Droplets but Its Impact on LLPS Propensity Can
Be Modest. In recent (52, 53, 55) and the above coarse-grained,
implicit-solvent simulations of LLPS of IDRs, electrostatic inter-
actions are assumed, for simplicity, to operate in a uniform
dielectric medium with a position-independent εr. However, the
dielectric environment is certainly nonuniform upon LLPS: the
electrostatic interaction between two charges is affected to a
larger extent by the intervening IDR materials in the condensed
phase—where there is a higher IDR concentration—than in the
dilute phase. Protein materials have lower εrs than bulk water
(100–102). Analytical treatments with effective medium theo-
ries suggest that a decrease in effective εr with increasing IDR
concentration enhances polyampholytes LLPS in a cooperative
manner because the formation of condensed phase lowers εr, and
that in turn induces stronger electrostatic attractions that favor
the condensed phase (35, 37).

In principle, LLPS of IDR chains in polarizable aqueous media
can be directly simulated using explicit-water atomic models
wherein partial charges are assigned to appropriate sites of the
water and protein molecules, but such simulations are computa-
tionally extremely costly because a large number of IDR chains
are needed to model LLPS. Here we use explicit-water atomic
simulation involving only a few IDR molecules, not to model
LLPS but to estimate how the effective εr depends on IDR con-
centration. We will then combine this information with analytical
formulations to provide a more complete account of the electro-
static driving forces for LLPS. The dielectric properties of folded
proteins (100, 101), their solutions (103), and related biomolec-
ular (104) and cellular (105) settings have long been of interest
(106). For the current focus on biomolecular condensates, their
interior dielectric environments are expected to be of functional
significance, e.g., as drivers for various ions and charged molecules
to preferentially partition into a condensate (107).

As outlined in Materials and Methods, GROMACS
(Groningen Machine for Chemical Simulations) (108) and the
amber99sb-ildn forcefield (109) are used for our explicit-water
simulations using either the TIP3P (110) or the SPC/E (extended
simple point charge) (111) model of water in simulation boxes
containing WT Ddx4 IDR chains. Relative permittivities are
estimated by fluctuations of the system dipole moment (101,
103). Simulations are also performed on artificially constructed
Ddx4 (aDdx4) in which the side chain charges of Arg, Lys,
Asp, and Glu are neutralized for possible applications when
side chain charges are treated separately from that of the
background dielectric medium. Methodological details are
provided in SI Appendix, SI Text. Some of the simulated εr
values are plotted in Fig. 7A to illustrate their dependence on
IDR volume fraction φ (the φ∝ concentration relation and
an extended set of simulated εrs are provided in SI Appendix,
SI Text, Fig. S6, and Table S1). The difference in simulated
εr(φ) for Ddx4 and aDdx4 is negligible except at very low
IDR concentration (Fig. 7A and SI Appendix, Fig. S6), likely
because the main contribution to the dielectric effect of IDR
in the atomic model is from the partial charges on the protein
backbone. Consistent with expectation (35, 37), simulated εr(φ)
in Fig. 7A decreases with increasing φ for all solvent conditions
considered. Permittivity is known to decrease with salt (112,
113). Here this expected effect is observed for TIP3P solution of
IDR at low but not at high IDR concentration. Interestingly, the
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A B C

Fig. 7. Effects of IDR concentration-dependent relative permittivity on phase behaviors. (A) Relative permittivity εr(φ) values obtained by atomic simulations
(symbols) using various explicit-water models (as indicated at the bottom) are shown as functions of Ddx4 volume fraction φ (φ= 1 corresponds to pure
Ddx4). The blue curve is a theoretical fit of the SPC/E, [NaCl] = 100 mM explicit-water simulated data based on the Slab [Bragg and Pippard (114)] model
(equation 34 of ref. 37), viz., 1/εr(φ) =φ/εp + (1−φ)/εw with the fitted εp = 18.9 and εw = 84.5 where εp and εw are the relative permittivity of pure protein
and pure water, respectively. The black solid, dashed, and dashed-dotted lines are approximate linear models of εr(φ) = εpφ+ εw(1−φ) with the same εw

but different εp values as indicated (at the top right), resulting in dεr(φ)/dφ slopes of−65.6,−83.9, and−42.2. (B and C) Theoretical phase diagrams of the
four Ddx4 IDR variants were obtained by a RPA theory that incorporates an εr(φ) linear in φ. Solid, dashed, and dashed-dotted curves correspond, as in A, to
the three different εp values used in the theory. The electrostatic contribution to the phase behaviors is calculated here using either (B) the expression for
fel given in SI Appendix, SI Text, Eq. S51 [i.e., equation 68 of ref. 35 with its self-interaction term G2(k̃) excluded] or (C) the full expression for fel (equation
68 of ref. 35 or equivalently SI Appendix, SI Text, Eq. S2). Further details are provided in SI Appendix, SI Text.

εr(φ) simulated with SPC/E water and 100 mM NaCl exhibits
nonlinear decrease with increasing φ, which is akin to that
predicted by the Bragg–Pippard (114) and Clausius–Mossotti
models, but the TIP3P-simulated εr(φ) appears to be linear in φ,
which is more in line with the Maxwell Garnett and Bruggeman
models (37).

We utilize the salient features of the coarse-grained KH chain
model for Ddx4 (Fig. 4) and the IDR concentration-dependent
permittivities from explicit-water simulations (Fig. 7A) to inform
an analytical theory for IDR LLPS, referred to as RPA +
FH, that combines a random phase approximation (RPA) of
charge sequence-specific electrostatics and Flory–Huggins (FH)
mean-field treatment for the other interactions (34, 35). An
in-depth analysis of our previous RPA formulation for IDR
concentration-dependent εr (35) indicates that only an εr(φ) lin-
ear in φ can be consistently treated by RPA (SI Appendix, SI
Text). In view of this recognition and considering the uncer-
tainties of simulated εr(φ) for different water models (Fig. 7A),
three alternative linear forms of εr(φ) (straight lines in Fig. 7A)
are used for the present RPA formulation to cover reasonable
variations in εr(φ).

The mean-field FH interaction parameters in our RPA + FH
models for the four Ddx4 IDRs are obtained from the four
sequences’ average pairwise nonelectrostatic KH contact ener-
gies. For each of the 236-residue sequences, we calculate the
average of the Eij (r0) [KH] quantity (Fig. 1A), for a given pair of
residue types, over all pairs of residues on the sequence, includ-
ing a residue with itself (236× 237/2= 27,966 pairs total), except
those pairs involving two charged residues (Arg–Arg, Arg–Lys,
Arg–Asp, Arg–Glu, Lys–Lys, Lys–Asp, Lys–Glu, Asp–Asp, Asp–
Glu, and Glu–Glu) because interactions of charged pairs are
accounted for by RPA separately. The resulting average ener-
gies in units of kcal mol−1, −0.1047 for WT and CS, −0.0689
for FtoA, and −0.0924 for RtoK, are then input with an over-
all multiplicative scaling factor into RPA + FH theories with
φ-independent εr for three different fixed εr= 80, 40, and 20.
The computed RPA + FH phase diagrams are then fitted to the
corresponding phase diagrams simulated by coarse-grained KH
chain models in Fig. 4 to determine a single energy scaling factor
from the best possible fit (SI Appendix, Fig. S7). The product of
this factor and the sequence-dependent averages of Eij (r0) [KH]
defined above is now used as the enthalpic FH χ parameters in

the final RPA + FH theories with IDR concentration-dependent
εr(φ). Details of unit conversion between our explicit-chain
simulation and our analytical RPA + FH formulation are in
SI Appendix, SI Text.

In this connection, it is instructive to note that the correspond-
ing averages of Eij (r0) [HPS] for the HPS model are −0.1214
for WT and CS, −0.1179 for FtoA, and −0.1294 for RtoK. In
this case, the more favorable (more negative) average energy of
RtoK than WT underlies the mismatch of HPS prediction with
experiment seen in Fig. 3B.

Fig. 7 B and C show the phase diagrams of the four Ddx4 IDRs
predicted using RPA + FH theories with three alternative IDR
concentration-dependent εr(φ) functions and KH-derived mean-
field FH parameters as prescribed above. In all cases considered,
the WT sequence (red curves) exhibit a higher propensity to
LLPS than the three variants, indicating that this general agree-
ment with the experimental trend seen in Fig. 4 holds up not
only under the simplifying assumption of a constant εr but also
when the dielectric effect of the IDRs is taken into account. As
discussed in SI Appendix, SI Text, we have previously subtracted
the self-energy term in the RPA formulation for numerical effi-
ciency because the term has no impact on the predicted phase
diagram when εr is a constant independent of φ because the
self-energy contribution is identical for the dilute and condensed
phases. However, with an IDR concentration-dependent εr(φ),
as for the cases considered here, the self-energy—with the short-
distance cutoff of Coulomb interaction in the RPA formulation
corresponding roughly to a finite Born radius (115)—is physi-
cally relevant as it decreases with increasing εr, and therefore, it
affects the predicted LLPS properties as manifested by the dif-
ference between Fig. 7 B and C. It follows that the self-energy
term quantifies a tendency for an individual polyampholyte chain
to prefer the dilute phase with a higher εr—because of its more
favorable electrostatic interactions with the more polarizable
environment—over the condensed phase with a lower εr. This
tendency disfavors LLPS. At the same time, the lower εr in the
condensed phase entails a stronger interchain attractive electro-
static force that drives the association of polyampholyte chains.
Therefore, taken together, relative to the assumption of a con-
stant εr, the overall impact of an IDR concentration-dependent
εr(φ) is expected to be modest because it likely entails a partial
tradeoff between these two opposing effects. This consideration
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is borne out in Fig. 7 B and C. When self-energy is neglected in
Fig. 7C, LLPS propensities predicted using εr(φ)s are relatively
high (as characterized by the critical temperatures), compara-
ble to those for a fixed εr =40 in Fig. 4B. When the physical
effect of self-energy is accounted for in Fig. 7B, LLPS propen-
sities predicted using εr(φ)s are significantly lower: overall they
are comparable but slightly lower than those for a fixed εr =80 in
Fig. 4A. Consistent with this physical picture, whereas the εr(φ)
with a sharper decrease with increasing φ leads to a higher LLPS
propensity when self-energy is neglected (dashed curves have
higher critical temperatures than dashed-dotted curves of the
same color in Fig. 7C), for the physically appropriate formulation
with self-energy, a sharper decrease in εr(φ) with increasing φ
leads to a lower LLPS propensity (dashed curves have lower crit-
ical temperatures than dashed-dotted curves of the same color in
Fig. 7B).

Conclusion
In summary, we have gained insights into the physical forces
that drive the formation of biomolecular condensates by system-
atically evaluating coarse-grained, residue-based protein chain
models embodying different outlooks as to the types of interac-
tions that are important for LLPS of IDRs. By comparing model
predictions against experimental data on WT Ddx4 IDR and its
three variants as well as WT LAF-1 RGG and its two variants, we
acquire essential knowledge from agreement as well as disagree-
ment between simulation and experiment. Aiming to account
for all observed relative LLPS propensities of the sequences, we
find that hydrophobicity, electrostatic, and cation–π interactions
are insufficient by themselves. Rationalization of experiment on
arginine-to-lysine variants entails significantly more favorable
arginine-associated over lysine-associated contacts, an effect that
is most likely underpinned by π–π interactions. This perspective
is in line with bioinformatics analysis of LLPS propensities (67)
and recent experiments on other IDRs (39, 60). In this regard, it
is reassuring that the balance of forces for LLPS of IDRs appears
to be partly captured by common PDB-derived statistical poten-
tials developed to study protein folding and binding. However,
we found that the condensate-stabilizing contributions of pheny-
lalanine interactions are significantly weaker than that estimated
from statistical potentials, most likely because such interactions
exist in highly solvent-accessible environments rather than in the
sequestered cores or binding interfaces of globular proteins. We
have also highlighted the reduced electric permittivity inside con-

densed IDR phases. Although this effect’s overall influence on
LLPS propensity may be modest because of a tradeoff between
its consequences on IDR self-energies and on inter-IDR inter-
actions, the effect of IDR concentration-dependent permittivity
by itself should be of functional importance in biology because
of its potential impact on biochemical reactions and preferential
partition of certain molecules into a given biomolecular conden-
sate. All told, the present study not only serves to clarify the
aforementioned issues of general principles, it also represents
a useful step toward a transferable coarse-grained model for
sequence-specific biomolecular LLPS. Many questions remain
to be further investigated nonetheless. These include—and are
not limited to—an adequate description of solvent-exposed
interactions involving large hydrophobic/aromatic residues such
as phenylalanine, a proper balance between attractive and
repulsive interactions (53), devising temperature-dependent
effective interactions (51), an accurate account of small ion
effects (41, 116, 117), and incorporation of nucleic acids
into LLPS simulations (43). Progress in these directions will
deepen our understanding of fundamental molecular biologi-
cal processes and will advance the design of novel IDR-like
materials as well.

Materials and Methods
Our implicit-water coarse-grained explicit-chain modeling setup used in
the first part of the present investigation for multiple IDP molecules fol-
lows largely the Langevin dynamics formulations in refs. 52, 53 for IDP
LLPS. The simulation protocol features an initial slab-like condensed con-
figuration that allows for efficient equilibration to produce simulated LLPS
data (78). As discussed, model energy functions embodying different phys-
ical perspectives are considered. The subsequent explicit-water simulations
for estimating IDR concentration-dependent relative permittivity are con-
ducted on five WT Ddx4 IDRs using GROMACS (108) in conjunction with
the amber99sb-ildn forcefield (109) and with TIP3P (110) or SPC/E (111)
waters. Details of our methodology and the development of analytical RPA
formulation are provided in SI Appendix, SI Text.

Data Availability. All study data are included in the article and SI Appendix.
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50. D. Nilsson, A. Irbäck, Finite-size scaling analysis of protein droplet formation. Phys.
Rev. E 101, 022413 (2020).

51. G. L. Dignon, W. Zheng, Y. C. Kim, J. Mittal, Temperature-controlled liquid-liquid
phase separation of disordered proteins. ACS Cent. Sci. 5, 821–830 (2019).

52. G. L. Dignon, W. Zheng, Y. C. Kim, R. B. Best, J. Mittal, Sequence determinants of pro-
tein phase behavior from a coarse-grained model. PLoS Comput. Biol. 14, e1005941
(2018).

53. S. Das, A. N. Amin, Y.-H. Lin, H. S. Chan, Coarse-grained residue-based models of
disordered protein condensates: Utility and limitations of simple charge pattern
parameters. Phys. Chem. Chem. Phys. 20, 28558–28574 (2018).

54. A. Statt, H. Casademunt, C. P. Brangwynne, A. Z. Panagiotopoulos, Model for disor-
dered proteins with strongly sequence-dependent liquid phase behavior. J. Chem.
Phys. 152, 075101 (2020).

55. G. L. Dignon, W. Zheng, R. B. Best, Y. C. Kim, J. Mittal, Relation between single-
molecule properties and phase behavior of intrinsically disordered proteins. Proc.
Natl. Acad. Sci. U.S.A. 115, 9929–9934 (2018).

56. K. M. Ruff, T. S. Harmon, R. V. Pappu, CAMELOT: A machine learning approach for
coarse-grained simulations of aggregation of block-copolymeric protein sequences.
J. Chem. Phys. 143, 243123 (2015).

57. T. S. Harmon, A. S. Holehouse, R. V. Pappu, Differential solvation of intrinsically disor-
dered linkers drives the formation of spatially organized droplets in ternary systems
of linear multivalent proteins. New J. Phys. 20, 045002 (2018).

58. V. Nguemaha, H.-X. Zhou, Liquid-liquid phase separation of patchy particles illumi-
nates diverse effects of regulatory components on protein droplet formation. Sci.
Rep. 8, 6728 (2018).

59. A. Ghosh, K. Mazarakos, H.-X. Zhou, Three archetypical classes of macromolecular
regulators of protein liquid-liquid phase separation. Proc. Natl. Acad. Sci. U.S.A. 116,
19474–19483 (2019).

60. E. W. Martin et al., Valence and patterning of aromatic residues determine the phase
behavior of prion-like domains. Science 367, 694–699 (2020).

61. M. K. Hazra, Y. Levy, Charge pattern affects the structure and dynamics of
polyampholyte condensates. Phys. Chem. Chem. Phys. 22, 19368–19375 (2020).

62. H. Cinar, S. Cinar, H. S. Chan, R. Winter, Pressure-induced dissolution and reentrant
formation of condensed, liquid-liquid phase-separated elastomeric α-elastin. Chem.
Eur. J. 24, 8286–8291 (2018).

63. S. Cinar, H. Cinar, H. S. Chan, R. Winter, Pressure-sensitive and osmolyte-modulated
liquid-liquid phase separation of eye-lens γ-crystallins. J. Am. Chem. Soc. 141, 7347–
7354 (2019).

64. H. Cinar et al., Pressure sensitivity of SynGAP/PSD-95 condensates as a model for post-
synaptic densities and its biophysical and neurological ramifications. Chem. Eur. J. 26,
11024–11031 (2020).

65. J. P. Brady et al., Structural and hydrodynamic properties of an intrinsically disordered
region of a germ cell-specific protein on phase separation. Proc. Natl. Acad. Sci. U.S.A.
114, E8194–E8203 (2017).

66. S. Roberts et al., Complex microparticle architectures from stimuli-responsive
intrinsically disordered proteins. Nat. Commun. 11, 1342 (2020).

67. R. M. Vernon et al., Pi-Pi contacts are an overlooked protein feature relevant to phase
separation. eLife 7, e31486 (2018).

68. L. M. Salonen, M. Ellermann, F. Diederich, Aromatic rings in chemical and biological
recognition: Energetics and structures. Angew. Chem. Int. Ed. 50, 4808–4842 (2011).

69. J. P. Gallivan, D. A. Dougherty, Cation-π interactions in structural biology. Proc. Natl.
Acad. Sci. U.S.A. 96, 9459–9464 (1999).

70. J. P. Gallivan, D. A. Dougherty, A computational study of cation-π interactions vs salt
bridges in aqueous media: Implications for protein engineering. J. Am. Chem. Soc.
122, 870–874 (2000).

71. P. B. Crowley, A. Golovin, Cation-π interactions in protein-protein interfaces. Proteins
59, 231–239 (2005).

72. J. Song, S. C. Ng, P. Tompa, K. A. W. Lee, H. S. Chan, Polycation-π interactions are
a driving force for molecular recognition by an intrinsically disordered oncoprotein
family. PLoS Comput. Biol. 9, e1003239 (2013).

73. T. Chen, J. Song, H. S. Chan, Theoretical perspectives on nonnative interactions and
intrinsic disorder in protein folding and binding. Curr. Opin. Struct. Biol. 30, 32–42
(2015).

74. S. Miyazawa, R. L. Jernigan, Estimation of effective interresidue contact energies from
protein crystal structures: Quasi-chemical approximation. Macromolecules 18, 534–
552 (1985).

75. S. Miyazawa, R. L. Jernigan, Residue-residue potentials with a favourable contact pair
term and an unfavourable high packing density term, for simulation and threading.
J. Mol. Biol. 256, 623–644 (1996).

76. L. H. Kapcha, P. J. Rossky, A simple atomic-level hydrophobicity scale reveals protein
interfacial structure. J. Mol. Biol. 426, 484–498 (2014).

77. B. S. Schuster et al., Identifying sequence perturbations to an intrinsically disordered
protein that determine its phase-separation behavior. Proc. Natl. Acad. Sci. U.S.A. 117,
11421–11431 (2020).

78. K. S. Silmore, M. P. Howard, A. Z. Panagiotopoulos, Vapor-liquid phase equilibrium
and surface tension of fully flexible Lennard-Jones chains. Mol. Phys. 115, 320–327
(2017).

79. Y. C. Kim, G. Hummer, Coarse-grained models for simulations of multiprotein
complexes: Application to ubiquitin binding. J. Mol. Biol. 375, 1416–1433 (2008).

80. A. C. Murthy et al., Molecular interactions underlying liquid-liquid phase separation
of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637–648 (2019).

81. A. E. Conicella et al., TDP-43 α-helical structure tunes liquid-liquid phase separation
and function. Proc. Natl. Acad. Sci. U.S.A. 117, 5883–5894 (2020).

82. F. G. Quiroz, A. Chilkoti, Sequence heuristics to encode phase behaviour in intrinsically
disordered protein polymers. Nat. Mater. 14, 1164–1171 (2015).

83. K. Kumar et al., Cation-π interactions in protein-ligand binding: Theory and data-
mining reveal different roles for lysine and arginine. Chem. Sci. 9, 2655–2665 (2018).

84. R. V. Pappu, X. Wang, A. Vitalis, S. L. Crick, A polymer physics perspective on driving
forces and mechanisms for protein aggregation. Arch. Biochem. Biophys. 469, 132–
141 (2008).

85. H. S. Chan, Folding alphabets. Nat. Struct. Biol. 6, 994–996 (1999).
86. D. R. DeVido, J. G. Dorsey, H. S. Chan, K. A. Dill, Oil/water partitioning has a different

thermodynamic signature when the oil solvent chains are aligned than when they
are amorphous. J. Phys. Chem. B 102, 7272–7279 (1998).

87. P. A. Karplus, Hydrophobicity regained. Protein Sci. 6, 1302–1307 (1997).
88. H. S. Chan, K. A. Dill, Solvation: How to obtain microscopic energies from partitioning

and solvation experiments. Annu. Rev. Biophys. Biomol. Struct. 26, 425–459 (1997).
89. H. S. Chan, “Amino acid sidechain hydrophobicity” in eLS, Encyclopedia of Life

Sciences (John Wiley & Sons, Chichester, United Kingdom, 2002).
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