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Poor metabolic control and host genetic predisposition are critical
for diabetic kidney disease (DKD) development. The epigenome
integrates information from sequence variations and metabolic
alterations. Here, we performed a genome-wide methylome asso-
ciation analysis in 500 subjects with DKD from the Chronic Renal
Insufficiency Cohort for DKD phenotypes, including glycemic con-
trol, albuminuria, kidney function, and kidney function decline.
We show distinct methylation patterns associated with each phe-
notype. We define methylation variations that are associated with
underlying nucleotide variations (methylation quantitative trait
loci) and show that underlying genetic variations are important
drivers of methylation changes. We implemented Bayesian multi-
trait colocalization analysis (moloc) and summary data-based Men-
delian randomization to systematically annotate genomic regions
that show association with kidney function, methylation, and
gene expression. We prioritized 40 loci, where methylation and
gene-expression changes likely mediate the genotype effect on
kidney disease development. Functional annotation suggested
the role of inflammation, specifically, apoptotic cell clearance
and complement activation in kidney disease development. Our
study defines methylation changes associated with DKD pheno-
types, the key role of underlying genetic variations driving meth-
ylation variations, and prioritizes methylome and gene-expression
changes that likely mediate the genotype effect on kidney disease
pathogenesis.

methylation quantitative trait loci (mQTL) | multitrait colocalization analysis
(moloc) | epigenetics | multiomics integration analysis | chronic kidney
disease

More than 800 million people worldwide suffer from chronic
kidney disease (CKD) (1). Despite the important clinical

needs, there is no curative therapy for CKD. Current treatments
mostly rely on improving blood pressure and blood glucose
control. New therapies that target novel causal pathways are
desperately needed.
The role of immune cells and inflammation in diabetic kidney

disease (DKD) development remains controversial (2, 3). DKD
is traditionally considered a nonimmune-mediated kidney dis-
ease (2). Genome-wide association analysis studies highlighted
the role of podocytes and proximal tubules in kidney disease
development (4, 5). On the other hand, human kidney gene-
expression studies have reproducibly indicated a correlation
between immune cells, certain cytokine levels, and disease se-
verity (6–8). The lack of genetic support for inflammation in
CKD led to the notion that inflammation might be a secondary

phenomenon, and targeting such a pathway could be futile
for DKD.
Metabolic factors—such as diabetes, obesity, aging, and in-

trauterine nutritional environment—play critical roles in CKD
development (9, 10). Intrauterine nutritional deprivation or pe-
riods of hyperglycemia will increase kidney disease risk, even
after several decades of good metabolic control, a phenomenon
called “metabolic memory or programming” (11–15). Epigenetic
changes have been proposed to mediate this long-lasting effect of
nutritional environment, as epigenome editing enzymes require
intermediates of cellular metabolism (such as acetyl and methyl
groups) for histone and DNA modifications; thus, nutrient
availability can directly influence the epigenome (16). Epigenetic
modifications are maintained during cell division, therefore, the
epigenome can serve as a long-term environmental footprint.
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Methylome-wide associated studies (MWAS) have been per-
formed to characterize methylation changes in CKD (17, 18).
Studies from the Diabetes Control and Complications Trial (DCCT)
group identified changes around the thioredoxin-interacting protein
(TXNIP) gene in subjects with diabetes (14). Changes in CpG
methylation associated with kidney function were also identified in
blood samples of Pima Indian subjects (19). The largest MWAS
study included subjects from the Atherosclerosis Risk in Commu-
nities (ARIC) and Framingham Heart Study (FHS) cohorts and
identified signals with genome-wide significance. A large number of
differentially methylated regions have been reported in recent
studies that analyzed microdissected human kidney tubule samples
(20, 21). Critical limitations of these studies are the lack of rep-
lication and the lack of examining the contribution of underlying
genetic variations to MWAS signals.
The heritability of kidney function was estimated to be around

30 to 50% (22, 23). Recently, published large population-based
genome-wide association studies (GWAS) have identified hun-
dreds of variants showing genome-wide significant association with
estimated glomerular filtration rate (eGFR) (24–27). GWAS
studies highlighted important differences in the genetic architec-
ture of different kidney disease traits, such as albuminuria, eGFR,
and kidney function decline (4, 28). Despite the success of the
GWAS mapping, genes, pathways, and cell types explaining CKD
heritability are poorly understood. Almost all identified GWAS
variants (>90%) are in the noncoding region of the genome.

Expression of quantitative trait (eQTL) studies have been pow-
erful to annotate disease-driving genetic variations to prioritize
disease-causing genes. Our initial integration of CKD GWAS and
kidney eQTL data were able to prioritize likely causal genes for
20% of the GWAS loci (5). These initial studies highlighted the
key role of the proximal tubules and endolysosomal trafficking in
kidney disease pathogenesis. eQTL analysis relies on detecting
genotype-driven differences in gene expression at baseline condi-
tion; however, it is possible that regulatory region-driven gene-
expression differences only manifest upon an external stimulus
(19, 21, 29). As cells constantly respond to external stimuli, it is
difficult to catalog all context-dependent changes determined by
underlying genetic variation. Integration of epigenetic information
might be able to capture such gene regulatory logic, and therefore
can define context-dependent expression changes and improve
GWAS target identification.
Here, we adopted a comprehensive approach by integrating

epigenetic and genetic signals to identify novel disease-driving
pathways and therapeutic targets. We analyzed subjects with vary-
ing degrees of kidney disease from one of the largest and best
phenotyped CKD cohorts: The Chronic Renal Insufficiency Cohort
(CRIC) (30, 31). Given new developments in immune therapeutics,
we focused on blood immune cells. We found that underlying ge-
netic variations play important roles in modulating the epigenome-
disease association, indicating that epigenetic variations can be
used to prioritize GWAS loci. Bayesian integration and summary
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Fig. 1. Methylation changes associated with DKD phenotypes (glycemia, albuminuria, eGFR, and eGFR slope) in whole-blood samples of the CRIC study
participants. (A) Study schematics. Methylation levels of ∼800,000 loci measured by Illumina Human MethylationEPIC arrays were used to analyze the as-
sociations with DKD phenotypes (glycemia, albuminuria, eGFR, and eGFR slope) using a linear regression model. (B) Manhattan plot. The y axis is the −log10 of
the association P value of hemoglobin A1c and methylation. The x axis represents the genomic location of the CpG probes. n = 473 samples. (C) Manhattan
plot. The y axis is the −log10 of P value of albuminuria (24 h) and methylation. The x axis represents the genomic location of the CpG probes. n = 473 samples.
(D) Manhattan plot. The y axis is the −log10 of P value of kidney function (baseline eGFR) and methylation. The x axis represents the genomic location of the
CpG probes. n = 473 samples. (E) Manhattan plot. The y axis is the −log10 of P value of kidney function decline (eGFR slope) and methylation. The x axis
represents the genomic location of the CpG probes. n = 410 samples.
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data-based Mendelian randomization analysis of methylation QTL
(mQTL) and eQTL datasets suggested the causal role of inflam-
mation, specifically, apoptotic cell clearance and complement ac-
tivation in CKD, which could open new avenues for therapeutics
development for this devastating condition.

Results
Cohort Characteristics. Baseline demographic and clinical char-
acteristics of the participants are described in Dataset S1. The
study used a subsample of the entire CRIC cohort. To reduce
disease heterogeneity, we selected only subjects with diabetes (SI
Appendix, Fig. S1). The baseline kidney function (eGFR) and its
distribution followed the pattern observed in the CRIC cohort
(SI Appendix, Fig. S2A). The mean baseline eGFR at the time of
enrollment was 44 mL/min/1.73 m2 (Dataset S1). We also enriched
the population for subjects with progressive kidney disease by
selecting subjects with the fastest eGFR decline and matched
control samples based on their baseline characteristics, such as age,
race, and gender (Materials and Methods and SI Appendix, Figs.
S2 B and C and S3). The mean eGFR slope of the fast progressor
DKD group was −3.97 mL/min/1.73 m2/y, based on close to 8 y of

follow-up data. Hemoglobin A1c, a measure of glycemic control,
was 8.06% ± 1.76%. The mean 24-h urine albumin was 1.27 ±
2.18 g (Dataset S1). Although this design has its own limitation, it
allowed us to analyze patients with diabetes and also subjects with
progressive kidney function decline, as a large proportion of sub-
jects in the CRIC study had stable kidney function.

Methylome-Wide Association Analysis for DKD Phenotypes.DKD has
different phenotypic manifestations, such as albuminuria, eGFR,
and the rate of kidney function decline. We analyzed the rela-
tionship between methylation levels and DKD-associated phe-
notypes using the cross-sectional design. We first investigated the
association between glycemic control (HgbA1c) and methylation
levels of 866,836 cytosines (CpGs), interrogated by the Illumina
Human MethylationEPIC BeadChip, in 473 whole-blood samples
obtained at the time of enrollment (Fig. 1A). After data cleaning
and normalization, we used linear regression to characterize the
association between methylation and HgbA1c. The final model
included batch effect, age, sex, genetic background, hyperten-
sion, and cell heterogeneity as covariates and cytosine methylation
(M values) as outcome. The associations between HgbA1c and
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Fig. 2. Functional annotation of DKD phenotype-associated methylation changes. (A) Overlap of loci that showed methylation association with multiple
DKD phenotypes (as denoted by the closest genes to the methylation change). (B–E) Functional annotation (gene ontology) of genes showing association
with DKD phenotypes in MWAS. (F–I) Adult kidney single-cell expression enrichment of MWAS identified genes (as defined by DMP proximity) (41). Each row
represents one gene and each column represents one cell type. B-ly, B-lymphocytes; DCT, distal convoluted tubule; Endo, endothelia; fib, fibroblast; IC, in-
tercalated cells of the collecting duct; LOH, loop of Henle; macro, macrophages; neutro, neutrophils; NK, natural killer cells; PC, principal cells of the collecting
duct; Podo, podocyte; PT, proximal tubule; T-ly, T lymphocytes. Mean expression values of the genes were calculated in each cluster. The color scheme is based
on z-score distribution. Yellow indicates higher expression while blue indicates low expression. (J) Correlation between the methylation of cg1640885 and
kidney function decline (residual of eGFR slope) (SI Appendix) in blood samples of CRIC study participants. The x axis is the residual of eGFR slope and y axis
is M value (methylation). n = 410 samples. (K) Correlation between the methylation of cg1640885 and degree of fibrosis in microdissected human kidney
samples (Dataset S13). The x axis is the percent fibrosis (0–100%) and y axis is M value (methylation). n = 227 samples. (L) Correlation between the methylation
of cg1640885 and expression of LYZ in microdissected human kidney samples. The x axis is normalized M value (M) and y axis is normalized gene expression
[log2(TPM); transcripts per million]. n = 227 samples.
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methylation changes (differentially methylated probes, DMPs)
across the genome are shown in Fig. 1B. One probe, cg19693031,
with P = 6.22E-14 (SI Appendix, Figs. S4 A and B and S5 A and B),
located in the promoter region of the TXNIP gene (SI Appendix,
Fig. S4C) passed the stringent Bonferroni-corrected genome-wide
significance value (P < 6.42E-08), while 110 passed the discovery
significance threshold (two-sided P < 5E-05) (Dataset S2).
Next, we performed methylome-wide association analysis for

albuminuria, an important manifestation of DKD. Six probes
showed significant association with albuminuria (false-discovery
rate [FDR] < 0.05) (Fig. 1C and SI Appendix, Fig. S5 C and D),
while 73 probes passed the discovery significance threshold
(Dataset S3). The top locus was around Uroplakin 2 (UPK2), a
urothelial specific gene.
Methylome-wide association analysis for baseline kidney func-

tion (eGFR) identified 99 DMPs at the discovery significance
threshold (Fig. 1D and Dataset S4). One CpG site, cg17944885,
passed the most stringent, Bonferroni-corrected P-value threshold
(SI Appendix, Fig. S5 E and F). This top DMP located close to the
3′ region of zinc finger protein 20 (ZNF20), a transcription factor

with unknown function (32) (Fig. 1D and SI Appendix, Fig. S6A).
The methylation of cg17944885 showed an observable association
with eGFR, but not with HgbA1c and albuminuria (SI Appendix,
Fig. S6 B–G). Sensitivity analysis was conducted to test the ro-
bustness of our results (SI Appendix, Fig. S7) and indicated lack of
measurable influence of smoking (33), age (34), and body mass
index (35).
Defining future kidney function decline is one of the most im-

portant clinical question. We next examined the association be-
tween methylation changes and future kidney function decline
using two different models. First, we used a conditional logistic
regression model comparing 410 subjects using a stratified design
(Materials and Methods) by matching for age, race, gender, base-
line eGFR, duration of diabetes, and glycemic control (36). The
second analysis used a linear regression model by adjusting for
age, batch effect, top 10 genetic PCs, hypertension, cell propor-
tions, hemoglobin A1c, and urinary albumin to creatinine ratio.
The logistic regression model identified 9 CpG sites (SI Appendix,
Fig. S8 and Dataset S5), while the linear regression model iden-
tified 111 probes at a discovery significance threshold (P < 5E-05)
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(Dataset S6). Three DMPs (cg16408865, cg15507486, and
cg01491004) passed the most stringent Bonferroni-corrected
P-value cutoff (6.42E-08) (Fig. 1E and SI Appendix, Fig. S5 G
and H). The distribution of the P values across the whole genome
is shown in Fig. 1E. For example, the methylation of cg02713581
(SI Appendix, Fig. S9A) showed significant negative association
with kidney function decline (two-sided P = 5.63E-07) (SI Ap-
pendix, Fig. S9 B and C). Sensitivity analysis, performed to test the
robustness of our results, indicated the lack of measurable influ-
ence of smoking and body mass index (SI Appendix, Figs. S10 and
S11). Quality-control metrics, such as inflation coefficient, statis-
tical significance, and correlation strength association (SI Appen-
dix, Fig. S5) further supported our conclusions. In summary, we
defined genome-wide methylation changes associated with four
DKD phenotypes: Glycemia, albuminuria, eGFR, and eGFR
decline.

Cytosine Methylation Changes Can Be Replicated in External Cohorts.
We next examined the overlap between methylation changes
associated with different DKD phenotypes. Consistent with earlier
epigenetic studies, methylation changes were mostly specific to the
analyzed phenotypes. Glycemic control showed the greatest
overlap with other DKD phenotypes, indicating the potential role
of glycemia in driving epigenetic changes and phenotype devel-
opment (Fig. 2A). In our review of the literature, no prior studies
have analyzed methylation changes associated with albuminuria
and kidney function decline. A previous study by Chen et al. (14)
identified important association between methylation at the
TXNIP locus and hyperglycemic metabolic memory in patients
with type 1 diabetes in the DCCT cohort. Our data further support
the broad association between the TXNIP locus methylation and
glycemia in patients with type 2 diabetes and diverse genetic
background (14, 37).
Despite multiple studies have analyzed the association be-

tween eGFR and methylation patterns in peripheral blood mono-
nuclear cells (PBMCs), no consistent or validated DMPs have been
reported. Here, we used the summary statistics data from the ARIC
and FHS studies (29) that included mixed diabetic and nondia-
betic cohorts, the Pima Indian cohort (19) that included subjects
with early DKD, and the Veterans Aging Cohort Study (VACS)
that included subjects with HIV and kidney disease (38). In ad-
dition, microdissected kidney tubule-specific methylation and

kidney function datasets were available from the Susztak labora-
tory Biobank (7, 21) (Dataset S7).
There was a significant, direction-consistent association be-

tween the methylation levels of cg17944885 and eGFR in the
ARIC and FHS studies with two-sided P = 1.61E-07 and 2.03E-
17, respectively (Dataset S8). The methylation of this CpG site
showed an association with baseline eGFR in subjects with dia-
betes of Pima Indian heritage (two-sided P = 3.01E-04) (19), and
patients with HIV at the VACS cohort (two-sided P = 2.5E-05)
(Dataset S8) (38). Furthermore, the methylation levels of
cg17944885 showed significant association with kidney disease
(fibrosis) (two-sided P = 4.70E-03) (21) in microdissected human
kidney tubule samples (Dataset S7). Our results indicated that
phenotype-specific methylation changes could be successfully
replicated in different cohorts, and even in different tissue types.

Functional Annotation of DKD Phenotype-Associated Loci. Most
current cytosine methylation models proposed that methylation
of promoter or enhancer regions can alter transcription factor
binding, leading to quantitative changes in transcript levels. Gene
regulatory region annotation (promoter and enhancer, and so
forth) for PBMCs was generated by combining multiple histone
chromatin immunoprecitation data (ChiP-seq) by ChromHMM
(39, 40). Compared to all probes present on the EPIC arrays,
eGFR-associated DMPs were enriched in regions annotated as
enhancers and promoters (SI Appendix, Fig. S12A). Slope-associated
DMPs were enriched in promoter and transcribed regions in
PBMCs (SI Appendix, Fig. S12B). Similar enrichment analysis
using human kidney tissue indicated that DMPs were more likely
to be located in regions annotated as promoters or enhancers in
human kidneys. Comparing regulatory annotations of different
organs, we found that DMP-enriched enhancers showed kidney
and blood specificity (SI Appendix, Fig. S12).
To understand the potential functional role of DKD phenotype-

associated methylation changes, we performed gene ontology-
based functional annotation. We found that methylation changes
associated with glycemia showed enrichment around genes in-
volved in glucose and fatty acid metabolism (Fig. 2B and Dataset
S9). Methylome association analysis for albuminuria identified
changes around the vicinity of genes associated with wound
healing and small GTPase functions (Fig. 2C and Dataset S10).
Methylome-wide association for eGFR showed enrichment for
transcription and development including kidney development
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Fig. 4. Bayesian moloc (GWAS, mQTL, and eQTL) to identify genetic loci associated with kidney function, methylation, and gene-expression changes. (A)
Illustration of the Bayesian framework for moloc analysis. The analysis will test for different scenarios, such as whether the causal variants associated with
kidney function (GWAS), methylation (mQTL), and gene expression (eQTL) are shared. (B) We identified 71 protein-coding genes (85 total), where disease
state (GWAS), methylation levels (mQTL), and gene expression (eQTL) share causal genetic variants. Each circle represents summary data from a specific GWAS
study (28, 45, 46). (C) Functional enrichment (gene ontology) analysis results of the 71 protein-coding genes, where causal genetic variants for kidney
function, methylation, and gene expression are shared.
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(Fig. 2D and Dataset S11). Annotation of loci associated with
kidney function decline showed enrichment for transcription,
MAPK and JNK cascades (Fig. 2E and Dataset S12).
Next, we examined cell-type expression of genes associated

with DKD phenotypes. We used single-cell gene-expression data-
sets that we generated earlier by profiling whole kidney samples
(41). Our results indicated that the closest genes of kidney
phenotype-associated DMPs showed important cell-type–specific
expression. Several genes expressed in kidney epithelial and en-
dothelial cells; others showed important immune cell-specific ex-
pression (Fig. 2 F–I). Overall, the results indicated that DKD-
associated methylation changes affected a variety of cell types.
The methylation levels of cg16408865 that associated with

kidney function decline in blood samples (Fig. 2J), also strongly
associated with kidney fibrosis in microdissected human kidney
tissue samples (Dataset S13), indicating that changes observed in
blood samples could be relevant for kidney tissue samples as well
(Fig. 2K). For example, the methylation of cg16408865 strongly
correlated with LYZ expression in microdissected human kidney
samples (Dataset S13) (Fig. 2L). Overall, our results indicated
that DKD-associated methylation changes showed enrichment in
cell-type–specific regulatory regions in blood and kidney cells
and altered phenotype-specific pathways.

Genetically Driven Methylation Changes. To understand the con-
tribution of genetic variations to methylation variations, we an-
alyzed the association of genetic variations and local methylation
changes (mQTL) (Fig. 3A) (42). We interrogated the association
of 6,177,888 SNPs and methylation levels of 836,828 CpG sites in
473 blood samples using a linear regression model. The mQTL
analysis was limited to SNPs located within ± 1-Mb (cis) window
of each queried CpG site (Materials and Methods). We identified
171,732 CpG as significant mQTLs (CpG site that regulated by
at least one SNP) at FDR < 0.05 and 123,541,191 significant
SNP-CpG pairs. For example, the underlying nucleotide variant
(rs7086070) had a robust effect on the local DNA methylation
level of cg14436939 (P = 5.65E-216) (Fig. 3B). The effect size
(Fig. 3C) and significance (Fig. 3D) of the lead SNP on each
mCpG decreased for SNPs further away from the transcription
start site, suggesting that genetic variations in promoter regions
have larger effects on methylation levels. Our results replicated
the significant SNP-CpG associations described earlier with the
fraction of true positives (π1) being around 0.92 to 0.94 (Dataset
S14) [using the threshold criteria of 1E-14 established by Gaunt
et al. (43)].
Given the robust genotype-driven signals on methylation lev-

els, we next examined the potential role of genetic variation in
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our MWAS analysis (Fig. 3E). Most prior studies have failed to
incorporate genotype analysis into MWAS studies. To ascertain
the contribution of genetic variations in our MWAS results, we
overlapped our MWAS and mQTL signals. We found that 22%
of the identified MWAS signals could be driven by underlying
genetic variations. For example, 26 of the 110 identified meth-
ylation associated with glycemia showed significant associations
with underlying genetic variations (Fig. 3F and Dataset S15).
As an example, we show the muscleblind-like protein 1 (MBNL1)

locus (SI Appendix, Fig. S13A). The genotype of rs1426383 (C or
T) showed association with the cytosine methylation of this locus
cg19078289 (mQTL) (Fig. 3G). The methylation variations of
cg19078289 associated with eGFR in our MWAS analysis (Fig. 3H
and SI Appendix, Fig. S13B), suggesting that the underlying ge-
netic variations likely contributed to the detected MWAS signal.
To further prove the association between genetic variants and
kidney function (eGFR), we examined the eGFR GWAS study.
This SNP (rs1426383) showed a nominally significant association
with eGFR (two-sided P = 1.70E-05) (28), further substantiating
the role of underlying genetic variants driving the MWAS asso-
ciation. Furthermore, MBNL1 expression in microdissected hu-
man kidney tubule samples correlated with eGFR (Fig. 3I) and
fibrosis (SI Appendix, Fig. S13C) (P = 9.43E-06 and P = 2E-16,
respectively) (Dataset S16). Future studies shall define the func-
tional role of MBNL1 in the kidney.
In summary, our results indicated that underlying genetic

variation play an important role in influencing local methylation
and downstream gene-expression levels, and likely also contrib-
uted to the MWAS signals.

Integration of Genetically Driven Methylation and Gene-Expression
Changes with GWAS Signals Can Prioritize Genes for Kidney
Dysfunction. As our results indicated the critical role for genetic
variations influencing the association between methylation and
disease state, we therefore systematically investigated whether we
could identify kidney function-associated genetic loci that are also
associated with methylation and gene-expression changes, and
disease state (Fig. 4A). As genotypes do not suffer from reverse
causation, such analysis can further prioritize methylation changes
that are causally linked to disease development.
First, we used a Bayesian statistical framework established in

the multiple traits colocalization (moloc) analysis (44). We analyzed
loci from three recently published large multiethnic studies that
examined genotype and kidney function (eGFR) correlations
(GWAS) (28, 45, 46). We identified, genetic variants that showed
association with methylation levels at 267 CpG loci. The expres-
sion of 85 genes (71 protein-coding genes and 14 noncoding
genes), were associated with genetic and epigenetic changes
(probability of moloc abc_PP ≥ 0.8) (Datasets S17–S19). We
observed strong consistency between the different GWAS cohorts
and larger GWAS studies [such as CKDGen (28)] identified more
loci. Several genes were prioritized by multiple GWAS studies,
including nine genes (five protein-coding genes) identified by all
GWAS/mQTL/eQTL integrations (Fig. 4B). A couple of puta-
tive CKD risk genes—such as NRBP1, ALMS1P, MUC1, and
METTL10—have been identified earlier by CKD GWAS and
kidney compartment gene expression (eQTL) integration studies
(5, 28, 47). Nine of the 71 protein-coding genes, which located
within the major histocompatibility complex (MHC) regions, such
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Fig. 6. Functional annotation supports the causal roles of LACTB and IRF5 in kidney disease development. (A) LocusZoom plot of eGFR GWAS, blood mQTLs
on cg02713581, and blood eQTLs on LACTB. The x axis is the chromosomal location; the y axis is the strength (negative log10 of the association P value) of
association between trait and genotype. The moloc signal of this region was observed (abc_PP = 94%). The y axis shows −log10(P value) of association tests (by
linear regression). Each data point represents a single SNP. SNPs located within ±100 kb around rs4775622 (the purple data point) were illustrated. The moloc
signal of this region was observed (abc_PP = 94%). (Top) GWAS associations (genotype and eGFR); (Middle) mQTLs (genotype and methylation value of
cg02713581); (Bottom) eQTLs (genotype and expression of LACTB). The sample size was n = 765,348 in GWAS; n = 473 in mQTLs in whole blood; n = 369 in
eQTLs in whole blood (from GTEx V7). r2 was used to show the degree of LD of variants. (B) The association of genetic variant rs12594313 and CpG meth-
ylation (cg02713581) [PmQTL(rs12594313) = 8.08E-22] in human blood samples. n = 473 samples. (C) The effect sizes of mQTLs on cg02713581 and eQTLs on LACTB
of variants located within ±100 kb of rs4775622 significantly correlated. Each data point represents a single SNP: if the P values of eQTL or mQTL were <0.05,
the data points are shown as a “cross”; if the P values of both eQTL and mQTL were <0.05, the data points are shown in blue. The sample size is n = 473 for
mQTLs in whole blood; n = 369 for eQTLs in whole blood (from GTEx). (D) LocusZoom plot of eGFR GWAS, blood mQTLs on cg04864179, and blood eQTLs on
IRF5. The x axis is the chromosomal location; the y axis is the strength (negative log10 of the association P value) of the association between trait and ge-
notype. Each data point represents a single SNP. SNPs located within ±100 kb around rs3757387 (the purple data point) are illustrated. The moloc signal of this
region was observed (abc_PP = 98%). (Top) GWAS association (genotype and eGFR); (Middle) mQTLs (genotype and the methylation values of cg04864179);
(Bottom) eQTLs (genotype and expression of IRF5). The sample size was n = 765,348 in GWAS; n = 473 in whole-blood mQTL; n = 369 in whole-blood eQTL
(GTEx V7). r2 was used to show the degree of LD of variants. (E) Association of genetic variant rs3757387 and the methylation of cg04864179 [two-sided
PmQTL(rs3757387) = 2.01E-13] in human blood samples (n = 473 samples). (F) The effect sizes of mQTLs on cg04864179 and eQTLs on IRF5 variants located
within ±100 kb of rs3757387 significantly negatively correlated. Each data point represents a single SNP: If the P values of eQTL or mQTL were <0.05, the data
points are shown as a "cross"; if the P values of both eQTL and mQTL were <0.05, the data points are shown in blue. The sample size is n = 473 for mQTLs in
whole blood; n = 369 for eQTLs in whole blood (from GTEx V7).
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as HLA-DRB1 and C4B, C4A, and C2 (Dataset S20), need fur-
ther validation due to the complex genetic architecture of this
region (48).
Functional enrichment analysis of the 267 significant moloc-

prioritized CpG sites indicated enrichment in enhancer and
promoter regions in PBMC and kidney samples (SI Appendix,
Fig. S14). Gene ontology analysis indicated that genes prioritized
for kidney function were enriched for inflammation, specifically,
apoptotic cell clearance, complement activation, and IFN sig-
naling (Fig. 4C and Dataset S21). Taken together, our Bayesian
moloc integration highlighted genetic signals, where methylation,
gene expression, and phenotype variations were driven by the
same genetic variants, and prioritized 267 methylation sites and
85 likely causal kidney disease risk genes.

Summary Data-Based Mendelian Randomization to Define Genetic
Variations Driving Methylation and Gene-Expression Changes. Next,
we narrowed the moloc-identified loci by performing summary
data-based Mendelian randomization (SMR) (49) analysis to
understand whether the effect of genetic variants on phenotype
development is mediated by gene-expression changes via cyto-
sine methylation (Fig. 5A). SMR tests three scenarios: Causality,
where the effect of a genetic variant on transcription is mediated
by methylation; pleiotropy, where a genetic variant has direct
effects on both methylation and transcription; and linkage, where
two or more distant genetic variants in linkage disequilibrium
(LD) affecting methylation and transcription independently (Fig.
5B). We further complemented the SMR analysis with a HEIDI
test (heterogeneity in dependent instruments) to distinguish cau-
sality and pleiotropy from linkage (50). Our analytical framework
included pleiotropic association tests in three directions, including
methylation to transcription, methylation to phenotype, and
transcription to phenotype (Materials and Methods) (28, 45, 46).
The SMR analysis narrowed the 85 moloc-prioritized genes

into 40 high-confidence likely causal genes (31 protein-coding
genes and 9 noncoding genes), where the effect of genetic vari-
ants on phenotype development was mediated by methylation
and gene-expression changes (Fig. 5C and Datasets S22–S24).
Pleiotropic associations of CKD GWAS and mQTL data high-
lighted 102 CpG loci (Dataset S25). In these regions, we ob-
served methylation changes likely driven by GWAS variants. We
observed an attenuation of effect sizes of genetic variants on
methylation and gene expression toward kidney function (eGFR),
further supporting that genetic variations are the key drivers of
methylation changes (SI Appendix, Fig. S15).
Gene ontology analysis of the 31 high-fidelity protein-coding

genes identified in our multitrait integration analysis showed
enrichment for immune response, specifically, positive regulation
of apoptotic cell clearance and regulation of complement acti-
vation (Dataset S26). Pathway analysis, performed using genome
scale integration analysis of gene networks in tissues (GIANT)
(51), indicated that high-fidelity CKD causal genes were enriched
for immune function and apoptotic cell clearance, and also
strongly coexpressed in NK cells and CD8+ cells (Fig. 5D and
Datasets S27 and S28). We confirmed the cell-type–specific gene
enrichment by analyzing adult human kidney single-cell RNA-
sequencing (RNA-seq) data (SI Appendix, Fig. S16) (52). To fur-
ther explore the functional role of inflammation, apoptotic cell
clearance and the complement system, we investigated gene-
expression changes in microdissected human kidney samples. We
observed positive association between expression of complement
components, such as C3, C6, and C7, and kidney disease severity
(SI Appendix, Fig. S17). Similarly, expression of genes in the apo-
ptotic clearance pathway, such as TREM2, CCL2, and CD300LF
were higher in microdissected human diabetic CKD samples (SI
Appendix, Fig. S18), further supporting the role of these pathways
in kidney disease development.

For example, we observed that, on chromosome 15, the
eGFR-associated GWAS variants were also the causal variants
for methylation changes and for the expression of the Serine
β-lactamase-like protein (LACTB) (Fig. 6A). We identified 53
moloc signals (abc_PP range from 93 to 94%) (Dataset S29) for
the LACTB. We found that the eGFR-associated genetic variant
rs12594313 influenced the methylation levels of the nearby CpG,
cg02713581 (Fig. 6B). The same variant (rs12594313) was also
associated with the expression levels of LACTB (P = 3.92E-10)
in blood samples (53). The distribution of statistical associations
of the SMR tests (conducted in three directions) for variants
located within ±100 kb of rs12594313 is shown in SI Appendix,
Fig. S19A. Effect sizes, of mQTLs on cg02713581 and eQTLs on
LACTB for variants located within ±100 kb around rs4775622
were significantly correlated (Fig. 6C), supporting that methyl-
ation changes in this region will influence the expression of
LACTB. Finally, this association was not limited to blood sam-
ples, as LACTB expression positively correlated with kidney
function (eGFR) and negatively correlated with kidney structure
damage (fibrosis) in 433 human kidney tubule samples (SI Ap-
pendix, Fig. S19C and Dataset S16) (5). This correlation was
direction-consistent with the effect size (T2P analysis) estimated
in the SMR analysis (Dataset S22). Interestingly, this genotype-
driven methylation signal was also observed in the (eGFR slope)
MWAS study (SI Appendix, Fig. S9 B and C), further supporting
the functional role of genetic variations in driving methylation
changes.
Another example is the IRF5 region, where methylation and

gene-expression changes mediated the effect of genetic variants
on phenotype development. On chromosome 7, we identified 48
moloc signals (abc_PP∼98%) (Dataset S30) for IRF5. For ex-
ample, centered around the eGFR GWAS SNP of rs3757387, a
moloc signal was observed (Fig. 6D). We found that genetic
variant rs3757387 influenced the methylation levels of the nearby
CpG cg04864179 in human blood samples (Fig. 6E). The same
variant (rs3757387) also influenced the expression levels of
IRF5. Histone modification tracks illustrated that this CpG site
cg04864179 located in an enhancer region both in kidney and
PBMCs (SI Appendix, Fig. S20). The distribution of the statisti-
cal associations of SMR tests for variants within ±100 kb of
rs3757387 is shown in SI Appendix, Fig. S19B. Effect sizes, of
mQTLs on cg04864179 methylation and eQTLs on IRF5 ex-
pression for variants within ±100 kb of rs3757387, were signifi-
cantly correlated (Fig. 6F), supporting the causal role of methylation
changes of cg0486179 affecting the expression of IRF5 in blood
samples. Furthermore, the expression of IRF5 negatively corre-
lated with kidney function (eGFR) and positively correlated with
kidney structure damage (fibrosis) in microdissected human kidney
tubule samples (SI Appendix, Fig. S19D), which was also direction-
consistent with the association between genetically driven IRF5
expression changes and kidney function (eGFR) variations esti-
mated by the SMR analysis (Dataset S22). Overall, our stringent
analysis indicated that IRF5 as a high-fidelity causal gene for
kidney function and could likely explain the association between
rs3757387 and kidney function.
To conclude, the Bayesian moloc analysis highlighted a core

set of methylation changes and gene-expression variations that
originated from kidney function-associated genetic loci. SMR
narrowed these regions, where the genetic variants drive gene-
expression changes via methylation variations leading to phenotype
development.

Discussion
Here, we performed an integrative genetic and epigenetic anal-
ysis to identify novel causal pathways for diabetic CKD. We took
a multipronged approach that included the evaluation of the
association between methylation levels and DKD associated traits
(MWAS). We defined genetically driven methylation changes
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(mQTL). Finally, using moloc and SMR analyses, we identified
methylation and gene-expression changes that likely mediated the
genotype effect on kidney disease development.
We believe that this study that analyzes multiple phenotypic

manifestations of DKD, such as glycemia, albuminuria, kidney
function, and kidney function decline, is unique. We defined trait-
specific methylation patterns. Glycemia-associated methylation
showed the greatest overlap with DKD phenotypes, indicating the
potential role of glycemia in other traits. It is interesting to note
that the MWAS analysis for glycemic control identified methyl-
ation changes around TXNIP. Methylation changes in this region
have previously shown association with glycemic metabolic mem-
ory and kidney disease in the DCCT cohort (14). TXNIP encodes
for thioredoxin-interacting protein that plays an important role in
redox homeostasis and a physiologic regulator of peripheral glu-
cose uptake into fat and muscle in human (54–57). We identified a
single CpG cg17944885, whose methylation levels correlated with
eGFR in our study and could be validated in multiple studies that
analyzed blood or kidney samples. Despite the consistent associ-
ations, the functional role of this methylation change remains to
be established, as it is not located on the gene regulatory ele-
ment in blood and kidney samples. It is possible that this is a
regulatory region during development or plays a functional role
in a rare cell type, that was not captured by bulk epigenome and
expression analysis. Future single-cell expression and epige-
nome analysis shall examine the functional role of cg17944885.
Our analysis for albuminuria identified methylation changes
around UPK2. Uroplakins cover urothelial apical surfaces.
Mice with null mutation of Upk2 are often born with congenital
kidney disease (58).
We generated a new mQTL database to understand the as-

sociation between genotype and methylation changes. This dataset
indicates that a considerable portion of methylation changes as-
sociated with kidney function (in MWAS) is driven by underlying
genetic variations. This is best illustrated by the chromosome 15
locus; genetic variant rs12594313 influences the methylation of its
nearby CpG cg02713581, whose methylation variations show the
association with kidney function decline in the eGFR slope-MWAS
study. Furthermore, the genetic locus not only controlled the
methylation of this CpG site, but also altered the expression of
LACTB. LACTB encodes the Serine β-lactamase-like protein
that is involved in mitochondrial phospholipid metabolism (59).
Our results indicate that it will be critical to integrate geneti-
cally driven methylation signals into future MWAS studies to
differentiate genetically and environmentally driven methylation
differences.
Given the critical role of genetic variations driving methylation

changes, here we used kidney function-associated genetic varia-
tions (from GWAS) to identify methylation changes that likely
mediate phenotype development. We demonstrate that the in-
tegration of epigenetic signals can significantly improve our un-
derstanding of kidney disease pathogenesis driven by GWAS
variants (28, 45, 46). The present data indicate that the effects of
variants on methylation are widespread and can even be ob-
served in the absence of eQTL effects. Changes in mQTL likely
play an important role in how cells with different genotypes re-
spond to external stimuli. We narrowed the colocalization re-
gions with SMR associations across methylation, transcription,
and complex traits in our analysis to identify changes that mediate
the genotype effect on gene expression via DNA methylation.
The current integrative analysis highlighted that genetic vari-

ants influence methylation and expression levels of multiple genes
are known to play important roles in the immune system and in-
flammation. Specifically, genes associated with the clearance of
apoptotic cells and complement pathways have been identified as
the putative kidney disease risk genes. While further studies are
needed to examine the role of C2 and C4 as these genes located in
the MHC regions with high genetic complexity, coding mutations

in the complement pathway have been shown to cause rare forms
of kidney diseases (60, 61). Increased expression and activation of
the complement pathway have also been observed in diabetic
CKD (62, 63). The causal role of complement activation in dia-
betic CKD has been debated, however, as complement activation
has traditionally been considered as a secondary phenomenon
(64). As genotypes do not suffer from reverse causation, our SMR
analysis suggests a causal role for complement in diabetic CKD.
Our studies also highlighted the potential role for IRF5. IRF5

is an IFN-responsive transcription factor that could also play a
role in clearance of apoptotic cells in macrophages (65, 66).
Blocking IRF5 in macrophages may help to treat a wide range of
inflammatory diseases and could be an important new thera-
peutic target for CKD. Gene ontology analysis of our integrative
study strongly supports the role of immune cells in kidney disease
development. Specifically, our network analysis showed enrich-
ment for NK and CD8+ T cells in kidney disease development.
There are two important limitations of the study, such as the

use of only diabetic CKD samples. It seems that eGFR-associated
methylation changes are shared in multiple studies, indicating that
they are likely linked to common CKD mechanisms rather than
specific diseases. This is further supported by the current work as
the top eGFR-associated DMP could be validated in mixed CKD,
diabetic CKD, and HIV-associated CKD cohorts. We also ac-
knowledge that the stratified design originally aimed to identify
signals for kidney function decline is an important limitation of the
presented work.
To conclude, our work defined distinct cytosine methylation

changes associated with different DKD phenotypes, the key role
of underlying genetic variations driving methylation variations,
identified methylation changes that mediate the genotype effect
of kidney disease development, and illustrated how methylome
variations can be used to prioritize genes for kidney disease
pathogenesis.

Materials and Methods
Study Population. For the study population, 1,394 participants with DKD and
phenotype records were selected from the 3,668 CRIC study participants. The
best linear unbiased predictor modeling was used to adjust eGFR slope (67).
Two-hundred-fifty CRIC study subjects with diabetes with adjusted eGFR
slope > −2.85 (fast-progressor group) and 250 matched participants with
diabetes, but with slower kidney function decline (the adjusted eGFR
slope < −2.85; slow-progressor group) were selected for our study (SI Ap-
pendix, Figs. S1 and S2B). The pairmatch function in the optmatch package
in R was used for matching (68). We applied a distance matrix that combined
a caliper on an estimated propensity score with a rank based Mahalanobis
distance (69). Strata pairs were matched for age, hemoglobin A1c, baseline
eGFR, logarithm of urine albumin, gender, race, and days with diabetes
(self-reported) (SI Appendix, Figs. S2C and S3). After combining with good-
quality genotype data, 473 and 410 subjects were used in our MWAS anal-
yses with HgbA1c, albuminuria, kidney function, and functional decline,
respectively.

MWAS. To account for cell heterogeneity of whole-blood samples, cell
compositions were estimated using a reference-based approach, such as the
CIBERSORT algorithm implemented in the EpiDISH package (70–72). We
generated estimated cell counts for B cells, TCD4+ cells, TCD8+ cells, NK cells,
monocytes, and granulocytes, and used them in the regression models. To
identify methylation changes associated with hemoglobin A1c and albu-
minuria, we used M values as outcome, hemoglobin A1c, and albuminuria as
independent variables, respectively, and batch effect, age, sex, genetic
background, hypertension, and cell heterogeneity as covariates. For kidney
function MWAS analysis, we used linear mixed-effect models with batch
effect (chip number) as the random effect, age, top 10 PCs of genetic
background, hypertension, and imputed cell counts of B cells, TCD4+ cells,
TCD8+ cells, NK cells, monocytes, and granulocytes as fixed effects to gen-
erate residuals of M values. Baseline eGFR was then adjusted for age, sex,
top 10 PCs of genetic background, and hemoglobin A1c by linear regression.
Last, we used residuals of baseline eGFR (eGFR adjusted for sample consti-
tution difference) as the outcome and residuals of M values as the inde-
pendent variable to examine DNA methylation associated with baseline
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eGFR. Four-hundred-ten subjects (1:1 stratified sampling with 205 strata as
illustrated in SI Appendix, Fig. S2B) with longitudinal eGFR records and
good-quality genotype data were used in the kidney function decline
MWAS analysis. Accounting for the 1:1 stratified design, we first used
conditional logistic regression to assess the relationship between kidney
function decline rate (fast/slow) and DNA methylation without adjusting
for additional covariates. To avoid the strict stratification-induced power
reduction (based on the QQ-plot, as illustrated in SI Appendix, Fig. S8B),
we further directly performed a linear regression model using M value as
dependent variable and eGFR slope as independent variables by adjusting
for baseline eGFR, age, sex, batch effect, top 10 genetic PCs, hypertension,
blood cell proportions, hemoglobin A1c, and urinary albumin to creatinine
ratio. Similarly, these covariates were selected by backward stepwise
procedure (SI Appendix). All analyses were performed using R (3.4.3). The
mixed-effect model analysis was performed using lmer in the lme4
package.

mQTL Mapping. Cis-mQTL (referred to as mQTL herein) mapping was con-
ducted on blood samples from 473 CRIC study participants. We inverse
normal-transformed M values (INT-transformed M values) and implemented
probabilistic estimation of expression residuals (PEER) (73) on the INT-
transformed M values using age, batch effect, top 10 PCs of genetic back-
ground, hypertension, and whole-blood cell subtype proportions as cova-
riates. We performed PEER analysis by including different numbers of factors
(k = 5–50) at intervals of 5 to optimize for mQTL discovery. To identify
epigenome-wide associations between SNPs and DNA methylation, an ad-
ditive linear model was fitted to test if the number of alleles (coded as 0, 1,
and 2) correlated with DNA methylation (INT-transformed M values) at each
site, including covariates for age, chip number, top 10 PCs of genetic back-
ground, hypertension, imputed whole-blood cell-type proportions, and dif-
ferent numbers of PEER factors using the R package MatrixEQTL (74). We
calculated mQTLs for all SNPs within ±1 Mb of the queried methylation
probe. mQTLs with Benjamini–Hochberg FDR < 0.05 (by MatrixEQTL) were
used to select the number of PEER factors that could maximize the identified
mCpGs (CpG sites that significantly regulated by at least one SNP). Twenty
PEER factors were included in our final mQTL mapping model (SI Appendix,
Fig. S21). We next implemented FastQTL (75) to estimate significance of the
top associated variant per CpG by setting adaptive permutation as
“-permute 10000”. The β-distribution–adjusted empirical P values were used
to calculate q using Storey’s q method (76), and a q threshold ≤ 0.05 was
applied to identify mCpGs. We finally defined a nominal P threshold, Pt, as
the empirical P of the CpG closest to the 0.05 FDR threshold. Pt was used to
calculate a nominal Pt for each mCpG based on the beta distribution model
(from FastQTL) of the minimum P distribution f(Pmin) obtained from the
permutations for the CpG sites. For each mCpG, variants with a nominal P
below the CpG-level cutoff were regarded as significant mSNPs (SNPs that
significantly regulate at least one CpG site).

moloc Analysis. To estimate the posterior probabilities of whether DNA
methylation and gene expression in whole-blood and kidney disease share
common genetic causal variants in a given region, we performed multiple-
trait-colocalization analysis using moloc (44) with summary data of GWAS
and our mQTL and eQTL data of whole blood from GTEx (V7) (53). moloc
computes the evidence supporting the 15 all possible effect configurations
of sharing of SNPs among kidney disease risk, gene-expressions levels, and
methylations in a genomic region (44). By specifying the prior probabilities
and using the association evidence of the data, moloc outputs the posterior
probability that the SNPs in a genomic region are associated with all three
traits (methylation, gene expression, and phenotype) (Fig. 4A). Summary
data from eGFR-associated GWAS studies from Hellwege et al. (46), Wuttke
et al. (28), and Morris et al. (45) were used. GWAS variants associated with
eGFR at genome-wide significance (P < 5E-08) were selected. To avoid the
inflation caused by GWAS variants representing the same signal, we per-
formed LD pruning using swiss (https://github.com/statgen/swiss). Variants in
LD r2 ≥ 0.8 with the lead SNP at each locus were removed. Regions
within ±100 kb of each pruned GWAS variant overlapping with eGenes
(genes significantly regulated by an SNP) were selected for further moloc
analysis. Summary data of blood mQTL (here), blood eQTL [GTEx V7 (53)],
and SNPs within 100 kb of the GWAS SNPs were used to calculate the pos-
terior probability. All available eGene-mCpGs-GWAS triplets were tested in
each region. In the moloc results, abc_PP represents the posterior probability
that all three traits are associated and share causal variants. We used
abc_PP ≥ 0.8 as the threshold of moloc.

SMR Analysis and HEIDI Test.We focused on defining causal effects of regions
showing significant association in the moloc analysis. An SMR&HEIDI test was
used to test potential causal effects with the publicly available software SMR
(49). Using genetic variants as possible instruments, SMR can be used to
calculate a potential causal relationship between any two traits. We con-
ducted SMR&HEIDI tests in three directions (Fig. 5A), including methylation
to transcription (M2T), methylation to phenotype (M2P), and transcription
to phenotype (T2P) analyses. First, to identify target genes for the CpG sites,
we tested the associations between each mCpG and its neighboring genes
(within ±1 Mb of each mCpG), using the top associated mQTL as the in-
strumental variable (M2T analysis). We used a Bonferroni-corrected P-value
threshold to obtain the genes that showed pleiotropic associations of
transcription and methylation. For example, we adopted 2.4E-04 (i.e., 0.05/
208 as cutoff for PSMR in M2T analysis) as 208 CpG sites were identified in the
moloc step, while using GWAS data from the Wuttke et al. dataset (28).
Next, we narrowed functionally relevant CpG sites by testing the associa-
tions of each mCpG with eGFR (the phenotype) with the top associated
mQTL as instrumental variable (M2P analysis). Similarly, 208 CpG sites were
identified, when integrated with GWAS data (28) in the moloc step,
Bonferroni-corrected P-value cutoff 2.4E-04 (0.05/208) was used. We
obtained the PSMR threshold similarly, while combing with other GWAS
studies (45, 46). We prioritized the trait-associated eGenes by conducting
association test between each eGene and eGFR, using the top associated
eQTL (T2P analysis) as the instrumental variable. For example, eGenes were
identified as functionally relevant by two-sided PSMR < 7E-04 (i.e., 0.05/71,
where 71 was the number of eGenes in moloc regions), while combining
with eGFR GWAS data from Wuttke et al. (28). We further performed the
HEIDI test to reject the hypothesis that the association detected by the SMR
test is due to linkage (not rejected by the HEIDI test at two-sided PHEIDI ≥
0.01) (Fig. 5B).

Data Access.Genotype data are available from https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs000524.v1.p1 with the dbGaP Study
accession no.: phs000524.v1.p1. The clinical records for CRIC samples are
available from https://clinicaltrials.gov/ct2/show/NCT00304148?term=CRIC+study.
The MWAS and mQTL data are available via the CRIC study and a searchable
public website https://zenodo.org/record/4148467#.X5ohRy1VZR0. Summary
data of eQTL in whole blood samples were available via GTEx Portal https://
gtexportal.org/home/.

Ethics Approval and Consent to Participate. The CRIC study protocol was ap-
proved by the institutional review boards at each of the primary sites and all
participants provided written informed consent. The specific human research
review committees included: 1) University of Pennsylvania Office of Regu-
latory Affairs, Philadelphia, PA; 2) The Johns Hopkins University School of
Medicine, Office of Human Subjects Research Institutional Review Boards,
Baltimore, MD; 3) University of Maryland Institutional Review Board, Balti-
more, MD; 4) Case Western Reserve University, University Hospitals, Case
Medical Center Institutional Review Board for Human Investigation, Cleve-
land, OH; 5) MetroHealth System Institutional Review Board, Cleveland,
OH; 6) Cleveland Clinic Foundation Institutional Review Board, Cleveland,
OH; 7) University of Michigan Medical School Institutional Review Board,
Ann Arbor, MI; 8) St. John Hospital and Medical Center Institutional Review
Board, Grosse PointeWoods, MI; 9) University of Illinois at Chicago Office of
the Protection of Research Subjects, Chicago, IL; 10) Tulane University
Health Science Center Human Research Protection Program Institutional
Review Boards, NewOrleans, LA; and 11) Kaiser Permanente of Permanente
of Northern California, Kaiser Foundation Research Institute Institutional
Review Board, Oakland, CA. All participants provided written informed
consent.

Consent for Publication. Consent for publication was obtained from the CRIC
Publication committee.

Data Availability. The raw genotype, methylation and clinical information
contain personally identifiable information. Therefore, they are available via
the following restricted access. Genotype data are available from https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000524.
v1.p1 with the dbGaP Study accession no.: phs000524.v1.p1. The clinical
records for CRIC samples are available from https://clinicaltrials.gov/ct2/show/
NCT00304148?term=CRIC+study. The MWAS and mQTL data are available
via the CRIC study and a searchable public website https://zenodo.org/
record/4148467#.X5ohRy1VZR0.
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