Skip to main content
. 2020 May 8;29(11):3113–3134. doi: 10.1177/0962280220920669

Table 1.

Description of simulation settings 1–6 and simulation results for n =20,000 based on 100 replicates: mean (SD) of misclassification rates and value functions.

Setting Functional form of interaction True optimal treatment Covariates type Method Misclassification Value
1 TreeΔ1(X)=4×I(X1>0.5)2Δ2(X)=2×I(X20.5) I(X3<0.25)1Δ3(X)=0 1 or 2 or 3 ContinuousX1,,X5 ∼ U{1,1} l1-PLS-HGL 0.101 (0.016) 1.226 (0.010)
l1-PLS-GL 0.094 (0.015) 1.229 (0.010)
ACWL 0.028 (0.040) 1.276 (0.023)
D-learning 0.100 (0.020) 1.226 (0.013)
BART 0.010 (0.004) 1.286 (0.003)
2 Linear Δ1(X)=3X12X2Δ2(X)=5X3X4+X51Δ3(X)=0 1 or 2 or 3 Continuous X1,,X5 ∼ U{1,1} l1-PLS-HGL 0.015 (0.004) 1.736 (0.003)
l1-PLS-GL 0.013 (0.004) 1.737 (0.003)
ACWL 0.171 (0.020) 1.662 (0.016)
D-learning 0.018 (0.005) 1.737 (0.004)
BART 0.056 (0.004) 1.730 (0.006)
3 NonlinearΔ1(X)=3X12exp(X2)Δ2(X)=X3X4Δ3(X)=0 1 or 2 or 3 Continuous X1,,X5 ∼ U{1,1} l1-PLS-HGL 0.566 (0.012) 1.089 (0.008)
l1-PLS-GL 0.565 (0.014) 1.088 (0.011)
ACWL 0.561 (0.016) 1.089 (0.009)
D-learning 0.572 (0.013) 1.087 (0.008)
BART 0.192 (0.038) 1.209 (0.010)
4 NonlinearΔ1(X)=3X12exp(X2)Δ2(X)=X33Δ3(X)=0 1 or 2 or 3 Continuous X1,,X5 ∼ U{1,1} l1-PLS-HGL 0.350 (0.011) 1.129 (0.004)
l1-PLS-GL 0.352 (0.010) 1.128 (0.004)
ACWL 0.362 (0.011) 1.118 (0.004)
D-learning 0.359 (0.016) 1.129 (0.004)
BART 0.163 (0.045) 1.220 (0.012)
5 NonlinearΔ1(X)=2{I(X1=1)+I(X1=2)}X21Δ2(X)=5I(X1=5)X32Δ3(X)=0 1 or 2 or 3 Continuous + binary+ categoricalX1 ∼  discrete uniform {1, 5}X2 ∼ Bern(0.5)X3,X4,X5 ∼ U{1,1} l1-PLS-HGL 0.077 (0.019) 1.101 (0.012)
l1-PLS-GL 0.078 (0.018) 1.101 (0.011)
ACWL 0.029 (0.028) 1.129 (0.016)
D-learning 0.090 (0.032) 1.094 (0.019)
BART 0.007 (0.005) 1.142 (0.002)
6 TreeΔ1(X)=I(X1>0.5)+2Δ2(X)=2×I(X20.5)I(X3<0.25)3Δ3(X)=0 1 Continuous X1,,X5 ∼ U{1,1} l1-PLS-HGL 0.000 (0.000) 2.093 (0.000)
l1-PLS-GL 0.000 (0.000) 2.093 (0.000)
ACWL 0.000 (0.000) 2.093 (0.000)
D-learning 0.000 (0.000) 2.093 (0.000)
BART 0.000 (0.000) 2.093 (0.000)

Note: Methods under comparison include the l1-penalized least squares with hierarchical group LASSO variable selection (l1-PLS-HGL), l1-penalized least squares with group LASSO variable selection (l1-PLS-GL), adaptive contrast weighted learning (ACWL), direct learning (D-learning), and Bayesian additive regression trees (BART). The smallest misclassification rates and the largest value functions for each setting are in bold.