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LRRC8 family proteins on the plasma membrane play a critical role in
cellular osmoregulation by forming volume-regulated anion channels
(VRACs) necessary to prevent necrotic cell death. We demonstrate that
intracellular LRRC8 proteins acting within lysosomes also play an es-
sential role in cellular osmoregulation. LRRC8 proteins on lysosome
membranes generate large lysosomal volume-regulated anion channel
(Lyso-VRAC) currents in response to low cytoplasmic ionic strength
conditions. When a double-leucine L706L707 motif at the C terminus
of LRRC8A was mutated to alanines, normal plasma membrane VRAC
currents were still observed, but Lyso-VRAC currents were absent. We
used this targeting mutant, as well as pharmacological tools, to dem-
onstrate that Lyso-VRAC currents are necessary for the formation of
large lysosome-derived vacuoles, which store and then expel excess
water to maintain cytosolic water homeostasis. Thus, Lyso-VRACs al-
low lysosomes of mammalian cells to act as the cell`s “bladder.”When
Lyso-VRAC current was selectively eliminated, the extent of necrotic
cell death to sustained stress was greatly increased, not only in re-
sponse to hypoosmotic stress, but also to hypoxic and hypothermic
stresses. Thus Lyso-VRACs play an essential role in enabling cells to
mount successful homeostatic responses to multiple stressors.

lysosome | osmoregulation | chloride channel | vacuolation | exocytosis

Afundamental aspect of cell physiology is that, when the ex-
tracellular osmolarity is raised or lowered from the normal

level, water flows across the plasma membrane. This results in
rapid changes in cell volume and would disrupt plasma membrane
integrity and lead to cell death if compensatory mechanisms were
not rapidly activated (1, 2). In mammals, organismal level mech-
anisms regulating salt and water balance ensure that most cell types
probably never encounter large osmotic gradients like those fre-
quently encountered by the cells lining the digestive tract and the
collecting tubules of the kidney (3), but, nonetheless, cells from
most or all tissues of mammals display rapid adaptations to both
hypo- and hyperosmotic challenges (1, 2).
Cellular osmoregulation is pivotal for maintaining intracellular

water homeostasis, cell volume, and membrane integrity under
osmotic challenges (2, 4, 5). In circumstances of hyperosmolarity,
water leaves the cell, leading to an excess of plasma membrane
which has to be internalized to allow cellular volume shrinkage (6).
Hypoosmolarity elicits a complementary process leading to cellular
volume expansion. Excess membrane lipids stored in protrusions
and invaginations, such as microvilli and caveolae, are used to
successfully deal with the immediate volume increase in animal
cells (6, 7). If hypoosmotic conditions persist after the folded area
is used up, the insertion of intracellular membrane materials to the
plasma membrane via exocytosis is required for cell surface tension

reduction (8, 9). Additionally, in epithelial cells of the kidney, when
luminal water in the collecting duct rushes through aquaporin
channels on the apical membrane, intracellular giant vacuoles de-
rived from endocytotic compartments are essential for cell osmo-
regulation (10, 11). These intracellular membrane trafficking and
cytoplasmic structure changes under osmotic stress suggest that a
contribution of intracellular organelles to cellular osmoregulation
may exist (10). The lysosome has been referred to as the “os-
mometer” of mammalian cells (12) because it responds to the
osmotic pressure (13), and lysosomes may be a source of intra-
cellular lipids that are added to the plasma membrane under hy-
potonic condition (8, 9). However, the cellular and molecular basis
of intracellular osmoregulatory mechanisms is poorly understood.
Volume-regulated anion channels (VRACs), which are com-

posed of LRRC8 family proteins (LRRC8A to -E) assembled as
hexamers, have been demonstrated to play an essential role in
cellular osmoregulation (5, 14–16). Studies deleting and then
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reexpressing the various LRRC8 genes indicate that detectable
levels of VRAC channel function on the plasma membrane re-
quire LRRC8A (Swell1) and at least one other subunit, that the
properties of the channels vary depending on whether the part-
ner is LRRC8B, -C, -D, or -E, and that LRRC8A expressed
alone at very high levels can form functional channels (15–17).

We used stimulated emission depletion (STED) microscopy
and electrophysiological recordings from giant vacuoles to
demonstrate that there is a substantial amount of expression of
LRRC8 family members on lysosome membranes, and that these
proteins form functional lysosomal volume-regulated anion
channels (Lyso-VRACs). By genetically and pharmacologically
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Fig. 1. Hypotonicity induces lysosome vacuolation and induces a chloride current in vacuoles. (A) Responses of Cos1, Hap1, and HeLa cells to a hypotonic
challenge. Thirty minutes prior to data collection, the complete medium was replaced with fresh complete medium (Isotonicity, 300 mOsm) or the test
medium (Hypotonicity, 170 mOsm). The photomicrographs show phase contrast images with examples of the vacuoles (bright white spots) commonly ob-
served in cells exposed to hypotonic solutions. Also see Movie S1. The Lower quantifies data from many similar images with the parameter “Vacuolated Cell
(%),” indicating the proportion of cells with at least one vacuole. In all panels with asterisks * is P < 0.05. ** is P < 0.01. *** is P < 0.001. (B) Each group of
images shows cells studied after 0.5 h in either 300 mOsm (Upper) or 170 mOsm (Lower) medium. Each panel shows superimposed DIC (differential inter-
ference contrast) and fluorescence images. The red signal is LAMP1-mCherry driven by transient transfection, and the green signal is Dextran-Green loaded
into the cell by endocytosis. The graph to the Right of each panel shows the fluorescence intensity of a line scan (blue line on the blown-up image) through
the double labeled object indicated by the white arrow. (C) Images demonstrating the whole-endolysosome (whole-EL) patch-clamp configuration being
achieved on a vacuolated lysosome that had been induced by hypotonic (80 mOsm) challenge. Note that approximately half the cell had been torn away to
make the vacuole accessible for recording. See also SI Appendix, Fig. S2A. (D and E) Representative currents on vacuoles of Cos1 cells induced by exposure to
80 mOsm solution. The difference between the currents in 320 mOsm cytosolic solution and 80 mOsm cytosolic solution is defined as Lyso-VRAC. The currents
in D were elicited by 200-ms ramps from −120 mV to +120 mV with the membrane potential (Vm) at each time point indicated on the x axis. The currents in E
were elicited by voltage steps using the protocol shown to the right of the current traces. The dashed line indicates 0 pA. (F) The time course of cytosolic ionic
strength effects on Lyso-VRAC currents at ±120 mV obtained from traces like those illustrated in G. (G) Representative I-V (current-voltage) traces from
vacuoles of Cos1 cells treated with vacuolin in response to various cytosol-side solutions (Basal, 140 mM K-Gluconate, 290 mOsm; Γi 40, 40 mM CsCl, 290 mOsm;
Γi 140, 140 mM CsCl, 290 mOsm). (H) Intracellular ionic strength (Γi) dependence of Lyso-VRAC. (I) Reversal potential of the Lyso-VRAC current was dependent
on [Cl−]Lumen. The slope of the line fit to the data was −46.1 ± 0.5 mV per 10-fold concentration change. (J) ILyso-VRAC induced by Γi 40 in additional cell types. In
addition to Cos1, HeLa, and Hap1 cells, the cell types shown are Hap1 cells in which the endogenous LRRC8A gene was replaced with a sequence encoding an
LRRC8A-GFP fusion protein (GFP-KI Hap1), HEK293T, human breast cancer cells (MDA231), mouse embryonic fibroblasts (MEF), and WT mouse bone marrow
macrophages (BMM). For all panels showing averaged data, n > 6 and Student’s t tests were used to determine statistical significance. pA, picoamperes; pF,
picofarads.
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selective manipulation of Lyso-VRAC activity, we demonstrate
that both plasma membrane VRACs (PM-VRACs) and Lyso-
VRACs are required to prevent necrotic cell death following
hypoosmotic stress. Furthermore, Lyso-VRACs are also re-
quired to successfully respond to two other stresses that can lead
to necrotic cell death.

Results
Lysosomes Are Highly Osmosensitive Organelles in Many Types of
Mammalian Cells. Our initial studies of lysosomal responses to a
hypoosmotic challenge focused on Cos1 cells (an epithelial cell
line derived from the kidney of an African green monkey) be-
cause, in the kidney, the luminal osmolarity can range widely, from
50 milliosmolar (mOsm) to 1,200 mOsm, depending on the hy-
dration state of the individual (18). Consistent with previous
studies (10, 11, 19), Cos1 cells exposed to a physiologically rele-
vant hypoosmotic challenge (170 mOsm rather than the normal
300 mOsm) demonstrated extensive cytoplasmic vacuolation
30 min after the solution change (Fig. 1A). Similar responses in
about the same proportion of cells were observed in Hap1 cells (a
leukemia-derived cell line) and HeLa cells (a cervical epithelial-
derived cell line). Thus cytoplasmic vacuolation in response to
hypotonicity is not limited to those mammalian cell types most
likely to encounter large osmotic gradients in an intact animal.
In Hap1 and HeLa cells, the large cytoplasmic vacuoles ob-

served under hypotonic stress contained markers for late endo-
somes and lysosomes, including lysosomal associated membrane
protein 1 (LAMP1) (SI Appendix, Fig. S1 A and B), Rab7 (SI
Appendix, Fig. S1C), Dextran-Green (an endocytic marker that
reaches lysosomes at steady state) (SI Appendix, Fig. S1D), or
LysoTracker (a lysosomal pH indicator) (SI Appendix, Fig. S1D)
(20, 21). In contrast, most insult-induced vacuoles were not
immunopositive for an early endosomal marker (EEA1) (SI
Appendix, Fig. S1E), nor for markers of endoplasmic reticulum
(ER) or mitochondria, suggesting that late endosomes and ly-
sosomes (referred to as lysosomes for simplicity hereafter) are
likely the primary vacuolar membrane source.
A super resolution fluorescence imaging assay was used to

quantify the volume of lysosomes and vacuoles in both Hap1 cells
and HeLa cells as a function of osmotic strength (Fig. 1B, SI Ap-
pendix, Fig. S1F, and Movie S1). The principle of the assay is that
Dextran-Green is trapped in the lumen of lysosomes and endo-
somes (22, 23), and LAMP1-mCherry fluorescence allows one to
identify lysosomes (20) so, for each green object surrounded by red
fluorescence, the length of the green region (or the distance be-
tween the two peaks of red fluorescence that surround it) is the
diameter of the object. Thus, we can estimate lysosomal volume by

treating each object as a sphere with Volume =4
3 *pip(Distance2 )3. At

300 mOsm, the diameter of all lysosomes was small, but, as the
osmolarity was decreased from the control level to 220 or 170
mOsm, the diameter of some lysosomes enlarged to over 2 μm
while others remained much smaller (Fig. 1B and SI Appendix, Fig.
S1F). As compared to 300 mOsm solution (mean volume 0.006 ±
0.003 μm3), the average volume of lysosomes increased about
fivefold at 220 mOsm (0.031 ± 0.011 μm3) and more than 100-fold
at 170 mOsm (0.705 ± 0.135 μm3) (SI Appendix, Fig. S1G). In
contrast, early endosomes were not enlarged by exposure to the
170-mOsm solution (SI Appendix, Fig. S1H). Large vacuoles
without green dextran labeling were occasionally observed (one
example is present on the left side of the cell at 170 mOsm il-
lustrated in Fig. 1B), but these represented only 4.7% of all vac-
uoles. These vacuoles without green fluorescence appeared to
have a rim of LAMP1 staining, but, without the Dextran-Green
labeling to cleanly define that the LAMP1 was on the vacuole
membrane, we could not confirm that they were of lysosomal
origin. Nevertheless, we conclude that at least 95% and probably

all giant cytoplasmic vacuoles of mammalian cells observed fol-
lowing hypoosmotic challenge are enlarged lysosomes.

Lysosome-Derived Vacuoles Express Chloride Channels Gated by Low
Ionic Strength. The plasma membranes of many mammalian cell
types express ion channels that respond to changes in the os-
motic strength of the bathing medium. We used whole-
endolysosome (whole-EL) patch-clamp recording (Fig. 1C and
SI Appendix, Fig. S2A) to test whether osmolarity-sensitive ion
channels were present on vacuolated lysosome membranes.
Vacuoles were produced by exposing Cos1 cells to 80 mOsm
solution. Whole-EL recordings were then established in the same
solution, and the current–voltage relation was determined by the
responses to voltage ramps from -120 mV to +120 mV. Large
outwardly rectifying currents were observed at positive mem-
brane potentials and were greatly decreased by transferring to
320 mOsm, or exposure to DCPIB, a small molecule usually used
as a pharmacological tool for ion channel studies, including
VRAC (24, 25) (Fig. 1D). Responses to voltage steps showed
there was relatively little voltage-dependent activation or deac-
tivation to the currents present in the 80-mOsm solution
(Fig. 1E). Because the activation mechanism of the plasma
membrane osmotic-sensitive channel VRAC is controversial,
with both cytosolic low ionic strength (14, 17, 26) and extracel-
lular hypotonicity (15, 16) suggested to be the relevant signal, we
tested solutions of a variety of osmolarities and ionic strengths
(Γ) in both the intracellular/cytosolic/bath and luminal/pipette
solutions. We concluded that reduced intracellular ionic strength
(Γi) is likely to be the primary stimulus causing dose-dependent
activation of current (SI Appendix, Fig. S2B and Supplemental
Discussion). Recordings from vacuoles enlarged by chemical
treatment with vacuolin-1 (27) (Fig. 1 F and G) or by over-
expression of TMEM106B-GFP (28) (SI Appendix, Fig. S2C)
also showed outwardly rectifying currents that were very small at
Γi 140 and greatly increased at Γi 40. Following a change in cy-
tosolic ionic strength, it required several minutes until the cur-
rents induced by the change reached their peak amplitude
(Fig. 1F), which was dependent on the cytosolic ionic strength
(Fig. 1H).
With our standard recording solutions, the ionic strength-

sensitive current of the lysosome had a reversal potential (Erev)
of −31.8 ± 1.6 mV (Fig. 1I and SI Appendix, Fig. S2C), close to
the equilibrium potential for Cl− (calculated Erev = −32.2 mV
based on [Cl−]Lumen = 140 mM and [Cl−]Cytosol = 40 mM). Re-
moval of Na+ or K+ from the luminal/pipette or cytosolic/bath
solution did not affect the ionic strength-sensitive current (SI
Appendix, Fig. S2D) nor did changing the pH between 4.6 and 7.2
(SI Appendix, Fig. S2E) whereas changing [Cl−]Lumen resulted in
Nernstian shifts in Erev (Fig. 1I). Other anions, including NO3

−,
HCO3

−, acetate−, aspartate−, and glutamate− were also perme-
able (PX/PCl = 0.2∼2) (SI Appendix, Fig. S2F). We therefore
refer to the channel carrying this current as the Lyso-VRAC.
Three compounds known to inhibit PM-VRACs (DCPIB, CBX,
and R(+)-IAA94) (25, 29) also inhibited Lyso-VRACs (Fig. 1D
and SI Appendix, Fig. S3).
Lyso-VRAC currents were present in vacuoles from all cell

types that we investigated, including Cos1, Hap1, Hap1–KI GFP,
HEK293T, human breast cancer cells (MDA231), primary
mouse embryonic fibroblasts (MEFs), and bone marrow mac-
rophages (BMMs) (Fig. 1J). In sharp contrast, when recordings
were made from enlarged early endosome membranes, no Lyso-
VRAC–like current was detected (SI Appendix, Fig. S2G).

The Lyso-VRAC Current Is Mediated by LRRC8 Proteins. LRRC8A
codes for an essential subunit of the PM-VRAC. Because of the
great similarity between the electrophysiological and pharma-
cological properties of Lyso-VRAC and PM-VRAC, we tested
whether LRRC8A is also an essential subunit of Lyso-VRAC by
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making LRRC8A knockout (8A KO) cell lines in both Hap1 and
HeLa cells using the CRISPR-Cas9 system (30) (SI Appendix,
Fig. S4 A and B). Γi 40 solutions failed to induce any current in
8A KO Hap1 cells (Fig. 2A), 8A KO HeLa cells (SI Appendix,
Fig. S4 C and E), or in bone marrow cells from ebo/ebo mice (SI
Appendix, Fig. S4 D and E), which have a frameshift mutation
(31) in exon 3 of the LRRC8A gene. PM-VRAC current was
rescued by 8A-mCherry transfection (SI Appendix, Fig. S2F), but
Lyso-VRAC was not (SI Appendix, Fig. S4G). Lyso-VRAC is
highly permeable to aspartate− (SI Appendix, Fig. S2F), a prop-
erty that requires either LRRC8D or -E in PM-VRAC (29, 32),
and so we tested if these subunits contribute to Lyso-VRAC
currents. Lyso-VRAC currents were restored in 8A KO Hap1
cells by coexpression of 8A-mCherry and 8E-GFP (Fig. 2 B and
C and SI Appendix, Fig. S4H) or 8A-mCherry and 8D-GFP (SI
Appendix, Fig. S4I). To keep the total number of experiments
manageable, we focused all remaining experiments on the 8A
plus 8E combination.

To determine the intracellular localization of LRRC8 family
proteins, we examined the location of LRRC8A and LRRC8E
using Western blots of proteins isolated from cell fractions
enriched in lysosomes and imaging of fluorescent fusion pro-
teins. To explore the localization of LRRC8A at normal ex-
pression levels, we made knock-in Hap1 cells (GFP-KI) so that
expression of the fusion protein was controlled by the endoge-
nous LRRC8A promoter. Western blot analysis of lysosomes
isolated by gradient-based centrifugation or immunoisolation
(33) demonstrated that these organelles were enriched for en-
dogenous (Fig. 2D) and overexpressed LRRC8A proteins (SI
Appendix, Fig. S5A).
When LRRC8A-GFP knock-in cells were exposed to solutions

of normal osmotic strength (300 mOsm), there was fluorescence
on the plasma membrane and brighter fluorescence localized to
intracellular puncta which primarily colocalized with LAMP1
(Fig. 2E) and barely any colocalization with early endosome
markers (SI Appendix, Fig. S5B). Thus intracellular LRRC8A is
associated mainly with lysosomes. In cells transiently transfected
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so that a fusion protein of LRRC8A-mCherry was expressed at
high levels, imaging demonstrated abundant labeling on both the
plasma membrane and on lysosomal membranes (SI Appendix,
Fig. S5C). When wild-type (WT) LRRC8E fused to a fluorescent
protein was overexpressed, very little fluorescence was localized
to the lysosome (SI Appendix, Fig. S5D), with most fluorescence
localized to the ER (SI Appendix, Fig. S5E). However, when both
LRRC8A and LRRC8E fusion proteins were coexpressed at
high levels, intracellular LRRC8E as well as intracellular
LRRC8A localized mostly to lysosomes (Fig. 2F). In these ex-
periments, the colocalization of the two LRRC8 proteins was
extensive. Unlike membrane proteins targeted to lysosomes for
degradation, which are expected to be localized to intraluminal
vesicles (20), after hypotonic challenge, almost all of the intra-
cellular LRRC8A and LRRC8E signal was localized to the pe-
rimeter membranes of the lysosome-derived large vacuoles (SI
Appendix, Fig. S5F). Thus, the distribution of LRRC8 proteins
on vacuoles is consistent with the large Lyso-VRAC currents
recorded from vacuole membranes.

Lyso-VRAC Requires a Double-Leucine Motif of LRRC8A. Like many
lysosomal membrane proteins that use an AP-2–dependent in-
ternalization route for lysosomal targeting (20), LRRC8A con-
tains two double-leucine (LL) motifs near the intracellular C
terminus. Mislocalization of other lysosomal membrane proteins
with their LL domains deleted is known to be due to impaired
internalization and also a secondary block of anterograde traf-
ficking (34). Mutation of the L706L707 motif to alanines (Fig. 3A)
was sufficient to abolish lysosomal localization of transfected
LRRC8A, and the mutant protein was instead found on the
plasma membrane and in the ER (SI Appendix, Fig. S5G).
However, unlike coexpression with wild-type subunits, high level
coexpression of 8AL706A,L707A-mCh and wild-type LRRC8E-
GFP gave very little lysosomal expression of either (Fig. 3B).
Although the subunit stoichiometry of Lyso-VRAC in native
lysosomes is not yet known, these results suggest that LRRC8A
is required for other LRRC8 proteins to reach lysosomes.
Consistent with the imaging data, cotransfection of 8AL706A, L707A-

mCherry and 8E-GFP failed to produce Lyso-VRAC in 8A KO
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Hap1 cells (Fig. 3 C and D). Therefore, lysosome-targeted
LRRC8A and at least one of the other LRRC8 proteins are re-
quired for the Lyso-VRAC current. However, the PM-VRAC
current was fully restored in 8A KO Hap1 cells by coexpression of
8E-GFP together with either LRRC8A or 8AL706A, L707A-
mCherry (Fig. 3 E–I). Hence, there are distinct trafficking
mechanisms that regulate the expression of Lyso-VRAC versus
PM-VRAC, suggesting that the biological roles of Lyso-VRAC
and PM-VRAC can be distinguished. In summary, 8A KO cells
coexpressing 8AL706A, L707A-mCherry and 8E-GFP are essentially
PM-VRAC (+) but Lyso-VRAC (−) cells.

Lyso-VRAC Plays a Critical Role in Lysosome Vacuolation. 8A KO
Hap1 and HeLa cells did not become vacuolated under hypo-
osmotic challenge (Fig. 4A), nor did BMM cells from ebo/ebo
mice (SI Appendix, Fig. S6A), but lysosomal vacuolation
remained normal when several other lysosomal channels were
knocked out (Fig. 4A). It should be noted that 8A KO cells swell
dramatically when given a hypotonic challenge, and, when they
are adherent and tightly packed, most of their expansion is up
from the surface of the dish (Movie S2). However, the 8A KO
did not prevent lysosomal vacuolation caused by vacuolin-1 (27)
or the vacuolating cytotoxin VacA (35) (SI Appendix, Fig. S6B).
The ability to selectively rescue VRAC expression in 8A KO cells

only on the plasma membrane (by coexpressing 8AL706A, L707A and
8E) or on the plasma membrane and in lysosomes (by coexpressing
WT 8A and 8E) allowed us to test the relative biological impor-
tance of PM-VRAC and Lyso-VRAC. In response to a hypotonic
challenge, cells expressing VRAC only on the plasma membrane
were incapable of expanding the volume of their lysosomes
(Fig. 4B) and incapable of forming giant vacuoles (Fig. 4C). In
contrast, expressing VRAC on both the plasma membrane and
lysosome membranes completely restored the ability to expand the
volume of lysosomes and nearly completely restored the ability to
form giant vacuoles.
DCPIB at 20 μM completely blocked both Lyso-VRAC and

PM-VRAC current (SI Appendix, Fig. S6 C and F). In DCPIB-
treated WT cells, no lysosomal volume increase or vacuolation in
response to hypoosmotic challenge was observed (Fig. 4 D and
E). Thus, channel function of VRAC somewhere in the cell is
essential for lysosome vacuolation under hypoosmotic challenge.
The critical location was revealed by use of the VRAC inhibitor
NS3728, which is negatively charged (36) and membrane im-
permeable (37). NS3728 completely inhibited PM-VRAC
(studied with whole-cell recording) at all membrane potentials
when present at 10 μM in the extracellular solution and absent
from the pipette solution (SI Appendix, Fig. S6 D and F). How-
ever, when the same concentration of NS3728 was present in the
solution bathing the exposed cytosolic face of vacuoles (studied
with whole lysosome recording), there was no detectable inhi-
bition of Lyso-VRAC at negative membrane potentials and <10%
inhibition at the most positive potential studied (SI Appendix, Fig.
S6 E and F). A likely reason for the failure of NS3728 to inhibit
Lyso-VRAC but potently inhibit PM-VRAC is that the NS3728
binding site is on the luminal surface, which is facing extracellular
for PM-VRAC (37), but hidden behind two membranes for Lyso-
VRAC (Discussion). NS3728 was therefore a powerful pharma-
cological tool to create PM-VRAC (–) but Lyso-VRAC (+) cells
for further dissection of the role of Lyso-VRAC in lysosome
vacuolation. In Hap1 cells treated with NS3728 (30 μM for 2 h),
lysosome vacuolation was not diminished (Fig. 4D) so PM-VRAC,
which is blocked by NS3728 is not required for this process. We
infer that DCPIB must be blocking vacuolation by acting on Lyso-
VRAC so activation of Lyso-VRAC is necessary for lysosome
vacuolation under hypoosmotic stress.
We also identified an additional manipulation that prevented

vacuolation to hypotonic stress. A key feature of lysosomal
physiology is the highly acidic lumen (20), which is required for

many lysosome functions and is produced by the activity of a
V-ATPase that can be inhibited by Bafilomycin A1 (Baf-A1)
(38). When Baf-A1was present, prolonged treatment with a
170-mOsm solution produced no vacuolation in either Hap1 or
HeLa cells (SI Appendix, Fig. S7).

Lysosomes Maintain Intracellular Water Homeostasis. Under hypo-
osmotic challenge, H2O influx mediated by aquaporins on the
plasma membrane has been reported to reduce the osmolarity
and ionic strength of the cytosol (39). Exposure to 50 μM Hg2+,
which blocks aquaporin activity, eliminated hypotonicity-induced
volume increases (SI Appendix, Fig. S8A) and lysosomal vacuo-
lation in Hap1 cells (Fig. 5A). Therefore low expression or ac-
tivity of aquaporin on a subset of cells might explain why some
cells failed to become vacuolated in response to hypotonicity
over the time course of our other experiments. Furthermore,
high expression of aquaporin should rapidly bring the intracel-
lular ionic strength into the range that we showed activates Lyso-
VRAC. A fluorescence assay was used to investigate water flow
across the lysosomal membrane. Lysosomes within intact cells
were loaded with Lucifer yellow dextran (LY-Dextran), which
displays enhanced fluorescence in the presence of deuterated
water (D2O) (40). Hypoosmotic challenge with D2O quickly
augmented the fluorescence intensity (Fig. 5B and Movie S3),
indicating that there is substantial water flux into the lumen of
lysosomes from the cytosol soon after water penetration across
the plasma membrane. Time-lapse video observations of
vacuolin-1 enlarged lysosomes released from cells by microdis-
section demonstrated that, within a few minutes of exposure to
170 mOsm solution, they “swell,” “blur,” and eventually have
their membranes rupture (SI Appendix, Fig. S8B). Measurement
of alkaline phosphatase released into the medium from purified
lysosomes suggests that, under cell-free conditions, Lyso-VRAC
enhances lysosome lysis since the amount of activity released was
substantially decreased when lysosomes from WT cells were
treated with DCPIB or the lysosomes came from 8A KO cells (SI
Appendix, Fig. S8C). Selective sequestration of intracellular wa-
ter into vacuolated lysosomes would not reduce cytoplasm vol-
ume (the total volume enclosed by the plasma membrane) but
would effectively reduce cytosol volume (the parts of the cyto-
plasm that are not enclosed by organelle membranes) and so
help restore the optimal physiological concentrations of proteins
and metabolites and contribute to maintaining the health of the
cell (SI Appendix, Fig. S8D).
As a consequence of the water influx across the plasma

membrane during hypotonic challenge, cell volume initially in-
creases dramatically (Fig. 5 C–E). Based on published calibra-
tion curves for the assay we used (42, 43), the increase to 125%
of the basal fluorescence at the peak of the response indicates
that the cell volume increased nearly threefold and so presum-
ably dropped the intracellular ionic strength from Γ140 to about
one-third its normal level, which can activate substantial Lyso-
VRAC current (Fig. 1H). In WT HeLa and Hap1 cells, volume
begins to return toward normal after about 15 to 20 min. This
regulatory volume decrease (RVD) was prevented in WT cells by
DCPIB (Fig. 5C), which blocks both PM-VRAC and Lyso-
VRAC, and was absent in HeLa and Hap1 8A KO cells that
lack both PM-VRAC and Lyso-VRAC (Fig. 5 C–E). RVD was
largely restored in 8A KO cells by coexpressing LRRC8A and
LRRC8E, which rescues both PM-VRAC and Lyso-VRAC
(Fig. 5D). A treatment that rescued only PM-VRAC in 8A KO
cells (the combination of 8AL706A, L707A and 8E) did not restore
RVD (Fig. 5D), indicating that vacuolar LRRC8 proteins are
necessary for RVD (SI Appendix, Fig. S8D). Conversely, NS3728
treatment, which blocks only PM-VRAC, also prevented RVD
(Fig. 5E), indicating that plasma membrane LRRC8s are also
necessary for RVD. Taken together, these experiments thus dem-
onstrate a dual requirement for both PM-VRAC and Lyso-VRAC.
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(B and C) Sample images (Left) and quantitative analysis (Right) of lysosomal volume expansion (B) and lysosome vacuolation (C) under hypotonic stress in 8A
KO HeLa cells that were dually transfected with 8E-BFP + 8A-mCherry or 8AL706A,L707A-mCherry. (D) Differential effects of NS3728 (30 μM; membrane-im-
permeable) and DCPIB (100 μM, membrane-permeable) VRAC inhibitors on hypotonicity-induced vacuolation in WT and 8A KO Hap1 cells. (E) Effect of 100
μM DCPIB and LRRC8A knock out on lysosomal volume. In all bar graphs, data points were collected from more than six independent experiments, and
Student`s t test was used to determine significance.
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RVD could also be suppressed in WT cells by two V-ATPase in-
hibitors (Baf-A1 and Concanamycin A) (Fig. 5 C and E). Chemi-
cally induced lysosome vacuolation by vacuolin-1 did not restore
RVD in 8A KO cells, even when PM-VRAC activity was restored
by expressing 8AL706A,L707A (SI Appendix, Fig. S8 E and F).
Water entering lysosomes and enlarging them into vacuoles

might help restore the normal ionic strength and osmolarity of
the cytosol but would not relieve the plasma membrane tension
stress. Previous studies had demonstrated that intracellular
membrane exocytosis occurs in response to hypoosmotic stress
(8, 9). By making time-lapse video observations of Cos1 cells
expressing fluorescent LAMP1, we demonstrated that lysosome-
derived giant vacuoles underwent exocytosis (Fig. 5F and Movie
S4). Another consequence of lysosome exocytosis was a greatly
increased abundance of LAMP1 on the plasma membrane
(Fig. 5G). Thus, just as the mammalian bladder fills with wastes
from the kidney and then discharges the waste and any excess
water to the outside of the animal, lysosomes serve as the cell`s
“bladder,” sequestering intracellular excess water through vacu-
olation and then expelling the potentially toxic level of water
through exocytosis, which also relieves the plasma membrane
tension stress.

Lyso-VRACs Protect Cells from Necrotic Cell Death in Response to
Multiple Types of Physiological Stress. Vacuolization followed by
exocytosis and RVD occurs within an hour of exposure to hy-
potonic stress. However, when cells encounter a sustained stress,
substantial necrotic cell death resulted, whether assessed by
propidium iodide (PI) staining or by lactate dehydrogenase
(LDH) release into the medium. The imaging-based assay
(Fig. 6A) also showed that becoming vacuolated is highly cor-
related with survival. Under the tested conditions (80 mOsm
solution for 1 h), only 0.4% of the cells that were vacuolated died
(i.e., became PI positive), but 46.9% of the non-vacuolated cells
died (N> 600 randomly selected cells from six independent ex-
periments). Lyso-VRAC plays an important role in survival un-
der these conditions because the survival index calculated from
LDH activity release was much lower in LRRC8A KO cells, and
survival was restored to close to WT levels when 8A KO cells
were cotransfected with 8A plus 8E, but not with 8AL706A,L707A

plus 8E (Fig. 6B).
We also tested the importance of Lyso-VRAC for successful

responses to two other stresses capable of causing necrotic cell
death: hypoxia and hypothermia. As was the case for hypotonic
stress, the propidium iodide assay showed that the survival of
nonvacuolated cells in response to these stresses (29.1% death
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Fig. 5. Lysosomes store and expel intracellular water to regulate cytosolic RVD. (A) Representative images (Left) and quantitation (Right) of effects of 50 μM
HgCl2 (an aquaporin inhibitor) on lysosome vacuolation induced by hypotonicity. *** is P < 0.001. (B) Fluorescence of Lucifer yellow dextran (LY-Dx, yellow)
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for hypoxic stress and 38.6% death for hypothermic stress) was
much worse than the survival (<0.5% death) of cells that had
vacuoles visible (Fig. 6 C and E) (more than 600 cells were ex-
amined from six independent experiments.). Cotransfection of
LRRC8A KO cells with LRRC8E plus LRRC8A resulted in
significantly more survival than cotransfection with LRRC8E
plus 8AL706A,L707A for both stresses so Lyso-VRAC enhances
survival to these stresses as well (Fig. 6 D and F). However,
NS3728, which does not inhibit Lyso-VRAC but does inhibit
PM-VRAC, results in a level of cell death to 80 mOsm solution
similar to the amount observed in the LRRC8A KO (SI Ap-
pendix, Fig. S9A) so VRACs are needed at both locations to
stave off cell death to this intensity of hypoosmotic stress.
Acute treatment with 5 μM Baf-A1 prevented vacuolation in

response to hypoosmotic stress, but prolonged treatment with
Baf-A1 had no effect on Hap1 cell survival when these cells were
maintained under control osmotic conditions (SI Appendix, Fig.
S9 B–F). However, Baf-A1 greatly increased the extent of ne-
crotic cell death caused by hypoosmotic stress (SI Appendix, Fig.
S9 B–D), hypoxic stress (SI Appendix, Fig. S9E), or hypothermic
stress (SI Appendix, Fig. S9F). A final feature shared by necrotic
cell death induced by hypotonicity, hypoxia, and hypothermia is

that all required functional synaptotagmin-VII to protect against
the stress. The evidence for this conclusion is that transfection with
a dominant negative Synt-VII construct, which has no effect on the
survival of cells under normal conditions, leads to cell death as
severe as the 8A knockout when cells are subjected to each of these
stresses (SI Appendix, Fig. S10 A–C). This requirement for Synt-VII
is likely because it is required for lysosome exocytosis (20).

Discussion
In an intact animal, the bladder stores and expels urine. We
provide compelling evidence that, in individual cells, lysosomes
play a critical role in alleviating the intracellular water crisis
caused by hypotonic stress by acting as the cell`s “bladder.”
Lysosomes sequester water, an action that will help to restore the
optimal physiological concentrations of proteins and metabo-
lites. Lysosome-derived vacuoles then fuse with the plasma
membrane, an action that by expelling water helps restore the
cell volume to its original size. According to the “square-cube
law,” volume increases in proportion to the cube of the diameter,
but surface area only increases in proportion to the square of the
diameter. Thus, by placing the amount of membrane surface area
that is present in a very large number of lysosomes into a much
smaller number of large vacuoles, a huge increase in luminal
volume becomes available for water storage. Lysosomal exocytosis
also delivers more materials to the plasma membrane, both lipids
and lysosome resident proteins. This will substantially relieve
membrane tension stress and allow larger PM-VRAC currents
than the channels originally located there could produce (Fig. 7).
We demonstrated that Lyso-VRAC, but not PM-VRAC, is

essential for lysosomal vacuolation, but both are required to
ultimately allow the cell to survive. However, other stressors also
produce vacuoles, and cell survival is much greater with func-
tional Lyso-VRAC so its role may not be limited to cellular os-
moregulation. It is not yet clear why VRACs at two locations are
necessary for successful RVD and cell survival, but one appeal-
ing idea is that the processes they regulate are in series so, if
either fails, osmoregulation fails. Testing this idea requires the
ability to have temporal control over when each VRAC is active,
but at present this is only possible for PM-VRAC.
As far as the relationship between the opening of Lyso-

VRACs, lysosomal swelling, and vacuolation, it seems unlikely
that chloride flowing down its electrochemical gradient is the
direct cause because estimates of the lysosome membrane po-
tential and chloride gradient (21, 44–46) suggest that, when
Lyso-VRAC channels open, chloride flows from the lysosome
into the cytosol, which would lessen the osmotic force driving
water into the lysosome, not increase it. One factor that could
play a role is that Lyso-VRAC channels are permeable to mul-
tiple organic anions (SI Appendix, Fig. S2F) so one that is nor-
mally absent from lysosomes but present in the cytosol could
enter the lysosome when Lyso-VRACs open, drawing some
water after it. However, once this anion’s concentration equili-
brated with the cytosol concentration, water movement due to
this effect would cease so, to produce enough water movement
to produce substantial osmotic swelling, the normal concentra-
tion of this ion in the cytosol would have to be very high.
Therefore, another possibility needs to be considered. VRACs
are suspected to be directly permeable to water as well as anions
(47). Perhaps, in the basal state, the water permeability of lyso-
somes is very low (moving only through the lipid bilayer), and the
majority of osmotically active lysosome constituents are meta-
bolic breakdown products that are also membrane impermeable.
In this scenario, under hypoosmotic conditions, as water flows
across the plasma membrane, the cytosol begins to dilute as the
cell volume increases, but, for a while, lysosome volume is un-
changed because rapid water flux is not possible. When the cy-
tosol ionic strength has fallen sufficiently to open Lyso-VRAC
channels, water can rapidly flow into the lysosome, but most of
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survival assayed by measuring extracellular LDH activity for samples from the
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treatment with distilled water (which caused all cells to die). The survival
index was then calculated as 100%-relative LDH activity.
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the osmotically active constituents cannot flow out so swelling
occurs until the luminal osmotic strength matches the diluted
cytosol. Consistent with the idea that Lyso-VRAC regulates
water permeation as well as ion permeation, isolated WT lyso-
somes lyse much more rapidly in response to hypotonic solution
(which would open Lyso-VRAC channels) than lysosomes from
Lyso-VRAC–deficient cells. This demonstrates that Lyso-VRAC
directly or indirectly controls water flux across the lysosomal
membrane without the need for any factors normally present in
the cytosol. Furthermore, this mechanism would explain why
vacuolation can occur when PM-VRACs are blocked with
NS3728 as water influx across the plasma membrane appears to
be meditated by aquaporins, not by VRACs.
It is well known that lysosomes are the cell’s center for

degrading macromolecules. The amino acids and sugars produced
by this catabolism contribute to luminal osmolarity, and lysosomal
degradation itself is a water-consuming process (20). Thus, lyso-
somes are an excellent location to regulate intracellular water
homeostasis and maintain osmotic homeostasis. The “bladder”
function of lysosomes may therefore be fundamental and critical
for cell survival under various physiological and pathological

osmotic perturbations. The osmoregulatory role of lysosomes also
could provide protection from cell damage in patients with
hyponatremia, nephrotic syndrome, and liver cirrhosis (48). In
addition to the hypotonic challenges present in the digestive tract
and the collecting tubules of the kidney of adult animals, there are
developmental challenges. The yolk sac and amniotic and allantoic
fluid are all hypoosmotic to the developing fetus and may take on
a level as low as 30 mOsm (49). Thus powerful osmoregulatory
mechanisms are required to allow normal embryonic development
(50). A role for Lyso-VRAC in this osmoregulatory behavior
might account for some of the development deficiencies of
LRRC8A knockout animals (51, 52). As Lyso-VRAC also pro-
tects cells from necrotic death caused by hypoxia and hypother-
mia, our identification of Lyso-VRAC provides a molecular
foundation upon which to explore new links between lysosome
function, normal human physiology, and disease pathologies.

Materials and Methods
Tissue culture, imaging, electrophysiology, biochemistry and molecular bi-
ology experiments, and statistical analysis were carried out using standard
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surface (Survival, upper scenario). When Lyso-VRAC is absent, giant vacuoles do not form, the plasma membrane breaks, and cells die, even if PM-VRAC
currents are normal (Death, lower scenario).

29164 | www.pnas.org/cgi/doi/10.1073/pnas.2016539117 Li et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.2016539117


methods. Additional information is provided in SI Appendix, Supplemental
Materials and Methods.

Data Availability. All study data are included in the article, SI Appendix, and
Movies S1–S4.
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