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Abstract The aim of this work is to design an intelligent computing paradigm through Lev-
enberg–Marquardt artificial neural networks (LMANNs) for solving the mathematical model
of Corona virus disease 19 (COVID-19) propagation via human to human interaction. The
model is represented with systems of nonlinear ordinary differential equations represented
with susceptible, exposed, symptomatic and infectious, super spreaders, infection but asymp-
tomatic, hospitalized, recovery and fatality classes, and reference dataset of the COVID-19
model is generated by exploiting the strength of explicit Runge–Kutta numerical method
for metropolitans of China and Pakistan including Wuhan, Karachi, Lahore, Rawalpindi and
Faisalabad. The created dataset is arbitrary used for training, validation and testing processes
for each cyclic update in Levenberg–Marquardt backpropagation for numerical treatment of
the dynamics of COVID-19 model. The effectiveness and reliable performance of the design
LMANNs are endorsed on the basis of assessments of achieved accuracy in terms of mean
squared error based merit functions, error histograms and regression studies.

List of symbols

S[t] Susceptible class
E[t] Exposed class
I[t] Infectious class of COVID-19 Epidemic
P[t] Super propagation class
A[t] Infectious but asymptomatic class
H[t] Hospitalized class
R[t] Recovery class
F[t] Fatality class
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δh Death rate for hospitalized people
l Relative transmissibility of hospitalized class
β Transmission coefficient (infection)
β1 Transmission coefficient (super spreaders)
k Exposed to infectious rate
ρ1 Exposed to infected rate
ρ2 Exposed to super spreaders rate
γ a Rate of being hospitalized class
γ i Recovery rate without hospitalized
γ r Recovery rate of hospitalized patients
δi Death rate due to infected people
δp Death rate due to super spreaders

1 Introduction

In December 2019, a new disease known as coronavirus was declared as a viral infection with
high rate of transmission in Wuhan city of China. Corona virus (COVID-19) is originated
by the acute respiratory syndrome 2 (SARS-Covid-2) declared by the Group of International
Committee (GIC) on Taxonomy of virus on February 11, 2020. It was identified as the
causative virus by Chinese authorities on January 1, 2020 [1]. A chain of analysis reported
on Bats are key reservoir in this research [2, 3].

1.1 An overview of COVID-19 epidemic

The COVID-19 epidemic mainly effects on people’s health, economy daily life routine [4].
Due to these major causes, the governments of several countries have made public policy
about both highlighted aspects. The 2019 crown infection likewise called the Wuhan crown
infection, is a transmitted infection causing respiratory disease and exceptionally transmitted
from human to human. The Covide-19 epidemic is considered highest threat for the whole
world due to thousands of people are infected. It was noticed that on March 26, 2020, total
infected confirmed cases are 503,274 with 22,342 number of deaths. Later, the number of
infected cases reached to 1,353,361 with 79,235, total number of deaths, reported on April 8,
2020, by the World Health Organization (WHO). The present statistics of confirm cases are
17,918,582, with newly reported in last 24 h are 257,677 for COVID-19, while cumulative
deaths are 686,703 and newly reported deaths in last 24 h are 5810 on August 03, 2020 by
WHO.

The story of coronavirus (COVID-19) originally started on December 31, 2019, from
Wuhan city of China, which is now the capital of Hubei territory. In the previous medical
history of viruses, spreading of viruses always have some logical reasoning for which the
accessible medications are found for the treatment. Further, it has been verified through
reliable data that the transmission of the infection is only possible from humans to humans
[5]. During the reported time, many cases were spread in Wuhan city as well as to different
urban communities of China rapidly. Besides this, the infection spreads to other parts of the
world, for example, Europe, North America and Asia within short span of time. Meanwhile
it is reported that the appearance of the symptoms based on cough, breathing troubles and
high fever of the corona (COVID-19) within 2 to 10 or 2 to 14 days approximately.
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1.2 Related studies

Nowadays, the dynamics of COVID-19 models have been growing interest in the research
community and may mathematical models are designed for the better interest of people around
the world, such as the model of eight classes based on susceptible, infected, diagnosed,
ailing, recognized, threatened, healed and extinct (SIDARTHE) [6], five classes based on
SEIAR represented with 5 number of ordinary differential equations [7], a new θ -SEIHRD
model represented with nine classes [8], modified SEIRS model system with five classes
[9], four class modified SIR model [10], SAIR system based COVID-19 model for complex
networks [11]. Beside, these variety of COVID-19 model are introduced by the researchers
[8, 12–22]. However, in the current scenarios, we have taken a complex 8 classes model
based on Susceptible (S), exposed (E), symptomatic and infectious (I), super propagation
(P), infection but asymptomatic (A), hospitalized (H), recovery (R) and fatality (F) classes,
i.e., SEIPAHRF for numerical investigations [23].

1.3 System model

Mathematical relations of Covid-19 dynamics with SEIPAHRF model are represented with
following initial value problem (IVP) as [23]:

dS

dt
� −(β

/
N )I (t)S(t) − (lβ

/
N )H (t)S(t)

− (β1
/
N )P(t)S(t) (1)

dE

dt
� (β

/
N )I (t)S(t) + (lβ

/
N )H (t)S(t)

+ (β1
/
N )P(t)S(t) − kE(t) (2)

dI

dt
� kρ1E(t) − (γa + γi )I (t) − δi I (t) (3)

dP

dt
� kρ2E(t) − (γa + γi )P(t) − δp P(t) (4)

dA

dt
� k(1 − ρ1 − ρ2)E(t) (5)

dH

dt
� γa(I (t) + P(t)) − γr H (t) − δh H (t) (6)

dR

dt
� γi (I (t) + P(t)) + γr H (t) (7)

dF

dt
� δi I (t) + δp P(t) + δh H (t) (8)

S(0) � N − 6, E(0) � 0, I (0) � 1, P(0) � 5,

A(0) � 0, H (0) � 0, R(0) � 0, F(0) � 0 (9)

where definitions of each parameter of COVID-19 on SEIPAHRF model (1–9) is provided
in nomenclature table. The graphical representation of SEIPAHRF model for COVID-19
dynamics is shown in Fig. 1 to decipher the information more evidently.

1.4 Problem statement with significance

The strength of artificial intelligent (AI) based computing solvers has been exploited by the
research community on large scale to obtain the approximated solutions of many problems
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Fig. 1 Eight classes based SEIPAHRF model of COVID-19 dynamics

arises in broad fields of applied science and technology. Some potential, recent reported
studies having paramount significance including Van-der-Pol oscillatory systems, optics,
electrically conducting solids, reactive transport system, nanofluidics, nanotechnology, fluid
dynamics, astrophysics, circuit theory, plasma, atomic physics, bioinformatics, energy, power
and functional mathematics see [24–34] and references cited therein. The said information
is the motivational affinities to investigate in AI base numerical computing solver for the
COVID-19 model.

As per our literature survey no one yet implemented AI based computational procedure
through Levenberg–Marquardt artificial neural networks (LMANNs) to solve initial value
problems (IVBs) of nonlinear systems of ordinary differential equations (ODEs) represented
COVID dynamics as given in (1–9). We present the design of intelligent computing paradigm
through LMANNs for numerical treatment of Covid-19 based SEIPAHRF model for five
different cities of China and Pakistan including Wuhan, Karachi, Lahore, Rawalpindi and
Faisalabad. Research related Covid-19 model and its applications will be useful to different
models of diseases emerging in science, particularly, bio-mathematicians for design and
development of alternate computing solver to study the dynamics of the systems numerically.

1.5 Innovative contributions

The innovative contributions of the presented study for Levenberg–Marquardt artificial neural
networks (LMANNs) for COVID-19 models are highlighted as follows.

• A novel design based on two-layers structure of Levenberg–Marquardt artificial neural net-
works (LMANNs) is presented to examine the dynamics of COVID-19 model represented
with initial value problems of eight systems of ODEs.

• The mean squared error (MSE) index is used effectively to develop a merit function for
analysis of computational results of designed LMANNs by taking reference solutions of
eight classes based model of SEIPAHRF for COVID-19 pandemic with the help of implicit
Runge–Kutta methods.

• Levenberg–Marquardt backpropagation is exploited for conducting training, validation
and testing processes to tune the decision variables of ANNs for each increment of epoch
index.
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Table 1 Parameter setting for
SEIPAHRF model of COVID-19
dynamics

Parameter Value Units

β 2.55 day−1

β1 7.65 day−1

k 0.25 day−1

ρ1 0.580 Dimensionless

ρ2 0.001 Dimensionless

γ a 0.94 day−1

γ i 0.27 day−1

γ r 0.5 day−1

δi 3.5 day−1

δp 1 day−1

δh 0.3 day−1

l 1.56 Dimensionless

• Reliability, convergence and accurate performance of LMANNs to solve the COVID-19
models with dataset for five cities including Wuhan, Karachi, Lahore, Faisalabad and
Rawalpindi is endorsed through histograms with error analysis, correlation and regression
curves.

1.6 Organization

The mathematical models for the development for the COVID-19 systems for one big city of
China and 4 cities of Pakistan are presented in Sect. 2, methodology of LMANNs is provided
in Sect. 3, the numerical simulation and analysis are presented for different cases COVID-19
dynamics in Sect. 4, while concluding inferences are given in the last Section.

2 Mathematical formulation of COVID-19 models

Mathematical development of COVID-19 for different cities of China and Pakistan is provided
in this section. Fixed setting of parameters as tabulated in Table 1 reported recently in [23]
for SEIPAHRF model of COVID-19 is used throughout in the presented study.

2.1 COVID-19 model for Wuhan, China

Consider a dynamical system of equations representing Covid-19 model of Wuhan City of
China written as

dS

dt
� −5.79545 × 10−5 I (t)S(t) − 8.98295 × 10−5H (t)S(t)

− 1.7386 × 10−4P(t)S(t)

dE

dt
� 5.79545 × 10−5 I (t)S(t) + 8.98295 × 10−5H (t)S(t)

+ 1.7386 × 10−4P(t)S(t) − 0.25E(t)
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dI

dt
� 0.145E(t) − 1.21I (t) − 3.5I (t)

dP

dt
� 2.5 × 10−4E(t) − 2.21P(t)

dA

dt
� 0.1047E(t)

dH

dt
� 0.94(I (t) + P(t)) − H (t) − 0.3H (t)

dR

dt
� 3.5(I (t) + P(t)) + H (t)

dF

dt
� 3.5I (t) + P(t) + 0.3H (t)

S(0) � 43994, E(0) � 0, I (0) � 1, P(0) � 5,

A(0) � 0, H (0) � 0, R(0) � 0, F(0) � 0 (10)

2.2 COVID-19 model for Karachi, Pakistan

Consider a dynamical system of equations representing Covid-19 model of Karachi City of
Pakistan written as

dS

dt
� −6.826212 × 10−5 I (t)S(t) − 1.0648 × 10−4H (t)S(t)

− 2.0478 × 10−4P(t)S(t)

dE

dt
� 6.826212 × 10−5 I (t)S(t) + 1.0648 × 10−4H (t)S(t)

+ 2.0478 × 10−4P(t)S(t) − 0.25E(t)

dI

dt
� 0.145E(t) − 1.21I (t) − 3.5I (t)

dP

dt
� 2.5 × 10−4E(t) − 2.21P(t)

dA

dt
� 0.1047E(t)

dH

dt
� 0.94(I (t) + P(t)) − H (t) − 0.3H (t)

dR

dt
� 3.5(I (t) + P(t)) + H (t)

dF

dt
� 3.5I (t) + P(t) + 0.3H (t)

S(0) � 37350, E(0) � 0, I (0) � 1, P(0) � 5,

A(0) � 0, H (0) � 0, R(0) � 0, F(0) � 0 (11)

2.3 COVID-19 model for Lahore, Pakistan

Consider a dynamical system of equations representing Covid-19 model of Lahore City of
Pakistan written as

dS

dt
� −1.2394 × 10−4 I (t)S(t) − 1.9336 × 10−4H (t)S(t)
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− 3.7184 × 10−4P(t)S(t)

dE

dt
� 1.2394 × 10−4 I (t)S(t) + 1.9336 × 10−4H (t)S(t)

+ 3.7184 × 10−4P(t)S(t) − 0.25E(t)

dI

dt
� 0.145E(t) − 1.21I (t) − 3.5I (t)

dP

dt
� 2.5 × 10−4E(t) − 2.21P(t)

dA

dt
� 0.1047E(t)

dH

dt
� 0.94(I (t) + P(t)) − H (t) − 0.3H (t)

dR

dt
� 3.5(I (t) + P(t)) + H (t)

dF

dt
� 3.5I (t) + P(t) + 0.3H (t)

S(0) � 20567, E(0) � 0, I (0) � 1, P(0) � 5,

A(0) � 0, H (0) � 0, R(0) � 0, F(0) � 0 (12)

2.4 COVID-19 model for Faisalabad, Pakistan

Consider a dynamical system of equations representing Covid-19 model of Faisalabad City
of Pakistan written as

dS

dt
� −3.1736 × 10−4 I (t)S(t) − 4.9508 × 10−4H (t)S(t)

− 9.5208 × 10−4P(t)S(t)

dE

dt
� 3.1736 × 10−4 I (t)S(t) + 4.9508 × 10−4H (t)S(t)

+ 9.5208 × 10−4P(t)S(t) − 0.25E(t)

dI

dt
� 0.145E(t) − 1.21I (t) − 3.5I (t)

dP

dt
� 2.5 × 10−4E(t) − 2.21P(t)

dA

dt
� 0.1047E(t)

dH

dt
� 0.94(I (t) + P(t)) − H (t) − 0.3H (t)

dR

dt
� 3.5(I (t) + P(t)) + H (t)

dF

dt
� 3.5I (t) + P(t) + 0.3H (t)

S(0) � 43994, E(0) � 0, I (0) � 1, P(0) � 5,

A(0) � 0, H (0) � 0, R(0) � 0, F(0) � 0 (13)
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2.5 COVID-19 model for Rawalpindi, Pakistan

Consider a dynamical system of equations representing Covid-19 model of Rawalpindi City
of Pakistan written as

dS

dt
� −4.5220 × 10−4 I (t)S(t) − 7.0544 × 10−4H (t)S(t)

− 1.35662 × 10−3P(t)S(t)

dE

dt
� 4.5220 × 10−4 I (t)S(t) + 7.0544 × 10−4HH (t)S(t)

+ 1.35662 × 10−3P(t)S(t) − 0.25E(t)

dI

dt
� 0.145E(t) − 1.21I (t) − 3.5I (t)

dP

dt
� 2.5 × 10−4E(t) − 2.21P(t)

dA

dt
� 0.1047E(t)

dH

dt
� 0.94(I (t) + P(t)) − H (t) − 0.3H (t)

dR

dt
� 3.5(I (t) + P(t)) + H (t)

dF

dt
� 3.5I (t) + P(t) + 0.3H (t)

S(0) � 5633, E(0) � 0, I (0) � 1, P(0) � 5,

A(0) � 0, H (0) � 0, R(0) � 0, F(0) � 0 (14)

3 Methodology and performance metrics

The essential information related to our proposed mathematical modeling together with
performance metrics are presented in this section.

The implemented mathematical modeling based on three phases: in phase one COVID-19
model for five different cities of China-Pakistan is evaluated that are considered as input
reference dataset for FFNNs, phase two, layer structure formulation of NN-BPML models
and training of NN-BPML is performed with Levenberg-Marquart solver in phase three. The
graphical abstract of presented study is shown in Fig. 2.

The Adams predictor corrector method procedure [60–61] is presented to the system
(9–10). By using Adams method formulation, first we used predictor solution then corrected in
whole numerical procedure to improve the accuracy level of results with provided information
of predicted results. The Eqs. (9–10) of predictor corrector method can be given as:

dS

dt
� f (t, S, I, H, P), S(t0) � S0

dE

dt
� f (t, E, I, S, H, P), E(t0) � E0

dI

dt
� f (t, I, E), I (t0) � I0

123



Eur. Phys. J. Plus         (2020) 135:932 Page 9 of 35   932 

k

Fig. 2 Process flow architecture of Proposed Methodology NN-BPML for solving COVID-19 model

dP

dt
� f (t, P, E), P(t0) � P0

dA

dt
� f (t, E), A(t0) � A0

dH

dt
� f (t, H, I, P), H (t0) � H0

dR

dt
� f (t, I, P, H ), R(t0) � R0

dF

dt
� f (t, I, P, H ), F(t0) � F0 (15)
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Fig. 3 FFNN architecture in terms of input, hidden and output layers

The relation for predictor 2-step formula in case of first equation of set (15) is given:

Sn+1 � Sn + 1.5h f (tn, Sn) − 0.5h f (tn−1, Sn−1), (16)

while 2-step corrector relation formula in case of first equation of set (15) is written as:

Sn+1 � Sn + 0.5h( f (tn+1, Sn+1) + f (tn, Sn)) (17)

Accordingly, the formulae of Adam predictor and corrector method for rest of equations
in set (15) are formulated. The dataset of FFNN can be created with Adams method as
summarized in Eqs. (11–13) for solving the PLFMs. However, the presented study, we have
generated the dataset of FFNN using ‘NDSolve’ routine of Mathematica with algorithm
‘Adams’ for each scenario of PLFMs.

The layer structure of FFNN models with log-sigmoid activation function and 10 number of
neurons in the hidden layer are exploited for solving each scenario of PLFMs. The constructed
architecture of FFNN is presented in Fig. 3

The training the FFNNs is conducted with backpropagation of Levenberg-Marquardt
method (LMM), i.e., FFNN-LMM by defining an error base merit function. The objective
function is constructed of mean square error (MSE) metric and optimization of the objective
function is performed with LMM for each case.

The mathematical notations of the performance metrics through absolute error (AE), figure
of merit, i.e., mean square error (MSE) and regression coefficient are given below:

AE �
∣∣∣S j − Ŝ j

∣∣∣, j � 1, 2, . . . , k,

MSE � 1

k

k∑

j�1

(
S j − Ŝ j

)2
,

R2 � 1 −
∑k

j�1

(
Ŝ j − S̄ j

)2

∑k
j�1

(
S j − S̄ j

)2 (18)

here Sj, Ŝ j and S̄ j stand for reference, approximate and mean of solution of jth input, while k
represent total number of input grids. The unit value of R, i.e., square root of R2, is the desire
parameter for perfect modeling, while AE and MSE are equal to zero for perfect modeling
scenarios.
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Fig. 4 State transition dynamics of NN-BPML for solving the COVID-19 mode for case 1-5

4 Numerical simulation with interpretations

Numerical simulations studies along with necessary interpretation are presented here for
system of first order nonlinear ODEs (1–9) representing the epidemic model of SEIPAHRF
system for COVID-19 with the help of the proposed LMANNs method. The numerical along
with the graphical results of five different metropolitans of China and Pakistan included
Wuhan, Karachi, Lahore, Faisalabad and Rawalpindi are presented using set of Eqs. (10–14).
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Fig. 5 Comparison of LMANNs
results with reference solution,
performance analysis and error
histogram for case 1
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Fig. 6 Comparison of LMANNs
results with reference solution,
performance analysis and error
histogram for case 2
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Fig. 7 Comparison of LMANNs
results with reference solution,
performance analysis and error
histogram for case 3
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Fig. 8 Comparison of LMANNs
results with reference solution,
performance analysis and error
histogram for case 4
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Fig. 9 Comparison of LMANNs
results with reference solution,
performance analysis and error
histogram for case 5
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Fig. 10 Regression illustrations for LMANNs result for case 1–5 of SEIPAHRF model for COVID-19
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Table 2 Results of NN-BPLM for each case of COVID-19 model

Case Mean square error Performance Gradient Mu Epoch Time

Training Validation Testing

1 9.7083e−05 1.6596e−0 1.3610e−04 9.64e−05 1.84e−03 1e−06 96 < 0.5

2 1.7914e−04 4.9947e−04 3.5796e−04 1.38e−04 1.10e−01 1e−06 28 < 0.5

3 8.7912e−05 1.0044e−04 8.5482e−05 8.70e−05 1.13e−03 1e−06 80 < 0.5

4 2.3975e−05 1.5640e−05 1.4822e−05 2.14e−05 2.97e−02 1e−06 68 < 0.5

5 7.1286e−05 2.3021e−04 1.8626e−04 7.13e−05 1.01e−03 1e−07 1000 8

The overall process flow diagram of proposed LMANNs is described in Fig. 2. The
proposed LMANNs are implemented through ‘nftool’ (neural network fitting tool) in neural
network toolbox in Matlab environment, while Levenberg–Marquardt (L–M) is used to train
the weights of neural networks. The designed LMANNs are conducted for five different
cases where first four cases are constructed on real data of big cities of Pakistan: Karachi,
Lahore, Faisalabad and Rawalpindi, and last case is on real data of Wuhan city with fixed
parameters as tabulated in Table 1. The papulation survey of 2017 of Pakistan is used for
related parameters.

The reference data of SEIPAHRF model for COVID-19 are generated for 60 days as
inputs with step size of 0.5 through the solutions of Adams numerical approach by using
Mathematica environment ‘NDSolve’ built-in function for numerical results of ODEs for
each case of SEIPAHRF model for COVID-19. The dataset values for S, E, I , P, A, H, R
and F classes for 121 input points that are arbitrarily distributed to produce a set for train,
validation and test with 90%, 5% and 5%, respectively. The two layered structure LMANNs
based computing paradigm of neural networks with backpropagation of L–M along ten hidden
layers are contracted for the results of SEIPAHRF mode for COVID-19 classes that shown
in Fig. 3.

The results of LMANNs for SEIPAHRF model for COVID-19 in terms of state transi-
tion dynamics are graphically described in Fig. 4, while fitting of solution along with the
performance and error histograms are illustrated in Figs. 5, 6, 7, 8 and 9 for case 1–5, the
regression analysis are shown in Fig. 10 for each case. Moreover, the convergence achieved
parameter in terms of MSE, back propagation measures, performance, executed epochs and
time of execution are tabulated in Tables 2, for all cases of SEIPAHRF model for COVID-
19 through LMANNs, and the mentioned time of all cases explains the complexity of the
proposed method.

The gradient values and step size Mu of backpropagation are about [1.8×10−03, 1.1×
10−01, 1.1×10−03, 2.9×10−02 and 1.0×10−03] and [10−06, 10−06, 10−06, 10−06, and
10−07] as shown in Figs. 4a–e for five cases, respectively. The results determine the accurate
and convergent performance of the proposed method for each five cases of SEIPAHRF model
for COVID-19.

In the Figs. 5a, 6a, 7a, 8a and 9a, convergence through MSE for validation, train and
test processes are illustrated for case 1–5 of SEIPAHRF model for COVID-19. The best
network performance achieved at 90, 22, 74, 62 and 1000 epochs with MSE around 10−04

to 10−03, 10−04 to 10−02, 10−04, 10−05 and 10−04 to 10−03 for case 1–5, respectively. The
performance of LMANNs generated outcomes is examined with reference results of Adams
numerical method for case 1–5 and respective results are shown in Figs. 5b, 6b, 7b, 8b and
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Table 3 Numerical values of case 1 against input day for all classes of SEIPAHRF model for COVID-19

Time Case 1

S A R F E I P H

0 59,659.00 − 0.0010 00.0002 00.0055 00.0024 0.9850 5.0009 0.0020

6 59,607.96 12.4825 04.6574 17.1976 21.2499 0.6464 0.0051 0.8044

12 59,580.54 25.0309 07.9092 31.5190 18.7088 0.5772 0.0025 0.7014

18 59,556.49 36.0619 10.7651 44.1122 16.4410 0.5093 0.0017 0.6163

24 59,535.36 45.7526 13.2744 55.1772 14.4426 0.4476 0.0014 0.5414

30 59,516.81 54.2594 15.4774 64.8911 12.6835 0.3926 0.0014 0.4755

36 59,500.53 61.7365 17.4137 73.4291 11.1335 0.3444 0.0013 0.4174

42 59,486.21 68.3021 19.1142 80.9264 09.7694 0.3021 0.0011 0.3663

48 59,473.66 74.0721 20.6086 87.5151 08.5686 0.2650 0.0010 0.3213

54 59,462.55 79.1576 21.9257 93.3222 07.5093 0.2323 0.0009 0.2816

60 59,452.70 83.6890 23.0993 98.4966 06.5656 0.2027 0.0007 0.2463

Table 4 Numerical values of case 2 against input day for all classes of SEIPAHRF model for COVID-19

Time Case 2

S A R F E I P H

0 44,498.99 − 0.0002 − 0.0009 0.01620 0.01080 0.9461 4.9940 0.0189

6 44,447.97 12.4809 04.6540 17.1999 21.2338 0.6488 − 0.0014 0.8127

12 44,420.59 25.0286 07.9085 31.5179 18.6911 0.5770 0.0015 0.7022

18 44,396.59 36.0317 10.7584 44.0780 16.4207 0.5086 0.0023 0.6146

24 44,375.48 45.7084 13.2642 55.1284 14.4131 0.4461 0.0018 0.5400

30 44,357.00 54.2014 15.4638 64.8270 12.6446 0.3912 0.0015 0.4740

36 44,340.75 61.6583 17.3953 73.3423 11.0869 0.3429 0.0013 0.4158

42 44,326.57 68.1749 19.0833 80.7840 09.7217 0.3007 0.0011 0.3646

48 44,314.13 73.8953 20.5652 87.3165 08.5204 0.2635 0.0010 0.3196

54 44,303.18 78.9241 21.8680 93.0593 07.4621 0.2308 0.0009 0.2799

60 44,293.61 83.3399 23.0121 98.1022 06.5316 0.2009 0.0008 0.2452

9b that illustrated the curves are overlap each other that means the results are accurate. Along
with the error dynamics for input between 0 and 60 with step size of 0.5. The maximum
error attained for test, train and validation data by the proposed LMANNs is less than 5×
10−02, 5×10−02, 5×10−02, 2×10−02 and 4×10−04 for cases of SEIPAHRF model for
COVID-19. These subfigures explain the numerical values of S class where numerical values
of other related class are tabulated in Tables 3, 4, 5, 6 and 7 for five cases, respectively. The
error dynamics is additional estimated through error histograms for each input point and
results are graphically illustrated in Figs. 5c, 6c, 7c, 8c and 9c, respectively, of SEIPAHRF
model for COVID-19. The error bin with reference zero line has error around 1.6×10−03, −
7.3×10−04, 1.3×10−03, 4.4×10−03 and 1.3×10−03 for all five cases, respectively which
illustrates more of the results value of the proposed method lies over the zero line.
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Table 5 Numerical values of case 3 against input day for all classes of SEIPAHRF model for COVID-19

Time Case 3

S A R F E I P H

0 12,812.00 − 0.0004 00.0007 00.0082 00.0030 0.9825 5.0020 0.0020

6 12,761.08 12.4543 04.6534 17.1695 21.1779 0.6416 0.0076 0.7989

12 12,733.93 24.9360 07.8893 31.4170 18.5496 0.5726 0.0026 0.6959

18 12,710.27 35.8351 10.7141 43.8644 16.1945 0.5016 0.0016 0.6083

24 12,689.68 45.3414 13.1793 54.7239 14.1124 0.4371 0.0014 0.5303

30 12,671.74 53.6256 15.3282 64.1881 12.2763 0.3800 0.0013 0.4614

36 12,656.18 60.8208 17.1951 72.4090 10.6649 0.3300 0.0012 0.4010

42 12,642.66 67.0773 18.8188 79.5578 09.2513 0.2862 0.0011 0.3479

48 12,631.00 72.4833 20.2221 85.7351 08.0205 0.2482 0.0009 0.3017

54 12,620.83 77.1844 21.4425 91.1072 06.9431 0.2149 0.0008 0.2612

60 12,612.10 81.2483 22.4978 95.7514 06.0064 0.1857 0.0007 0.2261

Table 6 Numerical values of case 4 against input day for all classes of SEIPAHRF model for COVID-19

Time Case 4

S A R F E I P H

0 8386.00 − 0.0010 0.0002 0.0074 0.0027 0.9789 5.0013 0.0025

6 8335.19 12.4395 4.6497 17.1532 21.1214 0.6436 0.0056 0.8002

12 8308.21 24.8681 7.8746 31.3435 18.4438 0.5701 0.0023 0.6930

18 8284.80 35.6851 10.6804 43.6993 16.0316 0.4978 0.0012 0.6028

24 8264.53 45.0747 13.1176 54.4293 13.8957 0.4308 0.0013 0.5228

30 8247.00 53.2079 15.2298 63.7249 12.0132 0.3717 0.0014 0.4522

36 8231.90 60.2230 17.0522 71.7429 10.3654 0.3207 0.0012 0.3904

42 8218.89 66.2814 18.6266 78.6681 8.9245 0.2762 0.0010 0.3363

48 8207.72 71.4860 19.9795 84.6178 7.6734 0.2375 0.0009 0.2892

54 8198.12 75.9625 21.1435 89.7357 6.5875 0.2039 0.0008 0.2484

60 8189.90 79.7967 22.1408 94.1196 5.6503 0.1745 0.0007 0.2131

The analysis of regression studies is calculated through co-relation studies where the
results are graphically shown in Figs. 10a–e for each case. Correlation R values are steadily
around unity, i.e., desired value for perfect modeling, for training, testing and validation,
which established the accurate working of LMANNs for solving SEIPAHRF model.

Therefore, the numerical and graphical results of LMANNs are determined for the sus-
ceptible class (S), export class (E), symptomatic and infectious class (I), infectious but
asymptomatic class (A), super spreaders class (P), hospitalized (H), recovery class (R), fatal-
ity class (F) to explain the behavior corresponding to 60 days for each five case. Numerical
outcomes are portrayed in Figs. 11, 12, 13, 14, 15, 16, 17, 18 and 19. The susceptible class (S)
is graphically explains in subfigure 11a of case 1–4, the result values of S are lies in different
ranges that is why subfigures for first four cases are shown that explains as more population
higher susceptible class. The Figures 12a, 13a, 14a, 15a, 16a, 17a and 18a, describes graphi-
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Table 7 Numerical values of case 5 against input day for all classes of SEIPAHRF model for COVID-19

Time Case 5

S A R F E I P H

0 43,994.00 0.0000 0.0000 0.0002 − 0.0003 0.9995 5.0001 0.0000

6 43,942.96 12.4842 4.6572 17.1902 21.2407 0.6581 0.0022 0.8032

12 43,915.61 25.0160 7.9055 31.5017 18.6945 0.5777 0.0017 0.7014

18 43,891.60 36.0330 10.7586 44.0808 16.4181 0.5080 0.0022 0.6151

24 43,870.48 45.7186 13.2668 55.1407 14.4088 0.4456 0.0017 0.5402

30 43,851.99 54.2053 15.4649 64.8317 12.6414 0.3910 0.0014 0.4740

36 43,835.80 61.6399 17.3906 73.3214 11.0879 0.3429 0.0013 0.4158

42 43,821.59 68.1753 19.0835 80.7846 9.7183 0.3006 0.0011 0.3645

48 43,809.11 73.8996 20.5664 87.3215 8.5157 0.2634 0.0010 0.3194

54 43,798.20 78.9176 21.8665 93.0521 7.4592 0.2307 0.0009 0.2798

60 43,788.65 83.2918 22.9997 98.0476 6.5370 0.2022 0.0007 0.2452

cally the behavior of E, I , P, A, H, R and F for case 1–4 of SEIPAHRF model for COVID-19
respectively. Fig. 19a–c explains the numerical results of all classes of SEIPAHRF model for
COVID-19 for Wuhan city case 5 with reference solutions. The numerical values obtained
by the proposed technique tabulated in Tables 3, 4, 5, 6 and 7 for all cases of each class of
SEIPAHRF model for COVID-19.

The obtained results through LMANNs matches with reference (ref) Adams numerical
solutions in each case for all classes of SEIPAHRF model for COVID-19, therefore, in order
to access the precision gauges, absolute errors (AEs) are determined. The AEs of all classes
are presented in Figs. 11b, 12b, 13b, 14b, 15b, 16b, 17b and 18b for S, E, I , P, A, H, R, and F,
respectively, for case 1–4 and tabular in Tables 8, 9, 10 and 11. AEs also satisfied the results
of case 5 that is illustrated in Fig. 19d and tabular in Table 12. AEs of class S ranges between
10−02 and 10−04 for cases 1, 3, 4, 5 and 10−02 to 10−03 for case 2. Range of AEs for class
A are 10−03 to 10−04 for cases 1, 3, 4, 10−02 to 10−04 and 10−02 to 10−06 for case 2 and 5,
respectively. AEs of class R are 10−03 to 10−05 for case 1, 10−03 to 10−04 for case 2 to 4, and
10−02 to 10−06 and for class F are 10−03 to 10−04, 10−02 to 10−03, 10−03 to 10−04, 10−03

to 10−04, and 10−02 to 10−04 of case 1–5, respectively. AEs are 10−03 to 10−05 of case 1, 3,
5 and, 10−02 to 10−04 of case 2 and 10−03 to 10−07 of case 4 for class E. The range of AEs
for class I, P and H are 10−02 to 10−05, 10−03 to 10−07, 10−03 to 10−06 of case 1, 10−02 to
10−05, 10−03 to 10−08, 10−02 to 10−05 of case 2, 10−02 to 10−05, 10−03 to 10−06, 10−03 to
10−06 of case 3, 10−02 to 10−06, 10−03 to 10−08, 10−03 to 10−05 of case 4, 10−03 to 10−06,
10−04 to 10−07, 10−04 to 10−06 of case 5, respectively. These ranges of AEs for all classes
of each case illustrates the accuracy of the proposed method that is up to 8 decimal places.

5 Conclusions

Artificial intellect based integrated computing intelligent platform is presented by means
of neural networks with backpropagation of Levenberg-Marquard to find the solution of
mathematical model SEIPAHRF for COVID-19 representing the spreading of Corona virus
through different classes in the major cities of Pakistan and China for different cases that
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Fig. 11 Comparison between proposed LMANNs with reference numerical results for susceptible class (S)
of case 1–4

are constructed on the basis of real data. Dataset for SEIPAHRF model for COVID-19 is
generated through Adams numerical solver for different classes. The 90%, 5% and 5% of
the reference dataset is used as training, validation and testing for LMANNs. On the basis
of above numerical study and investigation, following key findings of SEIPAHRF model for
COVID-19 can be observed.

• Governing system of ODEs representing the radiative spread of COVID-19 are solved with
the help of. LMANNs.

• Comparison of proposed results with reference numerical solution obtained through Adams
method upto 8 decimal places which shows the accuracy and convergence of the proposed
LMANNs.
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Fig. 12 Comparison between proposed LMANNs with reference numerical results for export class (E) of case
1–4

• Aspect of the proposed method is further validated through numerical and graphical
description based on convergence plots, error histogram, mean square errors and regression
dynamics.

• Variants of parameter of interest greatly influence the dynamics of model SEIPAHRF.
• Performance of the computational process gets better for complexity in terms of time

series, regression, histogram, MAE.

123



  932 Page 24 of 35 Eur. Phys. J. Plus         (2020) 135:932 

Fig. 13 Comparison between proposed LMANNs with reference numerical results for symptomatic and infec-
tious class (I) of case 1–4
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Fig. 14 Comparison between proposed LMANNs with reference numerical results for super spreaders class
(P) of case 1–4
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Fig. 15 Comparison between proposed LMANNs with reference numerical results for infectious but asymp-
tomatic class (A) of case 1–4
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Fig. 16 Comparison between proposed LMANNs with reference numerical results for hospitalized (H) of
case 1–4
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Fig. 17 Comparison between proposed LMANNs with reference numerical results for recovery class (R) of
case 1–4
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Fig. 18 Comparison between proposed LMANNs with reference numerical results for fatality class (F) of
case 1–4
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Fig. 19 Comparison between proposed LMANNs with reference numerical results for S, I , P, H, E, A, F, R
and G of case 5

Table 8 Absolute errors of case 1 against input day for all classes of SEIPAHRF model for COVID-19

Time Case 1

S A R F E I P H

0 1.40E−03 9.79E−04 1.69E−04 5.48E−03 2.39E−03 1.50E−02 9.11E−04 1.97E−03

6 4.42E−02 3.89E−03 8.44E−05 4.08E−03 2.46E−03 1.05E−02 2.67E−03 5.28E−04

12 3.52E−02 1.25E−03 2.19E−04 1.68E−04 4.21E−04 1.40E−03 3.19E−04 1.81E−04

18 5.29E−03 1.10E−03 4.00E−04 1.92E−03 4.02E−05 8.37E−04 2.22E−04 7.64E−06

24 3.59E−02 2.22E−03 6.90E−04 3.34E−03 2.46E−04 8.92E−04 2.34E−04 1.53E−05

30 7.29E−03 7.59E−03 1.94E−03 8.92E−03 1.51E−03 3.88E−04 9.06E−05 4.53E−05

36 3.19E−02 3.94E−03 9.92E−04 4.52E−03 7.88E−04 1.06E−04 2.16E−05 2.72E−05

42 1.08E−02 1.43E−03 3.66E−04 1.68E−03 3.68E−04 2.94E−05 4.26E−06 1.26E−05

48 4.31E−02 5.40E−03 1.37E−03 6.17E−03 1.13E−03 2.75E−05 3.91E−07 4.40E−05

54 4.63E−02 7.12E−04 2.19E−04 8.17E−04 1.45E−04 3.23E−05 2.27E−07 9.05E−06

60 5.07E−04 7.29E−04 1.84E−04 8.36E−04 1.55E−04 3.79E−04 6.28E−07 4.92E−05
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Table 9 Absolute errors of case 2 against input day for all classes of SEIPAHRF model for COVID-19

Time Case 2

S A R F E I P H

0 7.52E−03 1.98E−04 9.22E−04 1.62E−02 1.08E−02 5.39E−02 6.00E−03 1.89E−02

6 2.50E−02 3.09E−03 3.03E−03 9.03E−03 6.38E−03 7.81E−03 3.87E−03 8.99E−03

12 1.29E−02 5.74E−03 1.11E−03 8.74E−03 2.39E−03 1.12E−03 6.71E−04 1.48E−03

18 9.75E−03 1.00E−02 2.34E−03 1.28E−02 2.88E−03 8.80E−04 4.23E−04 9.37E−04

24 2.24E−02 7.97E−03 1.99E−03 9.69E−03 1.95E−03 3.63E−04 1.77E−04 3.72E−04

30 2.04E−03 5.08E−03 1.30E−03 5.94E−03 1.19E−03 1.23E−04 5.08E−05 8.35E−05

36 5.00E−02 4.70E−03 1.25E−03 5.32E−03 9.98E−04 1.48E−05 6.28E−06 5.03E−05

42 2.68E−02 8.30E−03 2.21E−03 9.51E−03 1.73E−03 4.26E−05 4.72E−06 7.69E−05

48 3.10E−02 1.12E−02 2.89E−03 1.28E−02 2.35E−03 6.58E−05 1.67E−06 9.19E−05

54 2.32E−02 1.41E−03 4.12E−04 1.66E−03 3.05E−04 4.50E−05 7.83E−08 2.30E−05

60 8.39E−03 9.73E−04 2.42E−04 1.07E−03 1.95E−04 1.16E−03 1.14E−05 2.26E−04

Table 10 Absolute errors of case 3 against input day for all classes of SEIPAHRF model for COVID-19

Time Case 3

S A R F E I P H

0 1.45E−03 3.80E−04 7.27E−04 8.17E−03 2.97E−03 1.75E−02 2.02E−03 2.05E−03

6 2.14E−02 5.61E−03 8.34E−04 3.39E−03 7.77E−03 1.30E−02 5.22E−03 2.81E−03

12 3.04E−02 3.74E−03 1.18E−03 5.27E−03 2.04E−04 1.21E−03 4.57E−04 2.55E−04

18 2.78E−02 8.32E−04 3.52E−04 1.37E−03 2.58E−04 6.40E−04 2.62E−04 1.63E−04

24 1.59E−02 4.66E−03 1.32E−03 5.72E−03 6.86E−04 5.46E−04 2.11E−04 1.59E−04

30 3.73E−02 6.29E−04 2.37E−04 8.55E−04 1.14E−05 2.22E−04 9.02E−05 5.50E−05

36 1.54E−02 3.42E−03 8.36E−04 3.90E−03 7.23E−04 7.24E−05 2.08E−05 3.91E−05

42 3.64E−02 4.34E−03 1.09E−03 4.89E−03 9.58E−04 3.67E−05 2.15E−06 3.70E−05

48 4.11E−03 8.28E−03 2.15E−03 9.43E−03 1.92E−03 5.22E−05 3.76E−06 7.06E−05

54 2.63E−02 9.67E−04 2.51E−04 1.18E−03 2.45E−04 1.31E−05 1.03E−06 7.83E−06

60 7.00E−04 4.24E−04 1.05E−04 4.56E−04 9.44E−05 2.16E−04 2.48E−06 3.46E−05
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Table 11 Absolute errors of case 4 against input day for all classes of SEIPAHRF model for COVID-19

Time Case 4

S A R F E I P H

0 1.91E−04 1.00E−03 2.43E−04 7.44E−03 2.68E−03 2.11E−02 1.28E−03 2.47E−03

6 5.08E−04 2.65E−03 4.43E−04 5.36E−03 2.90E−03 9.42E−03 3.14E−03 2.59E−05

12 4.74E−03 2.53E−03 6.97E−04 3.49E−03 6.53E−04 4.83E−04 1.47E−04 1.19E−04

18 5.43E−04 1.23E−04 2.36E−04 1.63E−03 8.35E−04 1.79E−03 6.52E−04 5.82E−05

24 5.28E−03 1.29E−03 4.68E−04 2.16E−03 4.65E−07 7.69E−04 2.75E−04 3.31E−05

30 3.73E−04 2.60E−03 6.50E−04 2.97E−03 7.40E−04 3.46E−05 7.32E−06 2.54E−05

36 4.26E−03 3.21E−03 8.23E−04 3.64E−03 7.33E−04 9.02E−05 3.63E−05 1.73E−05

42 4.93E−03 3.73E−03 9.97E−04 4.26E−03 8.89E−04 2.87E−05 8.00E−07 3.30E−05

48 4.30E−03 1.28E−03 3.31E−04 1.42E−03 2.97E−04 1.00E−05 4.35E−06 9.27E−06

54 1.36E−02 4.14E−03 1.03E−03 4.71E−03 9.92E−04 6.69E−06 1.18E−08 3.54E−05

60 2.61E−03 5.63E−04 1.44E−04 6.48E−04 1.39E−04 4.26E−04 7.08E−06 1.82E−05

Table 12 Absolute errors of case 5 against input day for all classes of SEIPAHRF model for COVID-19

Time Case 5

S A R F E I P H

0 3.54E−04 4.51E−06 4.94E−06 2.39E−04 2.92E−04 5.12E−04 1.30E−04 1.13E−06

6 4.46E−02 3.59E−04 1.56E−04 5.55E−04 9.08E−04 1.49E−03 2.31E−04 4.77E−04

12 5.27E−03 6.42E−03 1.79E−03 6.97E−03 1.69E−03 3.82E−04 4.03E−04 6.52E−04

18 1.04E−03 7.68E−03 1.94E−03 9.03E−03 1.27E−03 2.58E−04 3.25E−04 3.66E−04

24 2.48E−02 3.92E−03 1.01E−03 4.46E−03 8.58E−04 2.45E−05 1.48E−05 4.61E−05

30 7.06E−03 1.54E−03 3.67E−04 1.76E−03 3.35E−04 7.31E−06 3.54E−06 1.66E−05

36 5.10E−04 9.78E−03 2.54E−03 1.12E−02 2.09E−03 6.43E−05 1.28E−06 7.79E−05

42 5.57E−03 2.69E−03 7.03E−04 3.03E−03 5.52E−04 1.74E−05 7.78E−07 2.15E−05

48 5.58E−03 2.38E−04 9.67E−05 2.86E−04 3.17E−05 1.27E−06 1.08E−06 2.04E−06

54 1.38E−03 3.15E−04 5.43E−05 3.40E−04 6.84E−05 2.45E−06 3.61E−07 2.46E−06

60 4.68E−02 3.94E−02 1.02E−02 4.49E−02 8.32E−03 2.55E−04 6.37E−07 3.12E−04
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In future, one may implement proposed LMANN for solving the systems representing
computer virus models [35, 36], prediction studies [37–41], nonlinear fractional differential
equation [42, 43], bioinformatics models [44–46] and financial modeling [30, 47].

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing interests.

References

1. A.E. Gorbalenya, S.C. Baker, R.S. Baric et al., The species severe acute respiratory syndrome-related
coronavirus: classifying 2019-nCoV and naming it SARS–CoV-2. Nat. Microbiol. 5, 536–544 (2020)

2. M.A. Shereen, S. Khan, A. Kazmi, N. Bashir, R. Siddique, COVID-19 infection: origin, transmission,
and characteristics of human coronaviruses. J. Adv. Res. 24, 91–98 (2020)

3. J. Cui, F. Li, Z.L. Shi, Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17(3),
181–192 (2019)

4. M.E. El Zowalaty, J.D. Järhult, From SARS to COVID-19: a previously unknown SARS-CoV-2 virus of
pandemic potential infecting humans–Call for a One Health approach. One Health 9, 100124 (2020)

5. J.M. Hughes, M.E. Wilson, S.P. Wilson, E.S. Gurley, M.J. Hossain, Transmission of human infection with
Nipah virus. Clin Infect. Dis 49(11), 1743–1748 (2009)

6. M. Higazy, Novel fractional order SIDARTHE mathematical model of the COVID-19 pandemic. Chaos
Solitons Fract. 138, 110007 (2020)

7. N.H. Tuan, H. Mohammadi, S. Rezapour, A mathematical model for COVID-19 transmission by using
the Caputo fractional derivative. Chaos Solitons Fract. 140, 110107 (2020)

8. B. Ivorra, M.R. Ferrández, M. Vela-Pérez, A.M. Ramos, Mathematical modeling of the spread of the
coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China.
Commun. Nonlinear Sci. Numer. Simul. 88, 105303 (2020)

9. K.Y. Ng, M.M. Gui, COVID-19: development of a robust mathematical model and simulation package
with consideration for ageing population and time delay for control action and resusceptibility. Phys. D
Nonlinear Phenom. 411, 132599 (2020)

10. P. Khrapov, A. Loginova, Comparative analysis of the mathematical models of the dynamics of the
coronavirus COVID-19 epidemic development in the different countries. Int. J. Open Inf. Technol. 8(5),
17–22 (2020)

11. C. Liu, X. Wu, R. Niu, X. Wu, R. Fan, A new SAIR model on complex networks for analysing the 2019
novel coronavirus (COVID-19). Nonlinear Dyn. 101(3), 1777–1787 (2020)

12. D.M. Thomas, R. Sturdivant, N.V. Dhurandhar, S. Debroy, N. Clark, A primer on COVID-19 mathematical
models. Obesity (2020). https://doi.org/10.1002/oby.22881

13. T. Rhodes, K. Lancaster, Mathematical models as public troubles in COVID-19 infection control: follow-
ing the numbers. Health Sociol. Rev. 29(2), 177–194 (2020). https://doi.org/10.1080/14461242.2020.17
64376

14. T. Sardar, S.S. Nadim, S. Rana, J. Chattopadhyay, Assessment of lockdown effect in some states and overall
India: a predictive mathematical study on COVID-19 outbreak. Chaos Solitons Fract. 139, 110078 (2020)

15. K. Liang, Mathematical model of infection kinetics and its analysis for COVID-19. SARS and MERS.
Infect. Genet. Evol. 82, 104306 (2020)

16. D. Baleanu, H. Mohammadi, S. Rezapour, A fractional differential equation model for the COVID-19
transmission by using the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2020(1), 1–27 (2020)

17. V.E. Valenti, P. de Lemos Menezes, A.C.G. de Abreu, G.N.A. Vieira, D.M. Garner, Social distancing
measures may have reduced the estimated deaths related to Covid-19 in Brazil. J. Hum. Growth Dev.
30(2), 164–169 (2020)

18. A. Zeb, E. Alzahrani, V.S. Erturk, G. Zaman, Mathematical model for coronavirus disease 2019 (COVID-
19) containing isolation class. BioMed Res. Int. 2020, 3452402 (2020). https://doi.org/10.1155/2020/34
52402

19. A. Vespignani, H. Tian, C. Dye, J.O. Lloyd-Smith, R.M. Eggo, M. Shrestha, S.V. Scarpino, B. Gutierrez,
M.U. Kraemer, J. Wu, K. Leung, Modelling COVID-19. Nature Rev. Phys. 2, 279–281 (2020)

123

https://doi.org/10.1002/oby.22881
https://doi.org/10.1080/14461242.2020.1764376
https://doi.org/10.1155/2020/3452402


  932 Page 34 of 35 Eur. Phys. J. Plus         (2020) 135:932 

20. G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, M. Colaneri, Modelling
the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Med. 26,
855–860 (2020)

21. M. Naveed, D. Baleanu, M. Rafiq, A. Raza, A.H. Soori et al., Dynamical behavior and sensitivity analysis
of a delayed coronavirus epidemic model. Comput. Mater. Continua 65(1), 225–241 (2020)

22. G. Bärwolff, Mathematical modeling and simulation of the COVID-19 pandemic. Systems 8(3), 24 (2020)
23. F. Ndairou, I. Area, J.J. Nieto, D.F. Torres, Mathematical modeling of COVID-19 transmission dynamics

with a case study of Wuhan. Chaos Solitons Fract. 135, 109846 (2020)
24. M.A.Z. Raja, F.H. Shah, M.I. Syam, Intelligent computing approach to solve the nonlinear Van der Pol

system for heartbeat model. Neural Comput. Appl. 30(12), 3651–3675 (2018)
25. I. Ahmad et al., Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics.

Eur. Phys. J. Plus 133(5), 184 (2018)
26. Z. Masood et al., Design of Mexican Hat Wavelet neural networks for solving Bratu type nonlinear

systems. Neurocomputing 221, 1–14 (2017)
27. I. Ahmad et al., Novel applications of intelligent computing paradigms for the analysis of nonlinear

reactive transport model of the fluid in soft tissues and microvessels. Neural Comput. Appl. 31(12),
9041–9059 (2019)

28. M.A.Z. Raja, Solution of the one-dimensional Bratu equation arising in the fuel ignition model using
ANN optimised with PSO and SQP. Connect. Sci. 26(3), 195–214 (2014)

29. A. Mehmood et al., Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD
Jeffery–Hamel flow. J. Taiwan Inst. Chem. Eng. 91, 57–85 (2018)

30. A.H. Bukhari et al., Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting. IEEE
Access 8, 71326–71338 (2020)

31. A. Mehmood, A. Zameer, S.H. Ling et al., Integrated computational intelligent paradigm for nonlinear
electric circuit models using neural networks, genetic algorithms and sequential quadratic programming.
Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04573-3

32. A.H. Bukhari et al., Design of a hybrid NAR-RBFs neural network for nonlinear dusty plasma system.
Alex. Eng. J. (2020). https://doi.org/10.1016/j.aej.2020.04.051

33. Z. Sabir et al., Neuro-heuristics for nonlinear singular Thomas–Fermi systems. Appl. Soft Comput. 65,
152–169 (2018)

34. M.A.Z. Raja, F.H. Shah, E.S. Alaidarous, M.I. Syam, Design of bio-inspired heuristic technique integrated
with interior-point algorithm to analyze the dynamics of heartbeat model. Appl. Soft Comput. 52, 605–629
(2017)

35. Z. Masood et al., Design of a mathematical model for the Stuxnet virus in a network of critical control
infrastructure. Comput. Sec. 87, 101565 (2019)

36. Z. Masood et al., Design of epidemic computer virus model with effect of quarantine in the presence of
immunity. Fundam. Inform. 161(3), 249–273 (2018)

37. N. Zheng, S. Du, J. Wang, H. Zhang, W. Cui, Z. Kang, T. Yang, B. Lou, Y. Chi, H. Long, M. Ma, Predicting
covid-19 in China using hybrid AI model. IEEE Trans. Cyber. 50(7), 2891–2904 (2020)

38. L. Li, Q. Zhang, X. Wang, J. Zhang, T. Wang, T.L. Gao, W. Duan, K.K.F. Tsoi, F.Y. Wang, Characterizing
the propagation of situational information in social media during covid-19 epidemic: a case study on
weibo. IEEE Trans. Comput. Soc. Syst. 7(2), 556–562 (2020)

39. M. Jamshidi, A. Lalbakhsh, J. Talla, Z. Peroutka, F. Hadjilooei, P. Lalbakhsh, M. Jamshidi, L. La Spada,
M. Mirmozafari, M. Dehghani, A. Sabet, Artificial intelligence and COVID-19: deep learning approaches
for diagnosis and treatment. IEEE Access 8, 109581–109595 (2020)

40. P. Arora, H. Kumar, B.K. Panigrahi, Prediction and analysis of COVID-19 positive cases using deep
learning models: a descriptive case study of India. Chaos Solitons Fract. 139, 110017 (2020)

41. S. Hu, Y. Gao, Z. Niu, Y. Jiang, L. Li, X. Xiao, M. Wang, E.F. Fang, W. Menpes-Smith, J. Xia, H. Ye,
Weakly supervised deep learning for covid-19 infection detection and classification from ct images. IEEE
Access (2020)

42. S. Lodhi et al., Fractional neural network models for nonlinear Riccati systems. Neural Comput. Appl.
31(1), 359–378 (2019)

43. M.A.Z. Raja, M.A. Manzar, S.M. Shah, Y. Chen, Integrated intelligence of fractional neural networks
and sequential quadratic programming for Bagley–Torvik systems arising in fluid mechanics. J. Comput.
Nonlinear Dyn. 15(5), 051003 (2020)

44. M. Umar et al., A stochastic computational intelligent solver for numerical treatment of mosquito dispersal
model in a heterogeneous environment. Eur. Phys. J. Plus 135(7), 1–23 (2020)

45. M.A.Z. Raja, K. Asma, M.S. Aslam, Bio-inspired computational heuristics to study models of HIV
infection of CD4+ T-cell. Int. J. Biomath. 11(02), 1850019 (2018)

123

https://doi.org/10.1007/s00521-019-04573-3
https://doi.org/10.1016/j.aej.2020.04.051


Eur. Phys. J. Plus         (2020) 135:932 Page 35 of 35   932 

46. M. Umar et al., Stochastic numerical technique for solving HIV infection model of CD4+ T cells. Eur.
Phys. J. Plus 135(6), 403 (2020)

47. A. Ara et al., Wavelets optimization method for evaluation of fractional partial differential equations: an
application to financial modelling. Adv. Differ. Equ. 2018(1), 8 (2018)

123


	Intelligent computing with Levenberg–Marquardt artificial neural networks for nonlinear system of COVID-19 epidemic model for future generation disease control
	Abstract
	List of symbols
	1 Introduction
	1.1 An overview of COVID-19 epidemic
	1.2 Related studies
	1.3 System model
	1.4 Problem statement with significance
	1.5 Innovative contributions
	1.6 Organization

	2 Mathematical formulation of COVID-19 models
	2.1 COVID-19 model for Wuhan, China
	2.2 COVID-19 model for Karachi, Pakistan
	2.3 COVID-19 model for Lahore, Pakistan
	2.4 COVID-19 model for Faisalabad, Pakistan
	2.5 COVID-19 model for Rawalpindi, Pakistan

	3 Methodology and performance metrics
	4 Numerical simulation with interpretations
	5 Conclusions
	References




