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Abstract

BACKGROUND: Recent reports suggest that component plasma products contain significant 

quantities of cellular contamination. We hypothesized that leukoreduction of whole blood before 

preparation of derived plasma is an effective method to prevent cellular contamination of stored 

plasma.

STUDY DESIGN: Samples of never-frozen liquid plasma prepared by standard methods (n = 25) 

were obtained from 3 regional blood centers that supply 3 major trauma centers. Samples were 

analyzed for leukocyte and platelet contamination by flow cytometry. To determine if 

leukoreduction of whole blood before centrifugation and expression of plasma prevents cellular 

contamination of liquid plasma, 1 site generated 6 additional units of liquid plasma from 

leukoreduced whole blood, which were then compared with units of liquid plasma derived by 

standard processing.

RESULTS: Across all centers, each unit of never-frozen liquid plasma contained a mean of 12.8 

± 3.0 million leukocytes and a mean of 4.6 ± 2 billion platelets. Introduction of whole blood 

leukoreduction (LR) before centrifugation and plasma extraction essentially eliminated all 

contaminating leukocytes (Non-LR: 12.3 ± 2.9 million vs LR: 0.05 ± 0.05 million leukocytes) and 

platelets (Non-LR: 4.2 ± 0.3 billion platelets vs LR: 0.00 ± 0.00 billion platelets).
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CONCLUSIONS: Despite widespread belief that stored plasma is functionally acellular, testing 

of liquid plasma from 3 regional blood banks revealed a significant amount of previously 

unrecognized cellular contamination. Introduction of a leukoreduction step before whole blood 

centrifugation essentially eliminated detectable leukocyte and platelet contaminants from plasma. 

Therefore, our study highlights a straightforward and cost-effective method to eliminate cellular 

contamination of stored plasma.

Blood transfusions are lifesaving in many circumstances, but are also known to be associated 

with the potential for serious adverse consequences. Significant advancement has been made 

over the past 3 decades to reduce the risk of transfusion-related complication, particularly by 

the leukoreduction (LR) of packed red blood cells (PRBC) and platelets.1 Transfusing 

allogeneic leukocytes causes a wide variety of complications, including transmission of 

infectious diseases, alloimmunization, graft vs host disease, and transfusion-related 

immunomodulation (TRIM).2 These and other potentially preventable transfusion-related 

complications prompted the majority of developed countries to mandate universal 

leukoreduction (LR) of all transfusion products.3

Blood banking practices in the US have traditionally accepted the notion that plasma 

products are acellular, containing needed coagulation factors without contamination of cells 

from the buffy coat (eg leukocytes and/or platelets). The majority of plasma units created for 

transfusion in the US are derived from whole blood centrifugation, by which components are 

separated by specific weight into red blood cells, buffy coat (containing leukocytes and 

platelets), and plasma. The plasma layer is then removed by a technician applying uniform 

pressure at the bottom of the bag using a “plasma expressor” until all of the plasma is 

removed without allowing cells from the buffy coat to contaminate the newly formed unit of 

plasma. As visual buffy coat exclusion during plasma extraction derived from centrifuged 

whole blood is believed to adequately avoid cellular contamination, filter leukoreduction is 

not routinely performed on plasma. However, recent reports suggest that stored plasma units 

reveal previously unrecognized significant leukocyte and platelet contamination.4–6 The 

combination of a recent paradigm shift in transfusion strategy for patients in hemorrhagic 

shock resulting large increases of plasma transfusions,7 and the current knowledge that 

stored plasma products contain significant cellular contamination, provide even more 

urgency to find a solution to this previously unrecognized problem. Herein, we tested the 

hypothesis that LR of whole blood before centrifugation is an effective way to prevent 

cellular contamination of stored plasma.

METHODS

Plasma product preparation

Never-frozen liquid plasma samples from male donors (n = 25) were obtained from regional 

blood centers (Site A: Mobile, AL; Site B: Baton Rouge, LA; Site C: New Orleans, LA) 

supplying 3 major trauma centers located in the southeastern US. All samples were 

transported by the research team to ensure proper temperature conditions and to avoid 

introducing freeze-thaw events before testing. The methods for plasma generation at these 

regional blood centers represent standard operating procedure in the blood banking industry. 

Plasma units were created by single-step whole blood centrifugation and plasma expression 
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without leukocyte reduction, representing standard, never-frozen liquid plasma available for 

transfusion during resuscitation of trauma patients. Plasma was sampled from the tubular 

segments of each unit.

To determine if LR of whole blood before centrifugation is effective in eliminating cellular 

contamination of liquid plasma, Site B created 6 additional units of liquid plasma from 

leukoreduced whole blood. The leukoreduction step was performed using a commercially 

available Sepacell RS-2000/RZ-2000 leukocyte reduction filter (Fenwal) before 

centrifugation. Units created by leukoreduction were then compared to units of liquid 

plasma derived by standard processing methods.

Flow cytometry measurement of cellular contamination

Samples were analyzed for leukocyte and platelet contamination by flow cytometry (Sysmex 

XN) in the clinical laboratory at the University of South Alabama University Hospital. 

Leukocyte count was obtained by analyzing the samples via body fluid mode, and platelet 

number was obtained via platelet fluorescence. The manufacturer stated linearity, and the 

institution quality control data were reviewed to ensure result reliability. Acceptable 

parameter ranges for leukocytes and platelets fall between 0 and 440 cells/μL and 0 and 

5,000 cells/μL, respectively.8 All experimental results fell within acceptable ranges for 

instrument linearity. The number of cells per microliter of sample were extrapolated to 

determine total leukocytes (expressed as millions of cells per unit of blood product) and 

platelets (expressed as billions of cells per unit of blood product). Cell numbers were 

determined by assuming a volume of 300 mL per unit, which reflects the mean volume of 

plasma product per unit produced by the Site A regional blood center (Mobile, AL).

RESULTS

Across all centers, each unit of never-frozen liquid plasma contained a mean of 12.8 ± 3 

million leukocytes (Fig 1.Site A: n = 6, 7.0 ± 1.8 million; Site B: n = 6, 12.3 ± 2.9 million; 

Site C: n = 13, 15.7 ± 5.5 million), and 4.6 ± 2 billion platelets (Fig 2. Site A: n = 6, 0.35 ± 

0.05 billion; Site B: n = 6, 4.2 ± 0.3 billion; Site C: n = 13, 6.7 ± 3.8 billion). Introduction of 

a whole blood filter leukoreduction (LR) step before plasma extraction essentially eliminated 

all contaminating leukocytes (Fig 3. Non-LR: 12.3 ± 2.9 million vs LR: 0.05 ± 0.05 million 

leukocytes) and platelets (Non-LR: 4.2 ± 0.3 billion platelets vs LR: 0.00 ± 0.00 billion 

platelets).

DISCUSSION

In this study, we challenged the paradigm that current blood banking practices in the US are 

sufficient to produce cell-free units of plasma suitable for transfusion. The idea that current 

practices to produce transfusion-ready plasma products might require reconsideration came 

from our previous observation that stored plasma products from blood centers servicing 2 

regional level 1 trauma centers (Mobile, AL and New Orleans, LA) contained a significant 

quantity of previously unrecognized cellular contamination.4 The work presented here tested 

new samples of never-frozen plasma components from the Mobile and New Orleans centers, 
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and also expanded to a third center in Baton Rouge, LA. Plasma units from all 3 centers 

demonstrated significant levels of contaminating leukocytes and platelets (Figs 1 and 2).

Our studies demonstrate that contaminating leukocytes in plasma are in quantities 

significantly above the level previously reported to induce alloimmunization responses.9–12 

The clinical significance of transfusion-related immunosuppression (TRIM) induced by 

allogeneic blood transfusion was first reported in 1973, when allograft survival in renal 

transplant patients was noted to be significantly improved if the patient received a 

perioperative packed red blood cell (PRBC) transfusion.13 This was later supported with a 

large prospective analysis revealing that preoperative transfusion significantly improved 

renal allograft survival, but the survival benefit did not persist in patients receiving a 

transfusion during the operation.14 Pretransfusion with allogeneic nonleukoreduced PRBC 

to renal transplant recipients was used as standard immunosuppression technique until the 

late 1980s, but was subsequently abandoned in favor of more modern immunosuppression 

strategies.15,16 TRIM was also implicated in significant increases in recurrence rates after 

resected malignancy17 and postoperative bacterial infection.18

The mechanisms of immunosuppression after transfusion are not known; however, multiple 

animal studies implicate transfusion-derived donor leukocytes in enhanced cancer 

progression.19–23 Other authors have specifically postulated that class II major 

histocompatibility complex (MHC) antigens on allogeneic leukocytes being presented to 

recipient T lymphocytes24 cause expression of the interleukin (IL)-2 receptor without the 

required costimulatory signal to induce proliferation and differentiation of alloantigen-

specific T-lymphocytes, therefore causing T-cell anergy.25 Regardless of the specific 

mechanism, the immunosuppression caused by transfusing allogeneic leukocytes has been 

well documented over the past 4 decades, which suggests the degree of leukocyte 

contamination reported in the current and previous studies should be alarming, and methods 

for their removal should be urgently evaluated and implemented.

Although never-frozen liquid plasma is used in many trauma centers as the initial plasma 

product of choice for urgent transfusion, most plasma units produced nationally are stored as 

fresh frozen plasma (FFP, frozen within 8 hours of procurement) or PF-24 (frozen within 24 

hours of procurement). The freeze-thaw process required for FFP and PF-24 would rupture 

any contaminating cells (ie platelets and leukocytes), thereby releasing their contents, 

potentially leading to activation of the innate immune system distinct from the adaptive 

immunosuppression seen after transfusion of intact allogenic leukocytes.4 Collectively, the 

inflammatory elements of cellular debris are termed damage associated molecular patterns 

(DAMPs).26 Evidence that DAMPs contribute to human disease is compelling.6,27–30 

Indeed, the transfusion of inflammatory DAMPs to rodents,30,31 pigs,32 and humans4,6 

recapitulates many elements of acute respiratory distress syndrome (ARDS) and multiorgan 

failure. Because patients in hemorrhagic shock are already immunologically primed and 

receive multiple units of plasma transfusions, the effect from transfusion-associated DAMPs 

is likely exaggerated when compared with patients who are not in shock.4

Solutions to the potential problems associated with cellular contamination of plasma units 

may require re-evaluation of current blood banking practices. The majority of plasma units 
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created for transfusion in the US are derived from whole blood centrifugation. The source of 

the observed cellular contamination seemed most likely to arise during the expression step 

of plasma preparation. After standard centrifugation of whole blood into 3 distinct layers, 

the plasma layer is decanted off the top using a hand-operated “plasma expressor” (Fig 4). 

The remaining red cell mass and buffy coat are put through a cellular reduction filter to 

eliminate buffy coat contamination (Fig 5). This process is subject to both sample 

heterogeneity and human error, as the buffy coat has varying levels of distinctness, and 

blood bank technicians are often responsible for processing multiple units simultaneously. 

We believe that leukoreduction to remove white blood cells and platelets at the level of 

whole blood before centrifugation (Fig 6) provides a more distinct interface between the 

plasma and RBC layers, allowing the technician to more easily visually recognize when to 

stop the plasma expression step, or facilitating automated termination with existing optical 

sensor expressor systems. Herein, we have provided an easy and cost-effective solution to 

this previously unrecognized problem. Indeed, placing a standard, low-cost leukoreduction 

filter before the centrifugation step completely prevented leukocyte and platelet 

contamination of stored plasma components when compared to the traditional methods from 

the same blood bank.

As an initial description of this phenomenon and evaluation of a potential low-cost, 

implementation-ready solution, several limitations to this work must be acknowledged. 

Specifically, while we evaluated the effect of pre-centrifugation whole blood leukoreduced 

plasma, ongoing work will be required to enumerate the effect of this strategy on red cell 

and platelet units as well. While red cell mass is not generally affected by leukoreduction, 

the effect of pre-centrifugation whole blood leukocyte reduction on platelet count would 

likely prohibit platelet extraction from units processed in this way. Furthermore, clotting 

factor level analysis and functional hemostatic potential remain to be evaluated between 

these LR-plasma and non-LR plasma units to confirm their equivalence before considering 

pre-centrifugation whole blood leukoreduction as a safe and effective strategy to address the 

previously unrecognized cellular contamination of plasma described here.

CONCLUSIONS

Despite widespread belief that stored plasma is functionally acellular, liquid plasma at 3 

regional blood banks contained significant amounts of previously unrecognized cellular 

contamination. Intact leukocytes, or inflammatory DAMPs from thawed, ruptured cells may 

be drive transfusion-related side effects and end-organ injury. Introduction of a 

leukoreduction step before whole blood centrifugation essentially eliminated detectable 

leukocyte and platelet contaminants from plasma, highlighting a straightforward and cost-

effective method to mitigate cellular contamination, and improve patient safety.
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Abbreviations and Acronyms

DAMP damage associated molecular patterns

LR leukoreduction

PRBC packed red blood cells

TRIM transfusion-related immunomodulation
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Figure 1. 
Leukocyte contamination of never-frozen liquid plasma.
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Figure 2. 
Platelet contamination of never-frozen liquid plasma.
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Figure 3. 
Leukoreduction (LR) of whole blood before centrifugation prevents cellular contamination 

of plasma units.
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Figure 4. 
Plasma expressor.
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Figure 5. 
Standard method for creation of non-leukoreduction (non-LR) plasma from whole blood 

centrifugation. (1) Whole blood is donated, (2) the whole blood is centrifuged, causing the 

unit to separate into 3 layers (plasma, buffy coat, and red blood cells), (3) the plasma layer is 

squeezed out of the top of the bag using a plasma expresser (Fig 4), and the technician will 

stop the expression when cells from the buffy coat enter the line, (4) the remaining buffy 

coat and red blood cells are put through a cellular reduction filter (grey box represents the 

position of the LR filter), which removes all leukocytes and platelets. The final products of 

this method create a unit of LR-packed red blood cells (PRBC) and unit of non-LR plasma.
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Figure 6. 
Method for creation of LR plasma from whole blood centrifugation. (1) Whole blood is 

donated, (2) the whole blood is then put through a cellular reduction filter before (3) 

centrifugation, which separates the LR whole blood unit into 2 distinct layers (plasma and 

red blood cells), (4) the plasma layer is squeezed out of the top of the bag using a plasma 

expresser until the red blood cells are in the line, (5) the remaining red blood cells are 

already LR. The final products of this method create a unit of LR-PRBC and unit of LR 

plasma.
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