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Abstract
This study was aimed at investigating the phytochemical constituents, antifungal properties and antibiotic-modifying activity 
of the aqueous crude extract and fractions of Amburana cearensis seeds (CEFAC). The CEFAC were chemically character-
ized by LC–MS/MS–QTOF. In addition, the antifungal activity was assayed by the microdilution method against strains of 
Candida albicans. The phytochemical profile of CEFAC exhibited phenolic compounds, organic acids, and polyphenols. 
The results of the assessment of antifungal activity reveled an  IC50 ranging from 45.6 to 2048 µg/mL. Interestingly, when 
CEFAC was associated with Fluconazole, we evidenced a decreased  IC50 (1.81–11.9 µg/mL), suggesting a synergism with 
antibiotic. It was possible to identify in the crude extract and fractions several phenolic compounds, organic acids, and 
some polyphenols in positive ionization mode. These results suggest that CEFAC may present compounds with the ability 
to interact and act synergistically with antimicrobial drugs, highlighting its potential as an alternative source for the devel-
opment of new antimicrobial agents.
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Introduction

The fungi are part of the human microbiota (Siqueira and 
Sen 2004) and important etiological agents of human dis-
eases, due to its ability to modulate the expression of viru-
lence factors such as host cell adhesion, hyphae formation, 
phenotypic plasticity and production of hydrolytic enzymes. 
The genus Candida is the most widespread opportunistic 
fungal pathogen in the human body, causing mucosal and 
systemic infections, especially among immunosuppressed 
and hospitalized patients (Goulart et al. 2018). Due to the 
wide use of antifungal agents, drug resistance of Candida 
albicans is increasing, which poses a serious threat to anti-
fungal therapy (Ksiezopolska and Gabaldõn 2018). There-
fore, exploring new effective antifungal agents is urgently 
needed.

In this sense, natural products have been reported as sources 
of various bioactive molecules that may pave the way for novel 
antifungal agents (Ksouri et al. 2017; Zida et al. 2017). In 
addition, studies are carried out to promote the combination of 
antifungal drugs and natural products against resistant Candida 
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strains (Calixto Jr. et al. 2015), which can be a strongly prom-
ise to face this challenge.

Amburana cearensis (Allemao) A. C. Sm., Fabaceae fam-
ily (Papilionoideae, Leguminosae) is naturally widespread 
in Caatinga, northeastern Brazil (Bravo et al. 1999). The 
medicinal use of A. cearensis is common, especially in the 
treatment of headaches, muscle aches, constipation, and 
urinary tract infections (Leal et al. 2003; Agra et al. 2007; 
Lima et al. 2013). Several compounds with antioxidant and 
antimicrobial properties have been isolated from A. cearen-
sis seeds, including coumarins, methyl esters, phytosterols 
(γ-sitosterol, stigmasterol, and campesterol) (Calixto Jr. 
et al. 2015; Pereira et al. 2017; Zida et al. 2017). Thus, the 
aqueous crude extract and fractions of A. cearensis seeds 
were subjected to chemical characterization and antifungal 
assessments to verify whether they present any potential to 
induce a synergistic effect when combined with Fluconazole 
against C. albicans.

Materials and methods

Plant material

Amburana cearensis seeds were identified and provided by 
Floresta Nacional de Nísia, a Conservation Unit managed 
by the Chico Mendes Institute for Biodiversity Conserva-
tion (ICMBio), located in the municipality of Nísia Floresta, 
state of the Rio Grande do Norte, Brazil, and the Caatinga 
Seed Network (UNIVASF).

Extraction and fractionation

The extraction was performed by homogenizing the seed 
powder of A. cearensis with 50 mM Tris–HCl solution, 
pH 7.5, ratio 1:10 (m/v), under constant agitation for 4 h 
at 4 °C and then centrifuged at 10,000×g for 30 min at the 
same temperature. The material was filtered, and the super-
natant was identified as crude extract (CE). Then, CE was 
fractionated into three ammonium sulfate concentration 
ranges: 0–30% (FR-1), 30–60% (FR-2) and 60–90% (FR-3) 
of saturation. After each precipitation step, the sample was 
maintained at 4 °C for approximately 16 h and then centri-
fuged at 10,000×g for 30 min at 4 °C. The fractions were 
then resuspended and dialyzed for 20 h using distilled water. 
After dialysis, the fractions were lyophilized and stored at 
room temperature.

Identification of compounds by ultra‑performance 
liquid chromatography‑quadrupole\time‑of‑flight 
(UPLC–QTOF) system

The analysis was performed on ACQUITY UPLC (Waters), 
coupled to quadrupole/time-of-flight system (QTOF, 

Waters) by Brazilian Agricultural Research Corporation 
(EMBRAPA). The chromatographs were performed on 
a column Waters ACQUITY UPLC BEH (150 × 2.1 mm, 
1.7 µm), fixed temperature of 40 °C, mobile water phases 
with 0.1% of formic acid (A) and acetonitrile with 0.1% 
formic acid (B), gradient ranging from 2 to 95% B (15 min), 
0.4 mL/min flow and 5-µL injection volume. The ESI˗ mode 
was purchased in the 110–1180 Da, fixed source temperature 
at 120 °C, desolvation temperature at 350 °C, desolvation 
gas flow at 500 L/h, extraction cone of 0.5 V and 2.6 kV 
of capillary voltage. The ESI + mode was purchased in the 
110–1180 Da, fixed source temperature at 120 °C, desolva-
tion temperature at 350 °C, desolvation gas flow at 500 L/h 
and 3.2 kV of capillary voltage. Encephalin leucine was used 
as lock mass. The acquisition mode was  MSE. The instru-
ment was controlled by the software Masslynx 4.1 (Waters 
Corporation).

Antifungal assays

Strains and culture medium

The strains used in this study were standard type and isolated 
from Cultura Oswaldo Cruz (FIOCRUZ), Instituto Nacional 
de Controle de Qualidade em Saúde (INCQS), specifically 
CA INCQS 40006 and CA URM 4125, standard and iso-
lated strain, respectively. The strains were inoculated on 
Sabouraud Dextrose Agar (SDA, KASVI) and incubated 
for 24 h at 37 °C. Subsequently, aliquots of the yeast were 
transported to test tubes, each containing 3 mL of sterile 
saline (0.9%). Inoculum concentration was standardized by 
comparison with the 0.5 McFarland scale (barium chloride) 
(NCCLS 2012). Sabouraud Dextrose (SD, HIMEDIA) in 
double concentration was used in the microdilution assay.

Chemicals and reagents

Dimethyl sulfoxide (DMSO, Merck, Germany) was used to 
fluidize the CE and fractions, while Fluconazole (Capsule—
Prati Donaduzzi, Brazil) was diluted with distilled water and 
used as reference drug. The test solution was prepared by 
weighing 0.15 g of the CE and fractions and diluting with 
1 mL of DMSO to obtain the desired concentration. Samples 
were diluted in sterile distilled water (16.384 μg/mL) such 
that DMSO had no activity on the tested cells (Stoppa et al. 
2009).

IC50 and cell viability

To determine the concentration capable of inhibiting 50% of 
yeast growth  (IC50), the CE and fractions isolated or com-
bined with Fluconazole were tested by microdilution method 
in Sabouraud Dextrose broth in 96-well microplates with 
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initial concentration of 16.384 μg/mL, and serially diluted 
to a final concentration of 8 μg/mL (Javadpour et al. 1996; 
Morais-Braga et al. 2016). Controls were also prepared for 
the diluents using 0.9% sodium chloride solution instead of 
inoculum. All tests were performed in quadruplicates. The 
plates were incubated at 37 °C for 24 h and then read on a 
spectrophotometer ELISA  (Thermoplate®) at 630 nm.

Determination of minimum fungicidal 
concentration (MFC)

To verify the MFC, the tip of a sterile rod was inserted into 
each well of the previously tested plate. After inserting into 
the middle of each well, the rod was taken to a Petri dish 
containing SD with the aid of a guide plate attached to the 
bottom of the plate for yeast subculture and cell viability 
evaluation. After 24 h of incubation, the plates were ana-
lyzed for colony formation (Ernst et al. 1999). The concen-
tration in which there was no growth of fungal colony was 
considered the MFC.

Evaluation of the modifying effect on Fluconazole 
action

First, the intrinsic action of CE, fractions and Fluconazole 
on yeast growth were verified. Then, it was evaluated if the 
antifungal action of Fluconazole was modulated by the CE 
and fractions. Therefore, CE and fractions were used at sub-
inhibitory concentrations (MFC/16) according to Coutinho 
et al. (2008) with minor modifications from Morais-Braga 
et al. (2016). If the CE or fractions potentiates the action of 
the Fluconazole, the verified effect was considered synergic 
type. If it interfered with the action of the Fluconazole, the 
verified effect was considered antagonistic type. The plates 
were filled with 100 μL of medium + inoculum + sample 
followed by microdilution with 100 μL of Fluconazole at 
concentration of 8192 μg/mL. The mixture was added to 
the first well of the plate to be subjected to serial dilutions 
(1:1), ranging from 8192 to 8 μg/mL. The last well was used 
as control. The plates were incubated at 37 °C for 24 h. The 
reading was performed on an ELISA spectrophotometer 
 (Thermoplate®).

Statistical analysis

GraphPad Prism software v.5.0 was used for statistical 
analysis. The data obtained were verified for their normal 
distribution using a two-way ANOVA (P < 0.05; *P < 0.1; 
****P < 0.0001) and Bonferroni post hoc test. The  IC50 
values were obtained by nonlinear regression analysis with 
interpolation of the unknown standard curve obtained from 
fungal growth assays as a function of extract concentration 
and expressed in μg/mL.

Results

Characterization of CE and fractions from A. 
cearensis seeds

Figures 1, 2, 3 and 4 show the composition of the CE and 
fractions of A. cearensis seeds determined by LC–MS/
MS–QTOF. The parameters analyzed were molecular 
weight, ionic mass, retention time, fragmentation pattern 
and compared with the available literature. In this study, 
we identified seven compounds in the CE (Table 1), six 
compounds in FR-1 (Table 2), eight compounds in FR-2 
(Table 3) and five compounds in FR-3 (Table 4), varying 
from flavonoids, phenolic acids, flavan derivatives, organic 
acids and phenolic compounds. The chemical structures of 
the compounds are shown in Fig. 5.        

In addition, it was possible to identify the presence of 
some organic acids such as cinnamic acid and some possible 
trans-isomers in FR-1 and FR-2 (Tables 2 and 3, respec-
tively). We evidenced the presence of some polyphenols as 
4′- or 5′-O-methyl-(epi)catechin I in CE, and a polyphenol 
monomer trigalloyl hexoside in FR-3. The presence of the 
flavonoid icariin glucuronide was observed in all samples, 
as well as dihydroxymethoxyisoflavone, 7,8,3′-trihydroxy-
4′-methoxyisoflavone and trihydroxyflavanone.

Antifungal activity of CE and fractions of A. cearensis 
seeds

All samples used alone induced inhibition growth of C. 
albicans strains (Figs. 6, 7, 8, 9), and FR-3 of A. cearen-
sis seeds showed the lowest  IC50 (123.5 µg/mL) against 
INCQS 40.006 (Table 5). However, Fluconazole + FR-2 
showed the lowest  IC50 (2.10 and 1.81 µg/mL), indicating 
that the combination of antifungal drug and FR-2 has syn-
ergistic effect against C. albicans (Table 5). Similar effects 
have been evidenced for the CE and FR-1 combined with 
Fluconazole against URM 4127 strain. On the other hand, 
we evidenced antagonistic effect when CE, FR-1 and FR-3 
were combined with Fluconazole (Table 5).

Fungicidal activity

The MFC for all samples tested alone was ≥ 16.384 µg/mL 
for INCQS 40.006. However, fluconazole + FR-2 showed 
the lowest MFC (128 µg/mL) against URM 4127 strain 
(Table 6), which indicated a synergic effect of antifungal 
drug and FR-2. Conversely, CE and FR-1 combined with 
antifungal drug showed antagonistic effect against URM 
4127 strain (Table 6).
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Discussion

Amburana cearensis characterization

Polyphenols are secondary metabolites ubiquitously distrib-
uted among plants. They are divided in phenolic compounds, 
phenolic acids (cinnamic acid derivatives) and glycosidic 
phenylpropanoid esters (Ferreira et al. 2010). Phenolic com-
pounds were previously reported as having antimicrobial and 
anti-inflammatory activities (Klančnik et al. 2010).

In addition, they exhibit antioxidant properties (Moure 
et al. 2001; Giada 2013; Flores et al. 2013), due to hydrox-
yls attached to aromatic rings. These molecules include 

flavonoids, phenolic acids, tannins, and tocopherols (Soares 
2002; Angelo and Jorge 2007) that act as effective scav-
engers of reactive oxygen species, and chelating  Fe3+ that 
catalyze lipid peroxidation (Andrade et al. 2007).

On the other hand, flavonoids represent a group of plant 
pigments abundantly distributed in nature. Its presence in 
plants may have a relationship with defensive ability, such 
as protection against UV radiation, antifungal and antibacte-
rial actions, as well as attracting pollinators (Lavola 1998). 
These compounds have two aromatic rings connected by a 
bridge of three carbon atoms  (C6C3C6) (Simões et al. 2007).

Icariin glucuronide is categorized as a flavonol, one of the 
subclasses of flavonoid, which have ability to induce bone 

Fig. 1  Ultra-performance liquid 
chromatography with high-
definition mass spectrometry 
(UPLC–MS) chromatography of 
CE from A. cearensis seeds
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tissue repair (Wei et al. 2011), human stem cell prolifera-
tion (Fan et al. 2011), immunoregulation (Kim et al. 2001), 
increases of cGMP in smooth cavernous muscle cells (Ning 
et al. 2006), increases of nitric oxide (Bin and Huang 2007), 
and mimics testosterone’s effects (Zhang and Yang 2006).

Cinnamic acid is a naturally occurring aromatic carbox-
ylic acid whose molecular structure is usually presented in 
trans-form. It is part of the auxin group, plant hormones 
that regulate cell growth and differentiation, and some of its 
derivatives play an important role in plant defense against 
pest attack (Niero 2010). It should be noted that its deriva-
tives exhibit antioxidant (Hussain et al. 2014), antibacterial 
(Chiriac et al. 2005), anticancer (Ekmekcioglu et al. 1998), 

antifungal (Sadeghi et al. 2013), antitumor (Lee et al. 2003) 
and phytotoxic effects (Nishikawa et al. 2013).

Coumarins are derived from phenylalanine metabolism, 
being one of the early precursors of p-hydroxycinnamic acid 
(p-coumaric acid), which is hydroxylated at the C-2′ (ortho-
hydroxylation). The ortho-hydroxylated derivative under-
goes a photocatalyzed double-bond (EZ) isomerization. The 
Z isomer spontaneously lactonizes, producing umbellifer-
one. Prenylation of the benzene ring at positions 6 or 8 of the 
7-hydroxy coumarin derivative is the first step in furan- and 
pyranocoumarin biogenesis. Cyclization of 6- or 8-isopre-
nylcoumarin derivatives occurs by nucleophilic attack of the 
C-7 hydroxyl group to the epoxide formed by oxidation of 

Fig. 2  Ultra-performance liquid 
chromatography with high-
definition mass spectrometry 
(UPLC–MS) chromatography of 
FR-1 from A. cearensis seeds
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the double bond of the isopentenyl residue. Based on the 
orientation of the nucleophilic attack, the product will be 
hydroxyisopropyl dihydrofuranocoumarin or hydroxy dime-
thyl dihydropyranocoumarin (Bourgaud et al. 2006).

Most coumarins are biogenetically derived from the 
shikimic acid pathway, but a significant number of them 
appear to derive from a mixed pathway (shikimic acid and 
acetate) such as phenylcoumarin. 4-n-Propylcoumarin, e.g., 
are entirely derived from the acetate pathway (Strack 1997). 
Coumarin synthesis can be induced by a response to biotic 
and abiotic stress, nutritional deficiency, chemical messen-
gers such as plant hormones and other external metabolites 
(Cabello-Hurtado et  al. 1998; Dewick 2009; Bosqueiro 

1996; Haida et al. 2007). Coumarins have a variety of phar-
macological properties, especially anti-inflammatory, anti-
oxidant, antibacterial, antiviral, antithrombotic, antimuta-
genic and antihypertensive activities (Hoult and Payá 1996).

Characterization studies performed on stem bark extracts 
of A. cearensis, evidenced coumarin (Carvalho 1994), 
responsible for its characteristic odor, isokaempferide (Maia 
2004), kaempferol and afrormosin, amburoside A (Leal et al. 
1997) and B (Leal et al. 2003), vanillic acid (Bravo et al. 
1999) and protocatechuic acid (Canuto et al. 2004), and large 
amount of sucrose. In addition, other studies show that cou-
marin (Carvalho 1994), isokaempferide (Maia 2004) and 
amburoside A (Leal et al. 1997) have anti-inflammatory, 

Fig. 3  Ultra-performance liquid 
chromatography with high-
definition mass spectrometry 
(UPLC–MS) chromatography of 
FR-2 from A. cearensis seeds
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antioxidant, and bronchodilator effects (Leal et al. 2008). 
Of which some coincide with precursors of those found in 
our study. However, it should be noted that some identified 
compounds in this study are not yet reported for its biologi-
cal activity.

Antifungal, fungicidal, and modulating antifungal 
activity

It is noteworthy that the indiscriminate and increasing use 
of azole antifungal drugs, both to prevent and treat active 
infections, has increased the prevalence of Fluconazole-
resistant strains of Candida (Day et al. 2013). In United 

States, an annual increase of > 3400 cases of antifungal 
resistance were identified, as reported by the Center for 
Disease Control and Prevention, thus making fluconazole-
resistant Candida a serious threat (Gajdács 2019).

Fluconazole acts by preventing the biosynthesis path-
way of the main constituent of the fungal cell membrane, 
ergosterol. It inhibits the enzyme lanosterol 14-α dem-
ethylase in the fungal cytochrome P-450 enzyme system, 
which is encoded by the ERG11 gene. Thus, lanosterol 
cannot be converted to ergosterol and consequently the 
accumulation of precursors occurs causing fungal mem-
brane instability (Carrillo-Muñoz et al. 2006; Menozzi 
et al. 2017).

Fig. 4  Ultra-performance liquid 
chromatography with high-
definition mass spectrometry 
(UPLC–MS) chromatography of 
FR-3 from A. cearensis seeds
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Alternatives for treating Candida infections are con-
sidered limited and many existing antifungal drugs have 
undesirable side effects such as high toxicity, especially 
in immunosuppressed individuals (Fica 2004). For these 
patients, antifungal therapies are a challenging situation, 
which represent an urgent need to research and develop 
novel antifungal drugs more effective and less toxic (Cala-
brese et al. 2013).

Bravo et al. (1999) already shown that the main com-
ponent of A. cearensis was coumarin, mainly responsible 
for bronchodilator activity. It also highlights the presence 
of phenolic glycosides that presented antimalarial, anti-
protozoal, antifungal, and antibacterial activity in vitro. In 
addition, Salas et al. (2011) using natural and enzymatically 
modified flavonoids from plants against Penicillium, Asper-
gillus and Fusarium species evidenced antifungal activity. 

However, Steiner et al. (2008) showed that antifungal activ-
ity induced by isoflavone, especially genistein, demonstrated 
a better effect, but without a clear mechanism of action.

The combined use of drugs that can achieve synergistic 
results, showing increased of therapeutic effect, decreased 
minimal inhibitory concentration, regression of antibiotic 
resistance development, and a decrease in host toxicity has 
become increasingly studied as an alternative for the treat-
ment of infections (Silva et al. 2015).

Some phenolic compounds such as gallic acid, catechin, 
luteolin and quercetin demonstrated in vitro antifungal activ-
ity against different Candida species, including C. albicans 
and C. tropicalis (Alves et al. 2014), corroborating with this 
study. In addition, Silva et al. (2014) evaluated the flavo-
noid combined with Fluconazole in in vitro microdilution 
against Fluconazole-resistant C. tropicalis, and observed a 

Table 1  Compounds identified by UPLC-ESI-TOFMS/MS in positive mode in the CE of A. cearensis seeds

Peak no. Retention 
time (min)

[M-H]− 
observed

[M-H]− calcu-
lated

Product ions (MS/
MS)

Empirical 
formula

Parts per 
million 
(error)

Putative name References

1 1.18 689.2051 689.2082 689.2087, 367.1008, 
352.8637

C33H37O16 4.5 Icariin glucu-
ronide

Shunjun et al. 
(2017)

2 1.29 527.1564 527.1553 202.1848, 184.9314, 
178.0209

C27H27O11 2.1 QQCA (quinic-
quinic-caffeic 
acid ester)

Plazonić et al. 
(2009)

3 2.94 467.1732 467.1706 329.0866, 261.0790, 
179.0338, 137.0256

C21H23O12 2.2 (Epi)gallocat-
echin hexose 
II

Ibrahim et al. 
2014

4 3.11 305.0735 305.0720 179.0339, 167.0341, 
137.0252, 125.0241

C15H13O7 4.9 Gallocatechin Ibrahim et al. 
(2014)

5 3.32 172.0376 172.0372 242.9876, 144.0423, 
116.0501

C6H2N7 2.3 No identified –

6 4.93 218.2143 218.2120 177.0513, 145. 0170, 
225.9959

C12H28NO2 10.5 No identified –

7 6.09 246.2422 246.2433 258.8799, 184.0619, 
156.0619

C14H32NO2 4.5 No identified –

8 7.25 247.2733 247.2746 275.2783, 256.2661, 
230.2536

C16H36NO2 4.7 No identified –

9 7.96 283.1002 283.1029 295.0207, 240.0207, 
133.0802

C16H12O5 9.5 Dihydroxym-
ethoxyisofla-
vone

Oliveira et al. 
(2017)

10 8.26 119.0829 119.0821 437.2041, 185.1608, 
120.0852

C4H11N2O2 6.7 No identified –

11 8.46 303.0885 303.0874 137.0244 C16H15O6 3.6 4′- or 
5′-O-Methyl-
(epi)catechin 
I

Ibrahim et al. 
(2014)

12 9.27 393.3636 393.3639 334.3075, 
249.1913,133.0866

C13H41N14 0.8 No identified –

13 9.69 332.3412 332.28 330.3311, 270.9351, 
150.7104

1.0 Gallic-caffeic 
acid ester

Plazonić et al. 
(2009)

14 9.84 457.2762 457.2743 155.0720, 458.2881 C31H37O3 4.2 No identified –
15 9.89 457.2829 457.2801 155.0675, 458.2868 C24H41O8 6.1 No identified –
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Table 3  Compounds identified by UPLC–ESI–TOFMS/MS in positive mode in the FR-2 of A. cearensis seeds

Peak no Retention 
time (min)

[M-H]− 
observed

[M-H]− cal-
culated

Product ions (MS/
MS)

Empirical 
formula

Parts per 
million 
(error)

Putative name References

1 1.17 689.2051 689.2082 689.2087, 367.1008, 
352.8637

C33H37O16 4.5 Icariin glucuronide Shunjun et al. 
(2017)

2 4.03 591.3693 591.3686 401.1527, 172.8673, 
133.0836

C37H51O6 1.2 No identified –

3 5.37 147.0419 147.0446 147.0422, 62.2985 C9H7O2 − 18.4 Trans-cinnamic acid Ibrahim et al. 
(2014)

4 5.40 147.0412 147.0446 147.0422, 62.2985 C9H7O2 − 23.1 Possible isomer trans-
cinnamic acid

Ibrahim et al. 
(2014)

5 5.49 147.0408 147.0446 147.0422, 62.2985 C9H7O2 − 23.1 Possible isomer trans-
cinnamic acid

Ibrahim et al. 
(2014)

6 6.12 246.2432 246.2433 247.4212, 184.0706, 
156.0435

C14H32NO2 − 0.4 No identified Ibrahim et al. 
(2014)

7 6.51 285.2693 285.2700 269.7, 163.8, 150.5 C15H10O6 − 2.5 Hydroxygenistein Schmeda-
Hirschmann 
et al. (2019)

8 6.63 299.0910 299.0919 283.7, 230.7 C17H15O5 − 3.0 Methoxy trihydroxy 
flavanone

Schmeda-
Hirschmann 
et al. (2019)

9 7.26 274.2721 274.2719 275.2858, 256.2728, 
184.0647

C12H32N7 0.7 No identified –

10 7.28 274.2730 274.2719 275.2858, 256.2728, 
184.0647

C12H32N7 4.0 No identified –

11 7.66 313.1066 313.1076 269.0793, 252.0761, 
184.0693

C18H17O5 − 3.2 7,3′-Dihydroxy-8,4′-
dimethoxyisoflavone

Oliveira et al. 
(2017)

12 7.99 283.0953 283.0970 240.0811, 211.0820, 
197.0556

C17H15O4 − 6.0 Dihydroxymethoxyiso-
flavone

Oliveira et al. 
(2017)

13 8.02 283.0921 283.0970 240.0811, 211.0820, 
197.0556

C17H15O4 − 17.3 Dihydroxymethoxy-
isoflavone possible 
isomer

Oliveira et al. 
(2017)

14 8.29 119.0850 119.0861 113.0861, 117.1045 C9H11 − 9.2 No identified –
15 8.52 302.3076 302.3059 184.0782, 177.1111, 

113.0846
C18H40NO2 5.6 No identified –

16 8.67 391.3500 391.3509 184.0709, 177.1171 C17H43N8O2 − 2.3 No identified –
17 9.23 323.2783 323.2797 373.1831, 

339.2472,133.0887
C17H39O5 − 4.3 No identified –

18 9.32 393.3557 393.3580 393.3560, 334.3107, 
177.1114

C22H49O5 − 5.8 No identified –

19 9.35 393.3589 393.3580 393.3560, 334.3107, 
177.1114

C22H49O5 2.3 No identified –

20 9.75 330.3365 330.3372 258.0484, 312.3296, 
331.3336

C20H44NO2 − 2.1 No identified –

21 9.90 457.2744 457.2743 155.0720, 458.2881 C31H37O3 0.2 No identified –
22 9.95 457.2778 457.2743 155.0720, 458.2881 C31H37O3 7.7 No identified –
23 10.11 395.3740 395.3750 335.3429, 184.0704, 

133.0864
C23H47N4O − 2.5 No identified –
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Table 4  Compounds identified by UPLC–ESI–TOFMS/MS in positive mode in the FR-3 of A. cearensis seeds

Peak no Retention 
time (min)

[M-H]− 
observed

[M-H]− calcu-
lated

Product ions 
(MS/MS)

Empirical 
formula

Parts per 
million 
(error)

Putative name References

1 1.17 689.2147 689.2140 689.2087, 
367.1008, 
352.8637

C33H37O16 1.0 Icariin glucuro-
nide

Shunjun et al. 
(2017)

2 1.25 136.0607 136.0610 152.0563, 
136.0607

C4H10NO4 − 2.2 No identified –

3 1.72 136.0612 136.0610 152.0563, 
136.0607

C4H10NO4 1.5 No identified –

4 2.64 172.0363 172.0372 242.9876, 
144.0423, 
116.0501

C6H2N7 − 5.2 No identified –

5 3.11 433.1133 433.1135 300.9686 C21H21O10 − 0.5 Ellagic acid 
pentoside 1

Schmeda-
Hirschmann 
et al. (2019)

6 3.54 287.0533 287.0556 287.0538, 
241.0332, 
175.0282

C15H11O6 8.0 Luteolin Ibrahim et al. 
(2014)

7 3.71 133.0901 133.0865 207.0626, 
151.0330, 
133.0813

C6H13O3 2.7 No identified –

8 3.81 133.0860 133.0865 207.0626, 
151.0330, 
133.0813

C6H13O3 − 3.5 No identified –

9 4.02 591.3591 591.3592 207,0608, 
151.0291 
133.0836

C26H55O14 − 0.2 No identified –

10 4.13 635.3927 635.3927 465.0265 C39H55O7 − 3.3 Trigalloyl 
hexoside

Schmeda-
Hirschmann 
et al. (2019)

11 4.35 207.0683 207.0657 369.1195, 
207.0621, 
175.0858

C11H11O4 12.6 No identified –

12 4.37 207.0658 207.0657 369.1195, 
207.0621, 
175.0858

C11H11O4 0.5 No identified –

13 4.91 207.0661 207.0657 240.0811, 
211.0820, 
197.0556

C11H11O4 1.9 No identified –

14 6.11 246.2453 246.2433 258.8799, 
184.0619, 
156.0619

C14H32NO2 8.1 No identified –

15 6.52 283.0364 283.1029 295.0207, 
240.0207, 
133.0802

C16H12O5 9.5 Dihydroxymeth-
oxyisoflavone

Oliveira et al. 
(2017)

16 7.32 274.2742 274.2746 318.3075, 
274.2844, 
256.2657

C16H36NO2 − 1.5 No identified –

17 7.38 318.2995 318.2981 274.2706. 
256.2648

C14H36N7O 4.4 No identified –

18 8.31 119.0870 119.0821 437.2041, 
185.1608, 
120.0852

C4H11N2O2 6.7 No identified –

19 8.56 302.3055 302.3059 184.0782, 
177.1111, 
113.0846

C18H40NO2 − 1.3 No identified –
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Table 4  (continued)

Peak no Retention 
time (min)

[M-H]− 
observed

[M-H]− calcu-
lated

Product ions 
(MS/MS)

Empirical 
formula

Parts per 
million 
(error)

Putative name References

20 9.17 304.3001 304.3004 212.2469, 
133.0871

C21H38N − 1.0 No identified –

21 9.80 330.3346 330.3372 258.0484, 
312.3296, 
331.3336

C20H44NO2 − 2.1 No identified –

22 9.93 457.2736 457.2743 155.0720, 
458.2881

C31H37O3 − 1.5 No identified –

23 9.95 457.2711 457.2743 155.0720, 
458.2881

C31H37O3 − 7.0 No identified

Fig. 5  Main compounds identified in CE, FR-1, FR-2 and FR-3 of A. cearensis seeds. a aqueous crude extract; b fraction 1; c fraction 2; and d 
fraction 3
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Fig. 6  Antifungal effects (μg/
mL) of aqueous crude extract 
and fractions of A. cearen-
sis seeds against C. albicans 
40006. Fluconazole was used as 
a control against C. albicans 

Fig. 7  Antifungal effects (μg/
mL) of aqueous crude extract 
and fractions of A. cearensis 
seeds combined with flucona-
zole against C. albicans 40006. 
Fluconazole was also used as a 
control against C. albicans 
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Fig. 8  Antifungal effects (μg/
mL) of aqueous crude extract 
and fractions of A. cearensis 
seeds against C. albicans 4127. 
Fluconazole was used as a con-
trol against C. albicans 

Fig. 9  Antifungal effects (μg/
mL) of aqueous crude extract 
and fractions of A. cearensis 
seeds combined with flucona-
zole against C. albicans 4127. 
Fluconazole was also used as a 
control against C. albicans 
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considerable synergistic effect, reducing the MICs of the fla-
vonoids from 64 to 0.25 μg/mL, similar to our results against 
C. albicans.

Conclusion

CE, FR-1, FR-2 and FR-3 of A. cearensis seeds presented 
phenolic compounds, organic acids, and polyphenols, that 
contributed to its antifungal capacity and synergistic effects. 
Our results show that A. cearensis seeds can be considered 
as promising source of antifungal agents and modulators of 
antifungal activity. However, further studies are needed to 
identify the active compounds and to prove their efficacy, 
safety, and mechanism of action.
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