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Abstract
Aim and objective  Emerging translational evidence suggests that epigenetic alterations (DNA methylation, miRNA expres-
sion, and histone modifications) occur after external stimuli and may contribute to exacerbated inflammation and the risk 
of suffering several diseases including diabetes, cardiovascular diseases, cancer, and neurological disorders. This review 
summarizes the current knowledge about the harmful effects of high-fat/high-sugar diets, micronutrient deficiencies (folate, 
manganese, and carotenoids), obesity and associated complications, bacterial/viral infections, smoking, excessive alcohol 
consumption, sleep deprivation, chronic stress, air pollution, and chemical exposure on inflammation through epigenetic 
mechanisms. Additionally, the epigenetic phenomena underlying the anti-inflammatory potential of caloric restriction, n-3 
PUFA, Mediterranean diet, vitamin D, zinc, polyphenols (i.e., resveratrol, gallic acid, epicatechin, luteolin, curcumin), and 
the role of systematic exercise are discussed.
Methods  Original and review articles encompassing epigenetics and inflammation were screened from major databases 
(including PubMed, Medline, Science Direct, Scopus, etc.) and analyzed for the writing of the review paper.
Conclusion  Although caution should be exercised, research on epigenetic mechanisms is contributing to understand patho-
logical processes involving inflammatory responses, the prediction of disease risk based on the epigenotype, as well as the 
putative design of therapeutic interventions targeting the epigenome.
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Introduction

Inflammation encompasses a myriad of pathophysiological 
and immune responses to diverse environmental “insults”, 
such as toxins or pathogens, in order to facilitate tissue 
recovery and to maintain homeostasis [1]. These mitigation 
and reparation processes are mediated by the production 
and recruitment of cytokines, chemokines, adhesion mol-
ecules, and other autocrine/paracrine molecules focused 
on the local site of damage, thus inducing an acute inflam-
matory reaction [2]. However, when inflammation persists 
for a long time, it becomes a chronic condition, triggering 
a cascade of inflammatory events that eventually lead to 
durable cellular harms, permanent tissue injury, and organ 
dysfunction [3]. This state involves the induction of sev-
eral pro-inflammatory mediators produced predominantly 
by activated macrophages, including Interleukin 1 beta (IL-
1β), tumor necrosis factor-alpha (TNF-α), and interleukin 6 
(IL-6) to perpetuate the inflammatory phenotype [4]. The 
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inflammatory signaling is mediated by enzymes and adhe-
sion molecules as well as the activation of nuclear factor 
kappa β (NF-κB) and other transcription factors as central 
regulators where the immune system and associated cells 
also play an orchestrated role [5]. The identification of fac-
tors involved in the onset and progression of inflammation 
is essential for the better understanding of inflammation-
related disorders and the search for therapeutic targets.

Emerging evidence suggests that epigenetic processes 
affecting gene expression without changes in the nucleotide 
sequence may contribute to the pathophysiology of inflam-
matory processes [6]. In this context, it has been documented 
that epigenetic modifications (such as DNA methylation in 
CpG islands, chromatin remodeling by histone tail modifica-
tions, and non-coding RNA expression) occur after environ-
mental stimuli and play a fundamental role in inflammatory 
gene transcription [7]. Indeed, integrative epigenome-wide 
association studies (EWAS) using large-scale bioinformatics 
analysis have reported different epigenetic marks related to 
several circulatory inflammation markers [8]. Therefore, epi-
genetic signature alterations may exacerbate inflammatory 
responses and influence the risk of chronic inflammatory 
disease, including diabetes, cardiovascular diseases, cancer, 
and neurological disorders [9]. However, elucidation of the 
specific epigenetic pathways involved in the modulation of 
the inflammasome and disease susceptibility remain largely 
unknown.

This review summarizes the current knowledge about the 
effects of obesity, infections (comprising bacterial and viral 
agents), smoking/excessive alcohol drinking, chronic stress, 
climate, pollution and other environmental factors including 
physical activity and the role of nutrients and dietary bioac-
tive compounds on inflammation status through epigenetic 
mechanisms, and how these events may influence chronic 
disease development. This knowledge may allow the imple-
mentation of personalized nutrition based on inflammatory 
epigenetic signatures for the prevention and management of 
chronic inflammatory diseases.

Nutrition/dietary bioactive compounds

Nutritional factors have been related with a pro-inflamma-
tory potential [10]. Particularly, the consumption of West-
ern-type diets evokes a state of chronic metabolic inflamma-
tion “metainflammation” that contribute to the development 
of many prevalent non-communicable diseases [11]. In this 
context, complex interactions among food components and 
the epigenome modifications shape the cellular phenotype 
by a dynamic regulation of gene expression from some time 
ago [12]. Thus, epigenetic phenomena may account for the 
observed relationships between diet, inflammation, and diet‐
related diseases [13].

Transgenerational animal studies have shown an 
increased inflammatory response after the consumption of 
high-fat/high calorie diets by altering miRNA expression 
and DNA methylation processes [14, 15]. In individuals at 
high-cardiovascular risk, the epigenetic signature associated 
with the consumption of fruit juice (rich in fructose) was 
enriched for pro-inflammatory pathways [16]. Consistently, 
compelling evidence supports the association of excessive 
fructose consumption with the presence of non-alcoholic 
fatty liver disease (NAFLD) involving alteration of tran-
scriptomic and epigenetic mechanisms underlying lipid 
metabolism deregulation, increased liver fat accumulation, 
and inflammation [17]. Additionally, maternal low-dietary 
protein regulated miRNA expression targeting genes mapped 
to inflammatory-related pathways and metabolic health in 
offspring mice [18].

The role of dietary fatty acids in epigenetic and inflam-
matory processes has also been explored [19] and is summa-
rized (Table 1). In this context, the trans fatty acid “elaidate” 
induced pro-inflammatory and adipogenic transcriptional 
profiles through methylation changes in cultured human 
monocytes [20]. Likewise, the saturated fatty acids “stea-
rate” and “palmitate” were associated with DNA hypermeth-
ylation of the PPARγ1 gene promoter, which was identified 
as a critical determinant of pro-inflammatory activation 
and insulin resistance in macrophages [21]. Of note, DNA 
methylation levels of the TNF promoter were associated 
with adiposity measures and n-6 polyunsaturated fatty acid 
(PUFA) intake, suggesting a nutriepigenomic regulation of 
this recognized pro-inflammatory marker [22]. Remarkably, 
it has been reported that short-chain fatty acids (produced by 
the gut microbiota) can also target the epigenome to regulate 
host pathophysiological processes, including inflammation 
[23].

On the other hand, the anti-inflammatory potential of 
essential fatty acids mediated by epigenetic phenomena has 
also been analyzed (Table 1). For example, n-3 PUFA sup-
plementation was associated with changes in DNA meth-
ylation profiles in blood leukocytes related to pathways 
involved in inflammatory and immune responses, among 
others [24]. In addition, in vitro analyses revealed that the 
anti-inflammatory effect of oleic acid, a monounsaturated 
fatty acid (MUFA), was related to DNA methylation sig-
natures [25].

In relation to dietary fiber, an epigenome-wide associa-
tion study in African American adolescents showed that 
DNA methylation levels at LPCAT1 and RASA3 genes 
(playing a role in colon cancer) were associated with fiber 
consumption, adiposity, and inflammation [26]. Concerning 
micronutrients, unbalanced intakes of folate [27], manga-
nese [28], and carotenoids [29] have been associated with 
changes in the methylation status of candidate inflammatory 
genes in some populations.
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On the other hand, dietary bioactive compounds are 
known to negatively regulate several inflammatory path-
ways [30]. Thus, it has been reported that plant-derived 
polyphenols exert anti-inflammatory properties by interfer-
ing with immune cell regulation, synthesis of pro-inflamma-
tory cytokines, and gene expression, which are associated 
with health benefits for different chronic diseases related to 
inflammation such as obesity, type 2 diabetes (T2D), neuro-
degeneration, cardiovascular disease (CVD), and some types 
of cancer [31]. Polyphenols are compounds with phenolic 
structural features naturally distributed in fruits, vegetables, 
whole grains as well as in tea, chocolate, and red wine [32]. 
These include phenolic acids, flavonoids (i.e. epicatechin, 
luteolin, and fisetin) and phenolic amides, and other non-fla-
vonoid polyphenols found in foods such as resveratrol, gallic 
acid and its derivatives, and curcumin [32]. Interestingly, 
studies have revealed that the protective effects of polyphe-
nols on inflammation are partially modulated via epigenetic 
modifications, thus contributing to the current understanding 
of the molecular mechanisms of action of these biologically 
active compounds (Table 2).

For instance, the daily intake of grape extract resveratrol 
for 1 year modified the expression of a group of miRNAs 
involved in the regulation of the inflammatory response 
in PBMCs from hypertensive male patients with T2DM, 

including miR-21, miR-181b, miR-663, miR-30c2, miR-155, 
and miR-34a [33]. Moreover, mango (Mangifera indica L.) 
polyphenols, containing gallic acid and gallotanins, reduced 
inflammation in two in vitro and in vivo models of intestinal 
colitis by regulating the PI3K/AKT/mTOR pathway partially 
through up-regulation of miR-126 expression [34]. Addi-
tionally, the administration of (−)-epicatechin attenuated 
the high-glucose-induced inflammatory response in human 
monocytes by epigenetic modulation of H3K9 acetylation 
and H3K4 dimethylation [35], notably the combination of 
luteolin- and fisetin-induced anti-inflammatory effects in 
human monocytic cells under high-glucose concentrations 
involving histone acetyltransferase/histone deacetylase mod-
ifications [36]. In a similar high-glucose condition, curcumin 
decreased the production of pro-inflammatory cytokines by 
inhibiting histone acetylation in monocytes [37].

In addition to polyphenols, the anti-inflammatory role 
of other dietary factors and specific functional foods has 
also been assessed in different experimental models. In this 
regard, extra virgin olive oil (EVOO) and Nigella sativa oil 
displayed anti-inflammatory activities in lipopolysaccha-
ride (LPS)-exposed human macrophages through epige-
netic mechanisms [38]. In this study, the administration of 
both oils reverted the altered expressions of DNMT3A and 
HDAC1 to normal levels under inflammatory conditions, 

Table 1   Studies analyzing the epigenetic effects of different fatty acids concerning inflammatory conditions

ND non-determined

Type fatty acid Dose/concentration Study model Epigenetic signatures Modi-
fication 
types

Inflammation Reference

Trans fatty acid elaidate 
sup

50 μM THP-1 monocytes Global DNA methylation ↑ ↑ [20]

Saturated fatty acids 
stearate and palmitate

200 μM palmitate and 
200 μM stearate

Bone marrow–derived 
macrophages

PPARγ1 promoter DNA 
methylation

↑ ↑ [21]

n-6 PUFA Intake inversely associ-
ated

Peripheral white blood 
cells

TNFα gene promoter 
methylation

↓ ↑ [22]

n3-PUFA supplementa-
tion

3 g Blood leukocyte Differentially methyl-
ated CpG sites related 
to inflammatory and 
immune response

ND ↓ [24]

Arachidonic acid 100 μM THP-1 cells Global DNA methylation ↑ ↑ [25]
n3-PUFA supplementa-

tion
EPA and DHA provided 

in the form of 0.5% 
Gromega™

Five sows On chromosome 4, a 
27.7-kb differentially 
methylated region 
downstream of 
RUNX1T1 gene

↓ ↓ [196]

n3-PUFA supplementa-
tion

EPA and DHA provided 
in the form of 0.5% 
Gromega™

Five sows Intergenic regions of 
chromosomes 4 and 12

↑ ↓ [196]

Oleic acid supplementa-
tion

5 μM THP-1 cells Global DNA methylation ↑ ↓ [20]

Oleic acid supplementa-
tion

100 μM THP-1 cells Global DNA methylation ↓ ↓ [25]
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with an additional role of EVOO in the reduction of global 
methylation. Also, a nutritional intervention with Mediter-
ranean diet plus EVOO influenced the methylation status 
of genes involved in inflammatory pathways in PBMCs 
[39]. Similarly, higher adherence to Mediterranean diet 
was positively associated with the methylation of a set of 
genes related to inflammation and immunocompetence in 
high cardiovascular risk volunteers [40].

Meanwhile, increased DNA methylation of the tumor 
necrosis factor (TNF) gene was found after supplementa-
tion of grapefruits extracts in rats, which may contribute 
to reduce chronic low-grade systemic inflammation in obe-
sity [41]. Also, ginger extracts ameliorated obesity and 
inflammation in white adipose tissue of rats fed a high-fat 
diet via regulation of miR-21/132 expression and AMPK 
activation [42].

A maternal diet rich in methionine pathway metabo-
lites induced global hypermethylation on T cells from F1 
C57Bl/6 mice, which was associated with lower expression 
of inflammatory T cell chemokine receptors (CCR2, CCR5, 
CXCR3) and cytokines (TNF, IL2, and IL4) [43]. Further-
more, selenium and coenzyme Q10 supplementation reduced 
pro-inflammatory markers in healthy elderly participants 
through changes in plasma miRNA expression [44]. Vitamin 
D has been reported to down regulate inflammation-linked 
miRNA expression in adipocytes both in vitro and in vivo 
[45]. Besides, maternal high-zinc diet attenuated intestinal 
inflammation in offspring chicks by epigenetic changes [46].

Further, increasing research has provided evidence about 
the long-lasting epigenetic effects of calorie restriction 
which mediates expression of genes related to immuno-met-
abolic processes that may enhance quality of life and extend 

Table 2   Studies analyzing the anti-inflammatory effects of dietary polyphenols via epigenetic regulation in several chronic inflammatory condi-
tions

Type of polyphenol Dose/concentration Study model Epigenetic signatures Modi-
fication 
types

Reference

Grape extract resveratrol 8 mg PBMCs from T2DM and 
hypertensive patients

miR-21, miR-181b, miR-663, 
and miR-30c2 expressions

↑ [33]

Resveratrol 10 μM LPS-stimulated RAW 264.7 
macrophages

miR-146a expression ↓ [197]

Resveratrol 1 g/kg SAMP8 mice offspring Nrf2 and Nfkb methylation 
levels

↑ [198]

Resveratrol 10 μM ARPE-19 cells exposed to GOx 
and LPS

DNMT and SIRT1 expressions ↑ [199]

Trans-resveratrol 50 mg/kg Postnatal rats exposed to peri-
natal asphyxia

miR132 and miR15a expres-
sions

↓ [200]

Mango (Mangifera indica L.) 
polyphenols

10 mg/L Rats exposed to dextran sodium 
sulfate (DSS)

miR-126 expression ↑ [34]

Mango (Mangifera indica L.) 
polyphenols

10 mg/L LPS-treated CCD-18Co cells miR-126 expression ↑ [34]

Oleocanthal and oleacein 25 µM/L Adipocytes miR-155-5p, miR-34a-5p and 
let-7c-5p

↑ [201]

Hydroxytyrosol 10 μM/L Adipocytes miR-155-5p, miR-34a-5p ↓ [202]
Polyphenol-rich green tea 500 mg/body weight White adipose tissue miR-335 ↓ [203]
Apigenin 10 mg/kg C57BL/6 J mice let-7f ↑ [204]
(–)-Epicatechin 5 μM THP-1 cells exposed to high 

glucose
H3K9 acetylation and H3K4 

dimethylation
↓ [35]

Polyphenol-rich lingonberries 
(Vaccinium vitis-idaea)

20% w/w High-fat fed C57BL/6 J mouse Ncor2 methylation ↑ [205]

Luteolin 10 μM THP-1 cells exposed to high 
glucose

HAT activity ↓ [206]

Gallic acid 25 μM THP-1 cells exposed to high 
glucose

HAT activity HDAC2 expres-
sion

↓ [207]

Fisetin 10 μM THP-1 cells exposed to high 
glucose

HAT activity ↓ [208]

Red raspberry polyphenols 10 µg/ml−1 J774 macrophages H3K27Ac expression ↓ [209]
Epigallocatechin gallate 20 μM Regulatory T cells HDAC activity ↑ [210]
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lifespan, with important applications for the prevention of 
chronic inflammatory diseases [47]. Interestingly, methyla-
tion profiles in inflammatory genes have been proposed to 
be used as epigenetic biomarkers concerning adiposity and 
metabolic outcomes in response to low-calorie diets (30% 
of energy restriction, 55% of energy as carbohydrates, 15% 
as proteins, and 30% as lipids) [48, 49]. Moreover, findings 
from the RESMENA and DIOGENES trials have evidenced 
a decline in inflammation [50, 51] and improvements of met-
abolic syndrome features [52, 53] after following an energy-
restricted diet (− 30% energy of the calculated requirements, 
40% total energy value from carbohydrates, 30% from pro-
teins and 30% from lipids), which was partially explained 
by epigenetic signatures.

Physical activity

Studies have shown that some physical exercise may exert 
anti-inflammatory effects through epigenetic regulation 
depending on the type of activity, exercise duration, body 
composition, gender, and age [54]. However, excessive 
physical activity (i.e. in 10-km marathons, or treadmill 
runs for 120 min followed by a 5-km time trial in a fasted 
condition) can also induce inflammation [54]. Thus, in a 
population-based cohort study, substituting light-intensity 
physical activity (< 3 METs; acceleration intensities 1–3) for 
sedentary time was associated with higher methylation of the 
ASC gene, a potential biomarker of systemic inflammation 
[55]. Also, aerobic capacity, as measured by peak oxygen 
uptake (17.31 ml/kg/min), was positively associated with 
increased ASC methylation as well as with decreased plasma 
IL-1β levels in stable outpatients with heart failure, sug-
gesting that inflammatory processes may influence aerobic 
capacity [56]. Furthermore, interval walking training (IWT) 
increased NFKB2 gene promoter methylation, indicating that 
this physical regime may epigenetically impact the suscep-
tibility to inflammation [57]. IWT consisted of performing 
several continuous sets of 3-min low-intensity walking peri-
ods at 40% of the peak aerobic capacity, followed by 3-min 
high-intensity walking periods at > 70% peak aerobic capac-
ity for as many days as possible over a period of 6 months 
[57]. Of note, diet could interact with physical activity since 
the supplementation of dried tofu during IWT enhanced 
NFKB2 gene methylation more than IWT alone, suggesting 
an immunomodulatory synergistic effect of diet and physical 
activity via epigenetic modulation [58]. Consistently, higher 
dose of dairy product intake (1 unit of cheese + 2 units of 
yogurt) plus IWT produced increases in NFKB1 and NFKB2 
gene methylations in older women, suggesting a larger pro-
inflammatory cytokine gene suppression effect [59].

In patients with obesity, physical activity (26 mixed aero-
bic and endurance training sessions of 90 min administered 

twice a week during 3 months) modulated the overexpres-
sion of the inflamma-miR-146a-5p, which was postulated 
as a biomarker and personalized predictor of the clinical 
response to physical activity weight-reduction programs in 
obesity [60]. Surprisingly, acute aerobic exercise (30 min, 
75% VO2max) elicited higher elevation of inflammatory miR-
NAs in obese patients compared to lean individuals [61]. 
In basketball players, changes in circulating miR-146a after 
acute exhaustive exercise (the average playing time of every 
athlete was 260 min for 3 months, peak VO2 ≈35 ml/min/
kg) showed linear correlations with levels of the inflamma-
tory marker high-sensitivity C-reactive protein [62]. Moreo-
ver, distinct and specific circulating inflammatory miRNA 
(c-inflammamiRs) signatures were found in plasma samples 
from active middle-aged males following different doses of 
acute aerobic exercise (0 h, 24 h, 72 h) 10-km, half-mara-
thon, and marathon races), suggesting an epigenetic mecha-
nism controlling the exercise-induced inflammatory cascade 
[63]. The results of this study revealed a dose-dependent 
effect of aerobic exercise on systemic inflammation, with 
higher levels detected after 10-km race [63]. Compared to 
age-matched sedentary controls, master athletes (European 
Veterans Athletics Championships in 2010, Nyiregyhaza, 
Hungary) had decreasing ageing-related inflammation in 
skeletal muscle related to lower levels of miR-7, which has 
been suggested to be involved in chronic inflammation in 
the elderly [64]. Additionally, acute strenuous exercise (con-
sisting of stepping up and down from a step until complete 
exhaustion) led to enhanced chronic low-grade inflamma-
tion in PBMCs from obese individuals via an imbalance on 
Histone H4 Acetylation/Histone Deacetylase 2 as compared 
to lean subjects [65]. Together, these findings suggest that 
the impact of physical activity in inflammation is dependent 
of type, intensity, and clinical settings of exercise interven-
tions [54].

Obesity and associated diseases

Obesity is a metabolic condition associated with adipose 
tissue dysfunction and low-grade systemic inflammation 
that causally contributes to the development of chronic 
disorders such as T2D and CVD, where epigenetic mecha-
nisms may be involved [66]. Indeed, it has been reported 
that the alteration of the adipocyte physiology in obesity 
might be related to specific alterations in the expression 
pattern of miRNAs related to inflammatory processes 
[67]. Also, the adverse effects of the inflammatory state 
include insulin resistance in the adipose tissue and pan-
creatic β-cell dysfunction, which may induce epigenetic 
changes that perpetuate inflammation [68]. In conse-
quence, the resulting hyperglycemia and hyperlipidemia 
conditions as well as persistent inflammation involving 
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epigenomic deregulation could cause damage to the vas-
culature with putative risk to develop CVD [69]. In the 
same time, excessive adiposity negatively impacts immune 
function and host defense in obese individuals, increasing 
the susceptibility to infection and related morbidity and 
mortality [70].

Epigenetic mechanisms involved in obesity-related 
inflammation are summarized (Table 3). For example, global 
DNA hypermethylation has been positively associated with 
increased expression of specific pro-inflammatory genes 
(including the CCL2 gene) in adipocytes from obese indi-
viduals [71]. BMI-discordant twin pair analyses detected 
methylome deregulations of subcutaneous adipose tissue 
in obesity that trigger inflammation and may contribute to 
the development of unhealthy obesity outcomes [72]. Thus, 
methylation analyses in obese individuals showed signifi-
cantly lower methylation of four CpGs in the first exon of 
the TLR4 gene, suggesting epigenetic regulation of inflam-
matory processes in obesity [73]. Moreover, it was reported 
that aberrant methylation of the IL6 gene promoter may 
play a role in the etiology and pathogenesis of excessive 
body weight in humans [74]. Findings from the Methyl 
Epigenome Network Association (MENA) project revealed 
associations between methylation sites in peripheral blood 
mononuclear cells (PBMCs) and waist circumference, 
which were located in genes related to inflammation and 
obesity [75]. Likewise, it was reported that DNA methyla-
tion in adipose-derived stem cells was significantly modified 
by an obese environment, affecting pathways involved in 
adipogenesis, inflammation, and immunosuppression [76]. 
Genome-wide DNA methylation analysis in visceral adipose 
tissue of severely obese men with and without metabolic 
syndrome detected differentially methylated regions mapped 
to genes related to inflammation and immunity [77].

Of note, the expression of the NNMT gene, a major 
methyltransferase enzyme, was positively correlated with 
markers of inflammation in adipose tissue samples from 
morbidly obese patients [78]. In addition, a higher expres-
sion of DNMT3b methyltransferase was found in adipose 
tissue macrophages isolated from obese mice, supporting a 
role for DNMT3b in regulation of macrophage polarization 
and inflammation in obesity [79]. In adipose tissue of obese 
mice, gene expression levels of the Dnmt3a methyltrans-
ferase were markedly increased, as were many inflammatory 
cytokines, suggesting that increased expression of Dnmt3a 
may contribute to obesity-related inflammation [80]. 
Remarkably, DNA methylation changes of the Klf14 gene (a 
master regulator of gene expression) provided prediction for 
chronic inflammation in the adipose tissue of mice suffering 
obesity and diabetes conditions [81]. Furthermore, altered 
gene methylation profiles on immune cells were related to 
impaired metabolism and inflammatory response in a por-
cine model of obesity [82].

In mice, diet-induced obesity led to hypermethylation of 
the Ankrd26 gene (previously associated with the develop-
ment of obesity and T2DM), which in turn, contributed to 
enhanced secretion of pro-inflammatory mediators in white 
adipose tissue [83]. Consistently, epigenetic silencing of the 
ANKRD26 gene by increased promoter methylation corre-
lated with a pro-inflammatory profile and the presence of 
cardio-metabolic risk factors in peripheral leukocytes from 
obese individuals [84]. Transgenerational studies detected 
DNA methylation changes of key inflammatory genes in 
monocytes from neonates born of obese mothers, underlying 
an intrauterine epigenetic programming of immune function 
by maternal obesity [85]. Accordingly, maternal pregravid 
obesity has been associated with epigenetic modifications 
altering the inflammatory program of the offspring’s mono-
cytes at birth [86].

A bioinformatic approach identified a total of 23 active 
microRNAs (miRNAs) and transcription factor regula-
tory pathways significantly associated with obesity-related 
inflammation [87]. Also, a set of exosomal miRNAs differ-
entially expressed in abdominal obesity was associated with 
inflammation [88]. Overweight and obesity led to deregu-
lation of circulating inflammatory miRNAs, which may 
contribute to the heightened inflammatory state associated 
with these conditions [89]. In adipocytes and macrophages, 
inflammation boosted a specific miRNA pattern, with a 
negative impact on the physiopathology of obesity-induced 
inflammation [90].

Particularly, circulating miR-374a-5p was characterized 
as a potential modulator of the inflammatory response in 
obesity [91]. In vitro analyses unveiled a key role of miR-
326 expression in mediating obesity-induced adipose tissue 
inflammation through regulating the differentiation toward 
Th17 cells [92]. Also, miR-30 was identified as an important 
regulator of macrophage polarization in mice, indicating that 
miR-30 could be a therapeutic target for obesity-induced 
metabolic inflammation [93]. Besides, adipocyte-secreted 
exosomal miR-34 was progressively increased with the 
development of dietary obesity, transmitting signals of nutri-
ent overload to adipose-resident macrophages for exacerba-
tion of obesity-induced systemic inflammation and associ-
ated metabolic complications [94]. In the same way, obesity 
induced an imbalance in macrophage polarization in adipose 
tissue through miR-155 up-regulation, thus causing chronic 
inflammation and insulin resistance [95]. Accordingly, obe-
sity-associated inflammation induced miR-155 expression in 
adipocytes resulting in an increased inflammatory state in 
these cells [96]. Using an obese mice model, it was observed 
that the expression of miR-27a increased concomitantly with 
the activation of pro-inflammatory pathways [97]. Mean-
while, miR-130b contributed to obesity-associated adipose 
tissue inflammation and insulin resistance in diabetic rodents 
[98]. Endoplasmic reticulum stress and inflammatory 
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Table 3   Some studies showing relevant epigenetic mechanisms underlying obesity-related inflammation

DMRs Differentially methylated regions, DERs differentially expressed regions

Study model Epigenetic signatures Modification types Reference

DNA methylation
Human adipocytes Global DNA methylation ↑ [71]
Human subcutaneous adipose tissue Methylation of 17 novel obesity-associated genes DMRs [72]
Human white blood cells Methylation of four CpGs in the first exon of TLR4 gene ↓ [73]
Human white blood cells DNA methylation of IL6 gene promoter ↑ [74]
Human peripheral white blood cells DNA methylation of 375 CpGs DMRs [75]
Human adipose-derived stem cells Global DNA methylation ↓ [76]
Human visceral adipose 8578 methylation probes (3258 annotated genes) DMRs [77]
Human visceral adipose Global DNA methylation affecting DNMT expression DMRs [78]
Mice macrophages DNMT3b expression ↑ [79]
Mice adipose tissue Dnmt3a expression ↑ [80]
Mice adipose tissue KLF14 gene methylation ↑ [81]
Porcine leukocytes Global DNA methylation ↑ [82]
Mice white adipose tissue Ankrd26 gene methylation ↑ [83]
Human peripheral white blood cells ANKRD26 methylation ↑ [84]
Human monocyte-derived macrophages IL1B gene promoter methylation ↑ [85]
Human monocyte-derived macrophages IL10 gene promoter methylation ↓ [85]
Human cord blood monocytes Global DNA methylation ↓ [86]
miRNA profiles
Human subcutaneous adipose Obesity-related miRNAs expression DERs [87]
Human adipose tissue Exosomal miRNAs expression DERs [88]
Human plasma miR-34a expression ↑ [89]
Human plasma miR-126, miR-146a and miR-150 expression ↓ [89]
Human adipose tissue miR-221, miR-222, and miR-155 ↑ [90]
Human peripheral blood MiR-374a-5p expression ↑ [91]
Human Th17 cells miR-326 expression ↑ [92]
Mice adipose tissue macrophages miR-30 expression ↓ [93]
Mice adipose tissue miR-34a expression ↑ [94]
Mice adipose tissue macrophages miR-155 expression ↑ [95]
Human adipose tissue miR-155 expression ↑ [96]
Mice adipose tissue miR-27a expression ↑ [97]
Mice peritoneal macrophages miR-130b expression ↑ [98]
Human adipose tissue miR-320 expression ↑ [99]
Mice adipose tissue miR-221 expression ↑ [100]
Human macrophages miR-223 expression ↑ [101]
Human adipose tissue miR-193b and miR-126 expressions ↑ [102]
Mice adipose tissue miR-1934 expression ↓ [103]
Mice adipose tissue miR883b-5p expression ↓ [104]
Mice adipose tissue macrophages miRNA-146a ↓ [105]
Mice adipose tissue miR-706 expression ↓ [106]
Human PBMCs miR-21 expression ↓ [107]
Mice adipose tissue miR-301a expression ↓ [108]
Mouse chondrocytes miR-26a expression ↓ [109]
Histone modifications
Human adipose tissue HDAC2 expression ↑ [110]
Human adipose tissue HDAC4, 5, and 6 ↓ [110]
Mice adipose tissue KDM1A expression ↓ [111]
Human and mice adipose tissue SirT1 expression ↓ [112]
Mice adipose tissue Lipin 1 expression and HDAC recruitment ↓ [113]
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markers were up-regulated in obese patients, showing posi-
tive correlations with miR-320 expression in adipose tissue 
[99]. miR-221 triggered white adipose tissue inflammation 
and insulin resistance in obesity partially through suppress-
ing SIRT1 [100]. Visceral adipose miR-223 up-regulation 
modulated macrophage-mediated inflammation in human 
and murine obesity models [101]. miR-126 and miR-193b 
were further identified as important regulators of adipose 
inflammation in human obesity through effects on CCL2 
production [102].

In contrast, the anti-inflammatory miR-1934, miR532-5p, 
and miR-146a were down-regulated in obesity, which pro-
moted inflammation in adipose tissues [103–105]. Moreo-
ver, down-regulation of miR-706 played a role in increasing 
adipose tissue inflammation in the offspring during mater-
nal obesity in mice [106]. Likewise, decreased expression 
of miR-21 was associated with enhanced inflammatory 
cytokine production in PBMCs from obese individuals 
[107]. Decreased levels of miR-301a and miR-26a correlated 
with increased chronic inflammation in circulation in obese 
mouse models [108, 109].

Furthermore, transcriptional analyses showed associa-
tions between expressions of histone deacetylases (HDACs), 
adiposity indices, and obesity-induced inflammation in adi-
pose tissues from obese women [110]. Interestingly, diet-
induced and genetic mouse models of obesity displayed 
decreased expression of the histone demethylase (HDMs) 
KDM1A in adipose tissue, which promoted the expression 
of inflammatory genes, thus contributing to the development 
of obesity-associated inflammation [111]. Furthermore, it 
was evidenced that SirT1 expression, an essential nutrient-
sensing HDAC, regulated adipose tissue inflammation dur-
ing overnutrition in rodents and humans [112]. Also, it was 
demonstrated that lipin 1 (a bifunctional protein that regu-
lates gene transcription and triacylglycerol synthesis) inhib-
ited the secretion of inflammatory factors in adipocytes via 
repression of NFATc4 transcriptional activity and HDACs 
recruitment; however, this anti-inflammatory effect was 
attenuated during obesity [113].

Together, these insights support the role of epigenetic 
mechanisms underlying obesity-induced inflammation and 
accompanying chronic diseases, including T2D and CVD 
[66]. This knowledge opens new possibilities for a potential 
use of epigenetic signatures as biomarkers for diagnosis, 
prognosis, and personalization of obesity treatment as well 
as targets for disease management [67].

Endocrine disrupting chemicals

Endocrine disrupting chemicals (EDCs) are common envi-
ronmental compounds (i.e. phthalates and bisphenol A) that 
may induce chronic disease through hormone dysfunction 

and inflammatory processes [114]. In this regard, exposure 
to many EDCs can influence the onset or progression of 
CVD by epigenetic modifications affecting lipid homeostasis 
and atherosclerosis [115]. Indeed, the association of bisphe-
nol A exposure with CVD and hypertension encompasses 
endocrine disturbance, induction of oxidative stress and 
inflammation, and epigenetic phenomena [116].

Concerning the role of epigenetic phenomena in medi-
ating EDCs-induced inflammation, it was reported that 
mono-(2-ethylhexyl)phthalate led to an increased inflamma-
tory response by impairing important epigenetic regulators 
and inflammasome activation in macrophages [117]. Also, 
maternal exposure to butyl benzyl phthalate increased the 
risk for allergic airway inflammation in the offspring through 
methylation modifications [118]. Meanwhile, perinatal bis-
phenol A exposure enhanced the mast cell-mediated produc-
tion of pro-inflammatory mediators of adult mice, which was 
associated with pulmonary inflammation and global DNA 
methylation levels [119]. Similarly, gestational exposure to 
bisphenol A increased inflammation/oxidative stress markers 
in sheep through epigenetic alterations [120].

Infections

Infectious diseases are caused by a broad range of patho-
genic microorganisms including viruses, bacteria, parasites 
or fungi. In the past years, new infectious diseases have 
emerged, including the severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2/COVID-19) in December 
2019, with serious public health implications worldwide 
due to rapid spread and the absence of specific treatment 
schemes or vaccine [121].

After invading the host, complex signaling pathways 
between immune cells are activated in order to coordinately 
initiate an inflammatory response against infection, where 
epigenetic mechanisms shaping the course of inflamma-
tion are involved [122]. In some cases, the immunological 
response to infection may be excessive, producing an inflam-
matory cytokine storm that eventually lead to extensive tis-
sue damage and organ dysfunction [123].

For instance, it has been reported that inflammation trig-
gered by Helicobacter pylori infection was related to differ-
ential DNA methylation patterns in human gastric mucosa 
[124]. Also, H. pylori-induced chronic inflammation played 
a direct role in the induction of aberrant DNA methylation, 
which correlated with gastric cancer risk [125]. In humans, 
the levels of methylation in gastric mucosae were associated 
with H. pylori virulence and measures of chronic inflamma-
tion [126]. During chronic H. pylori infection, inflammation-
induced epigenetic silencing of miR-210 was identified as 
a mechanism of proliferation of gastric epithelium, with 
implications in gastric cancer development [127].
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Experimental periodontitis using systemic microbial 
challenge (Porphyromonas gingivalis gavage) led to dis-
tinct patterns of inflammatory and epigenetic features [128]. 
miR-181a-5p and miR-21a-5p influenced the expression of 
inflammatory mediators in macrophages infected with Bru-
cella abortus, thus contributing to bacterial control in host 
cells [129]. In addition, bacterial vaginosis predicted the 
length of gestation through miRNA-related epigenetic pro-
gramming of the inflammatory response [130]. Furthermore, 
histone H3K14 hyperacetylation and differentially expressed 
miRNAs regulated the host inflammatory response during 
Staphylococcus aureus infection in mice mammary tissue 
[131]. Similarly, Escherichia coli infection in murine mam-
mary tissue promoted histone hyperacetylation at genes 
related to the expression of inflammatory genes and drastic 
immune response [132].

Sepsis is defined as life-threatening organ dysfunction 
caused by a deregulated systemic immune response to infec-
tion. Interestingly, DNA methylation changes have been 
associated with sepsis in monocytes, which correlated with 
inflammatory signals [133]. Besides, chromatin modifica-
tions have been implicated in the regulation of the cellu-
lar immune/inflammatory responses in patients with sepsis 
[134].

Regarding viral infections, it was demonstrated that TLR3 
activation increased HIV-1 transactivation in primary human 
macrophages via the inflammatory JNK and NFκB pathways 
and histone acetylation [135]. In vivo analyses revealed that 
respiratory syncytial virus infection induced the H3K4 dem-
ethylase KDM5B to promote an altered immune/inflamma-
tory response that contributed to the development of chronic 
disease [136]. Human cytomegalovirus infection resulted in 
profound effects on the host cell DNA methylation machin-
ery and was associated with inflammation in vivo [137]. 
Hypermethylation of PPAR gamma (PPARG​) promoter was 
associated with liver inflammation and fibrosis in chronic 
hepatitis B virus infection [138]. An in vitro assay showed 
that loss of TIMP-3 by hypermethylation promoted chronic 
inflammation and tumor invasion during human papilloma-
virus infection [139]. miR-155, an indicator of inflamma-
tion-induced hepatocyte damage, was up-regulated both in 
monocytes and in the serum of patients with chronic hepa-
titis C infection [140]. Remarkably, DNA methyltransferase 
inhibition of regulatory T cells (Tregs) accelerated resolu-
tion of influenza-induced lung inflammation and related 
injury repair in mice [141].

Indeed, the development of immunomodulatory therapies 
targeting the epigenome during infectious diseases have 
emerged in the past years [142]. In this context, histone 
H3 modulation in macrophages was proposed as a strategy 
to attenuate the NF-κB/NLRP3-mediated inflammatory 
response during infection by the parasite Leishmania dono-
vani [143]. Also, in vitro inhibition of the epigenetically 

active bromodomain and extraterminal domain (BET) pro-
teins suppressed inflammation induced by the fungal patho-
gens Candida albicans and Aspergillus fumigatus [144]. 
Moreover, the pharmacological inhibition of the histone 
Lys demethylase JMJD3 protected mice against early septic 
death and reduced pro-inflammatory cytokine production 
via up-regulation of miR-146a [145]. Similarly, histone 
demethylase KDM3C demonstrated an anti-inflammatory 
effect by suppressing NF-κB signaling against oral bacterial 
infection in mice [146].

Smoking and excessive alcohol drinking

Smoking and urban particulate air pollution may alter sys-
temic immunologic and inflammatory reactions. Cigarette 
smoke-induced inflammation was related to significant 
changes in active and repressive gene markers on histone 3 
and histone 4 involving the regulation of the NLRP10 mol-
ecule, both in vivo and in vitro [147]. In bronchoalveolar 
lavage cells, tobacco smoke exposure increased the activity 
of inflammatory pathways by inducing continuous active 
demethylation processes [148]. Also, exposure of human 
macrophages to cigarette smoke extract promoted pro-
inflammatory cytokine release by activation of the NF-κB 
pathway and concomitant posttranslational modifications 
of HDACs [149]. Remarkably, the prenatal environmen-
tal tobacco smoke exposure in mice increased the risk of 
pulmonary inflammation in the offspring through altered 
DNA methylation patterns [150]. In humans, the smoking-
induced hypomethylation of the GPR15 gene (a chemoat-
tractant receptor involved in systemic inflammation) has 
been proposed as an epigenetic biomarker underlying the 
potential role of smoking in chronic inflammatory patholo-
gies [151]. Bioinformatic analyses revealed that long-term 
chronic smoking in African American women was asso-
ciated with altered promoter DNA methylation of genes 
mapped to critical sub-networks modulating inflammation 
and immune function [152].

Excessive alcohol drinking causes inflammation and 
impairs the body’s ability to regulate the inflammatory 
response. Integrative epigenetic profiling analysis in blood 
samples from individuals with chronic alcohol consump-
tion identified DNA methylation changes in genes related 
to inflammation (including HERC5) [153]. Nevertheless, the 
treatment with S-adenosyl-l-methionine (SAM), the methyl 
donor for all methylation reactions, did not improve the his-
topathology scores for hepatocyte inflammation and damage 
in patients with alcohol liver disease [154].

Notably, alcohol exposure decreased miR-148a expres-
sion in human hepatocytes, leading to NLRP3 inflamma-
some activation and liver injury [155]. Molecular analy-
ses identified a regulatory role for miR-155 in chronic 
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alcohol-induced intestinal inflammation and barrier dys-
function in a knockout animal model [156]. In this regard, 
up-regulation of miR-155 by chronic alcohol-intake trigged 
the production of the inflammatory cytokine TNF-α in 
macrophages [157]. Similarly, alcohol-induced miR-155 
and HDAC11 increased the responsiveness of Kupffer cells 
to LPS by disinhibiting the TLR4 inflammatory pathway 
[158]. Furthermore, chronic ethanol intake up-regulated 
miR-155 and contributed to neuro-inflammation in mice 
[159], whereas miR-339-5p had an inhibitory effect in this 
patho-phenotype [160].

Sleep patterns

Experimental and clinical observational studies suggest that 
disturbed sleep patterns may contribute to inflammatory pro-
cesses linked to CVD and other metabolic diseases through 
a complex network of autonomic, endocrine, and cytokine 
signals [161]. Epigenetic signatures may be an important 
biological mechanism linking poor sleep to inflammation, 
although limited evidence exists. In this context, sleep dep-
rivation (deprived of restful REM sleep using the flower-
pot technique) was associated with a significant unbalance 
in histone activity as well as oxidative stress and ongoing 
inflammation in rat hippocampus [162]. Moreover, differen-
tially expressed genes involved in inflammatory pathways 
and declined fertility were detected in male rats exposed 
to chronic sleep restriction, which was not related to DNA 
methylation mechanisms [163]. Also, sleep-disordered 
breathing (a common disorder inducing oxidative stress and 
inflammation) was associated with epigenetic age accelera-
tion among individuals at high cardiovascular risk [164]. 
Furthermore, epigenetic modifications have been proposed 
to constitute an important determinant of inflammatory phe-
notype in obstructive sleep apnea [165].

Chronic stress and social features

Chronic stress has been linked to negative health out-
comes, including increased inflammation. Findings from 
the Multi-Ethnic Study of Atherosclerosis (MESA) showed 
that chronic stress by living in unfavorable neighborhood 
conditions was associated with methylation changes in genes 
related to stress reactivity (AVP, BDNF, FKBP5, SLC6A4) 
and inflammation (CCL1, CD1D, F8, KLRG1, NLRP12, 
SLAMF7, TLR1) [166]. In this same sample, life course 
measures of socioeconomic status also correlated with the 
methylation status of stress- and inflammation-related genes 
using a multi-level modeling approach [167]. Indicators of 
socioeconomic status were also associated with DNA meth-
ylation of genes involved in inflammation in healthy Italian 

individuals [168]. Likewise, social environments (includ-
ing household socioeconomic condition in childhood) pre-
dicted DNA methylation patterns of inflammatory genes in 
young adulthood in Asians [169]. Moreover, it was reported 
that exposure to trauma and adversity during early life (i.e. 
neighborhood violence during childhood) amplified the adult 
pro-inflammatory response to stress in African American 
men, which was related to epigenetic phenomena involving 
IL6 promoter hypomethylation [170]. Additionally, the miR-
106b∼25 cluster seems to play a role in mediating inflamma-
tory and behavioral responses to repeated social defeat stress 
in a mouse model of stress vulnerability [171].

Interestingly, a brief yoga intervention (8 weeks of twice-
weekly, hour-long yoga classes) modified the methylation 
levels of inflammatory markers in a community population 
of women with psychological distress [172]. Indeed, a day 
of intensive practice of mindfulness meditation reduced 
the expression of chromatin modulatory and inflammatory 
genes in PBMCs from experienced meditators [173]. Further 
research confirmed a relationship between a short meditation 
intervention (a day of intensive meditation practice for 8 h) 
in trained subjects and methylated sites in genes involved in 
immune cell metabolism and inflammation [174]. Remark-
ably, life satisfaction was prospectively associated with pro-
moter methylation of the inflammatory TLR2 gene [175].

Climate

Climatological conditions such as air pollution and oxygen 
level may be associated with susceptibility to chronic inflam-
matory diseases by affecting the epigenome. Regarding the 
effects of air pollution on inflammation by epigenetic modu-
lation, it was reported that the long-term exposure (annual 
average in the preceding year) to fine particulate matter 
(PM2.5) was associated with increased TNF-α expression 
through a reduction in TNF-α gene methylation in women 
[176]. In addition, changes in TNF methylation were pro-
posed to mediate acute inflammation following personal 
exposure to fine particulate air pollution [177]. Consistently, 
adverse cardiac autonomic dysfunctions by PM2.5 exposure 
was partially related to methylation changes in the inflamma-
tory TLR2 gene [178]. Increases in primary and secondary 
air pollutant concentrations also involved TLR2 methyla-
tion modifications, which could be an epigenetic biomarker 
underlying the adverse effects of air contamination on health 
[179, 180]. Noteworthy, exposure to urban particular matter 
interacted with obesogenic nutrition to regulate inflamma-
tion and oxidative stress pathways involving tissue-differ-
ential DNA methylation effects [181]. Also, whole-genome 
analyses detected altered DNA methylation patterns in oxi-
dative and inflammatory pathway genes associated with both 
air pollution and vascular disease risk in Italians [182]. An 
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inverse association was correspondingly reported between 
the daily exposure to particulate matter (specifically PM10) 
and the DNA methylation status of inflammatory genes in 
peripheral blood of obese subjects [183].

Besides, it was evidenced that the adverse cardiovascu-
lar and metabolic effects as consequence of air pollution 
inhalation may be mediated by miRNAs targeting key fac-
tors orchestrating coagulation and inflammatory pathways 
[184]. Later work disclosed positive correlations between 
PM2.5 exposure and the expression of several miRNAs 
(miR-21-5p, miR-187-3p, miR-146a-5p, miR-1-3p, and miR-
199a-5p) predicted to target inflammatory markers [185]. 
Microarray analyses uncovered an underlying mechanism 
of PM2.5-induced airway inflammation involving regulation 
of non-coding RNAs co-targeting miR-3607-5p in bronchial 
cells [186]. Furthermore, inhalation of ozone (O3), another 
criteria air pollutant, disrupted the expression of miRNA 
profiles associated with inflammatory and immune response 
signaling [187]. Intriguingly, it was reported that particu-
late matter air pollution might attenuate the inflammatory 
response in Chinese children, in some extent mediated by 
miRNAs regulating pro-inflammatory genes [188]. These 
findings support the involvement of epigenetic phenomena 
in the induction of inflammatory processes after the expo-
sure to environmental air pollutants (Fig. 1).

The role of hypoxia as a main inducing factor of inflam-
mation has been elucidated in recent years [189]. For exam-
ple, low oxygen consumption was associated with IL6 gene 

hypomethylation and increased serum IL-6 concentrations 
in obese subjects with sleep apnea–hypopnea syndrome 
[190]. A mechanistic role of inflammasome activation in 
determining aerobic capacity (measured by peak oxygen 
uptake) was suggested since the percentage of methylation 
of the ASC gene and plasma IL-1β levels correlated with 
aerobic capacity in stable outpatients with heart failure 
[191]. Also, response to hypoxia in adipocytes was related 
to gene promoter hypomethylation and up-regulation of pro-
inflammatory cytokines [192]. Moreover, gestational inter-
mittent hypoxia induced endothelial dysfunction, triggered 
pro-inflammatory gene expression, and caused epigenetic 
changes in adult male offspring to increase the risk of devel-
oping cardiometabolic disease [193]. Similarly, epigenetic 
programming of pro-inflammatory phenotype in the heart 
development and vulnerability to disease later in life were 
associated with fetal hypoxia in rats [194]. Furthermore, 
hypoxia drove cardiac miRNAs profiles and inflammation 
processes in the right and left ventricle in a murine model 
[195].

Concluding remarks

Obesity and unhealthy diet as well as adverse environmental 
stimuli including sleep deprivation, chemical exposure, alco-
hol abuse, smoking, and climate pollution promote inflam-
matory processes in the host through epigenetic alterations, 

Fig. 1   The interplay of obesity, infections, diet, stress, and environmental factors in inflammation through epigenetic mechanisms
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Table 4   Role of some external environmental stimuli in several inflammatory processes involving epigenetic regulation

Type of stimuli Dose/time Study model Epigenetic signatures Modification types Reference

Endocrine disrupting chemicals exposure
Mono-(2-ethylhexyl)

phthalate
50 μM RAW 264.7 Cells SIRT activity and protein 

expression
↓ [117]

butyl benzyl phthalate 3 µg/ml murine transgenerational 
asthma model

Global DNA methylation ↑ [118]

Bisphenol A 50 ng/kg diet
50 μg/kg diet
50 mg/kg diet

bone marrow-derived 
mast cells of adult mice

Global DNA methylation ↑ [119]

Bisphenol A 0.5 mg/kg Sheep placentomes DNA methyltransferase 3 
A and histone deacety-
lase 1 expressions

↑ [120]

Smoking
Cigarette smoke exposure 250 or 1000 ng/ml Lungs of C57Bl/6 mice Histone 3 and histone 4 

acetylation
↑ [147]

Cigarette smoke exposure At least 5 cigarettes per 
day

Human bronchoalveolar 
lavage cells

5hmC differentially meth-
ylated positions

DMRs [148]

Cigarette smoke extract 1% and 2.5% Human macrophages HDAC activity and pro-
tein levels

↓ [149]

Environmental tobacco 
smoke

1.0 mg/m(3) Offspring of pregnant 
C57BL/6 mice

Global and IL13 DNA 
methylation

↓ [150]

Cigarette smoke exposure Current smokers Human peripheral blood GPR15 methylation ↓ [151]
Cigarette smoke exposure Active smokers Human PBMCs AHRR and GPR15 gene 

methylation
DMRs [152]

Excessive alcohol drinking
Alcohol dependence  ≥ 80 g of alcohol intake/

day
Human PBMCs HERC5 gene methylation ↑ [153]

Alcohol exposure  > 60 g/day Human hepatocytes miR-148a expression ↓ [155]
Acute alcohol binge 5 g/kg 50% alcohol/day Small bowel in mice miR-155 expression ↑ [156]
Alcohol exposure 25 mm alcohol RAW 264.7 cells miR-155 expression ↑ [157]
Alcohol exposure 32.4% alcohol‐derived 

calories
Mice Kupffer cells miR-155 and HDAC11 

expressions
↑ [158]

Alcohol exposure 5% ethanol Mouse cerebellum miR-155 expression ↑ [159]
Alcohol exposure 15% alcohol Mouse brain tissue miR-339-5p expression ↓ [160]
Sleep disturbances
REM sleep deprivation Three sessions of 48 h 

each
Rat’s hippocampus HAT/HDAC activity ↑ [162]

Sleep-disordered breath-
ing

Apnea–hypopnea index Human whole blood 
samples

DNA methylation-age 
acceleration

↑ [164]

Obstructive sleep apnea With and without high 
levels of hsCRP 
(1.50 mg/dL)

Human whole blood 
samples

FOXP3 and IRF1 gene 
methylation

↑ [165]

Climate (air pollution)
PM2.5 exposure Annual average exposition Human whole blood 

samples
TNF-α methylation ↓ [176]

PM2.5 exposure Continuously for 72 h Human whole blood 
samples

TNF-α methylation ↓ [177]

PM2.5 exposure 10 μg/m(3) Human whole blood 
samples

TLR2 gene methylation ↑ [178]

Traffic-related pollutants 
exposure

28 days cumulated expo-
sure

Human whole blood 
samples

TLR2 gene methylation ↓ [179]

Traffic-related pollutants 
exposure

One-week exposure Human whole blood 
samples

F3 gene methylation ↓ [180]

Urban PM exposure One-week exposure Mouse lung samples Dnmt3a2 expression ↑ [181]
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involving predominantly DNA methylation modifications in 
animal studies (Table 4). However, further studies in humans 
focused on other epigenetic mechanisms, such as histone 
acetylation/deacetylation processes and miRNA regulation 
affecting pro-inflammatory gene expression are required.

Scientific advances concerning the epigenetic mecha-
nisms underlying inflammation-related chronic diseases 
such as diabetes, cardiovascular diseases, cancer, and neu-
rodegenerative disorders are providing a better understand-
ing of the molecular bases for the implicated pathological 
processes, and the prediction of individual disease risk based 
on the epigenotype. Nevertheless, it is necessary to inte-
grate this knowledge with other emerging factors influencing 
the susceptibility/resistance to inflammation including the 
genetic background, microbiota composition, and metabo-
lomic profiles using systems biology and large-scale bioin-
formatics tools.

Also, the fact that diverse pathogens, including respira-
tory viruses, induce epigenome modifications to promote 
systemic infection, opens opportunities for the development 
of efficient medications for specific targets. This finding is 
of current relevance for emerging widespread viral infec-
tions such as SARS-CoV-2/COVID-19, with a common fatal 
inflammatory lung condition without current effective thera-
pies or available vaccine. Moreover, the suppressive effect 
of obesity and other environmental mediators of the immune 
function also needs to be addressed.

Progress in the identification of epigenetically active 
dietary components and lifestyle factors will contribute to 
the design of therapeutic interventions alleviating persistent 

inflammation by targeting the epigenome. In this regard, 
dietary bioactive compounds (i.e. polyphenols), n-3 PUFA, 
and regular physical activity have demonstrated anti-inflam-
matory properties through epigenetic phenomena. Never-
theless, the heterogeneity of the existing literature and the 
scarcity of studies in humans makes it difficult to propose 
specific recommendations about the amounts of polyphenols 
and n-3PUFA consumptions as well as the type, intensity, 
or duration of exercise that could counteract inflammatory 
processes. However, current available knowledge highlights 
the importance of anti-inflammatory dietary and exercise 
patterns for health and evidence the need of performing 
more nutriepigenetic investigations through randomized 
controlled clinical trials in order to prescribe precision nutri-
tional and lifestyle recommendations for specific population 
and diseased groups.

Although further scientific advances in these research 
areas are needed, these insights are paving the way for the 
design of innovative strategies aimed to the prevention, man-
agement, prognosis, and treatment of chronic inflammatory 
diseases through personalized approaches (including preci-
sion nutrition) based on inflammatory epigenetic signatures.

Conclusions

Obesogenic and health-damaging environments can drive 
persistent inflammation by modifying some specific epi-
genetic mechanisms and negatively impact the develop-
ment of chronic inflammatory diseases. The prescription 

DMRs Differentially methylated regions

Table 4   (continued)

Type of stimuli Dose/time Study model Epigenetic signatures Modification types Reference

NO2
and PM2.5 exposure

17 years before cer-
ebrovascular disease 
diagnosis

Human whole blood 
samples

DNA methylation of 
inflammatory pathways

DMRs [182]

PM10 exposure Mean of 1 and 14 days Human peripheral blood 
samples

CD14 and TLR4 methyla-
tion levels

↓ [183]

PM and metal exposure 4 days of steel production 
work

Human peripheral blood 
samples

miR-302b, miR-200c and 
miR-30d expressions

↑ [184]

PM2.5 exposure Two-week periods Human whole blood 
samples

miR-21-5p, miR-187-3p, 
miR-146a-5p, miR-
1-3p and miR-199a-5p 
expressions

↓ [185]

PM2.5 exposure 75 μg/ml Human bronchial epithe-
lial cell line

circRNA104250 and 
lncRNAuc001.dgp.1 
expressions

↑ [186]

O3 exposure 0.4 ppm O3 for 2 h Sputum samples miR-132, miR-143, 
miR-145, miR-199a*, 
miR-199b-5p, miR-222, 
miR-223, miR-25, miR-
424, and miR-582-5p 
expressions

↑ [187]
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of nutritional therapies using epigenetically active nutri-
ents and physical activities with anti-inflammatory prop-
erties may help to revert the adverse effects of chronic 
inflammation.
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