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Abstract
Medical diagnosis has seen a tremendous advancement in the recent years due to the advent of modern and hybrid

techniques that aid in screening and management of the disease. This paper figures a predictive model for detecting

neurodegenerative diseases like glaucoma, Parkinson’s disease and carcinogenic diseases like breast cancer. The proposed

approach focuses on enhancing the efficiency of adaptive neuro-fuzzy inference system (ANFIS) using a modified

glowworm swarm optimization algorithm (M-GSO). This algorithm is a global optimization wrapper approach that

simulates the collective behavior of glowworms in nature during food search. However, it still suffers from being trapped

in local minima. Hence in order to improve glowworm swarm optimization algorithm, differential evolution (DE) algo-

rithm is utilized to enhance the behavior of glowworms. The proposed (DE–GSO–ANFIS) approach estimates suit-

able prediction parameters of ANFIS by employing DE–GSO algorithm. The outcomes of the proposed model are

compared with traditional ANFIS model, genetic algorithm-ANFIS (GA-ANFIS), particle swarm optimization-ANFIS

(PSO-ANFIS), lion optimization algorithm-ANFIS (LOA-ANFIS), differential evolution-ANFIS (DE-ANFIS) and glow-

worm swarm optimization (GSO). Experimental results depict better performance and superiority of the DE–GSO–ANFIS

over the similar methods in predicting medical disorders.

Keywords Adaptive neuro-fuzzy inference system � Differential evolution � Glowworm swarm optimization �
Neuro-ophthalmic disorders

1 Introduction

Clinical datasets are widely used in predicting and

managing many diseases like glaucoma, diabetic

retinopathy, Parkinson’s disease, breast cancer, etc.

Healthcare applications find extensive use of data mining

approaches in analyzing the trends in subject’s records

leading to overall improvement in healthcare. Prediction

from the data mining process leads to systematic support in

enhancing decision making [1]. The clinical data of the

patients possess uncertainty in many ways, and hence,

complete decision making with certainty is practically

challenging. Certain diseases need early diagnosis and

continual treatment as in the case of glaucoma for which

computer-aided diagnosis (CAD) systems will be of much

use to the clinicians in taking a second opinion before

making a concrete decision and plan for treatment. In [2], a

framework to get knowledge mining from patient’s clinical

datasets has been presented. Numerous literatures have

used various techniques in predicting the diseases like lung

cancer [3–5]. A similar framework for diagnosing gait

disturbances in Parkinson’s disease (PD) is detailed in [6].

Studies have shown several approaches in detecting retinal

abnormalities as in [7–9]. In all the CAD systems, feature

extraction and classification is the major part. Initially, a

supervised learning algorithm is employed in training the

classifier with a training set. Then a test set is used to

evaluate the classifier. Normally used classifiers are
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decision trees (DT), random forest (RF), K-nearest neigh-

bor (KNN), support vector machines (SVM), etc. Irrelevant

and redundant features in the training dataset decide the

classifier performance. In order to improve the perfor-

mance, these irrelevant and redundant features have to be

pruned and optimal feature sub-sets have to be selected.

There is numerous feature selection algorithms proposed in

the literatures [10–12].

Biology-inspired computational algorithms are aimed at

providing improved CAD-based diagnosis and decision-

making. A study of various bio-inspired algorithms such as

genetic algorithm, particle swarm, firefly, bat, bacterial

foraging, flower pollination, etc., is illustrated in [13].

Despite the dominance of various predicting models to

predict the disease occurrence, a detailed investigation is

required to enhance their efficiency or performance.

Numerous machine learning (ML) and deep learning (DL)

approaches are extensively used. Even though they offer

better performances, such methods report challenges in

optimizing parameters and also have over-fitting issues.

With a motive to overcome such issues, hybrid models

have been used in the recent years [14]. Advantages of

each individual model are integrated to overcome the

defects of the individual models. With this inspiration, the

proposed work presents a hybrid model to increase the

prediction accuracy in medical diagnosis by combining

ANFIS [15] with a modified glowworm swarm algorithm

(GSO) [16]. ANFIS provides better flexibility in estimating

the nonlinearity in the dataset and combines the properties

of artificial neural network (ANN) and fuzzy environment,

whereas the conventional GSO simulates glowworm’s

behaviors during food search process. However, in order to

overcome the limitations normally encountered in meta-

heuristic algorithms like stagnating at a local point, the

GSO is coupled with DE to improve the glowworm’s

behavior. Modified GSO, called DE–SSA, is then applied

to compute the parameters of ANFIS to improve prediction

rate and quality. Selecting input variables is a major step

toward predicting the class in any kind of diagnosis system.

In this work, the input features are taken from the datasets

of respective medical cases pertaining to the relevant dis-

orders which will be dealt in the feature selection sec-

tion. Summary of the main contributions of the study is

given below.

• Propose an improved version of glowworm swarm

algorithm using a differential evolution algorithm to

enhance the performance of ANFIS in predicting

medical disorders.

• Employ a new novel model called DE–GSO for

diagnosing ophthalmic and neurodegenerative

disorders.

• Introduce suspect cases and provide early treatment in

case of diseases that require immediate medical

attention.

Rest of the paper is organized as: A brief relevant lit-

erature section for medical diagnosis using predictive

models is reviewed in Sect. 2. Section 3 outlines the basics

of ANFIS, DE and GSO and the proposed methodology.

Experimental outcomes are discussed in Sect. 4. Section 5

gives the conclusion and scope for future work.

2 Related works

In this section, a brief review on the predictive methods for

the identified medical disorders is presented. Leema et al.

[17] designed a back propagation network (BPN)-based

CAD system to classify medical datasets. Global infor-

mation-added DE was employed for global search with

back propagation (BP) for local search. Weight adjustment

was done using the above algorithms. Particle swarm

optimization (PSO) was considered to model the DE in

terms of mutation process. An overall accuracy of 85.71%

was reported with Pima Indian Diabetes (PID), 98.5% with

Wisconsin Diagnostic Breast Cancer (WDBC) and 86.66%

with Cleveland Heart Disease (CHD) datasets acquired

from University of California, Irvine (UCI) machine

learning repository.

In [18], Nahato et al. reported a method by integrating the

advantages of fuzzy and extreme learning machine (ELM).

Datasets obtained were converted to fuzzy sub-sets by

making use of trapezoidal membership function. Feed for-

ward neural network was deployed as a classifier with one

hidden layer using ELM. Experiments conducted on UCI

machine learning repository datasets such as Cleveland heart

disease (CHD), Pima IndianDiabetes (PID) and Statlog heart

disease (SHD) datasets revealed accuracies of 73.77%,

92.54% and 94.44%, respectively. Anter and Ali [19] pro-

posed a hybrid feature selection strategy using crow search

optimization (CSO) and chaos theory with fuzzy C-means

(FCM) algorithm. The work reported a balance between

exploration and exploitation strategies increasing the per-

formance and attaining a good convergence speed. Experi-

ments conducted onWDBC dataset attained 98.6% accuracy

and for 68% for the Hepatitis dataset.

Wind-driven swarm optimization was proposed by

Christopher et al. [20] to be used in clinical diagnosis. A

novel evaluation parameter Jval was introduced to deter-

mine the rule set size and accuracy of classification. The

method was reported to outperform the conventional PSO

in terms of accuracy. Liver disorder and CHD dataset from

UCI was used with reported accuracies of 64.6% and

77.8%, respectively.
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DE-based model was reported by Storn and Price [21] to

optimize nonlinear functions. Recombination was per-

formed when initializing population done through weigh-

ted difference between randomly generated solutions

summed to another third solution. The method was

experimented on some standard function such as Hyper–

Ellipsoid function, Ackley’s function, etc. Compared with

other similar strategies, DE was reported to outperform in

evaluating the number of test functions required to identify

global optimum levels.

Seera and Lim [14] proposed a fuzzy min–max model

combined with regression tree (CART) and random forest.

It was reported that tenfold cross-validation attained better

performance on UCI datasets as 78.39% for PID, 98.84%

for WDBC and 95.01% for the Liver Disorder dataset.

Authors in [22] developed an Elman Neural Network

using whale optimization algorithm (WOA) in optimizing

NN weights. The approach was implemented in conversion

velocity process of polymerization. Experiment carried out

depicted that the algorithm helped in enhancing the accuracy

by avoiding local trap fall. Retinal blood vessel segmentation

based on PSO and its variants were discussed in [23–25]. In a

nutshell, application of fuzzy expert and neural systems is

expanding in predicting and screening numerous risks of

abnormality in diseases as reported in [26–29].

3 Materials and methods

3.1 Adaptive neuro-fuzzy inference system
(ANFIS)

Jang in 1993 [15] presented a hybrid model, inheriting the

merits of neural networks (NN) and fuzzy into a single

framework called ANFIS. Takagi–Sugeno inference model

is utilized which generates a nonlinear mapping from input

space onto output employing fuzzy IF–THEN rules. ANFIS

comprises of 5 layers as illustrated in Fig. 1

Let x and y be defined crisp input to the node i, then in

the first layer, the output of each node is stated as

O1i ¼ lAi Xð Þ; i ¼ 1; 2 ð1Þ
O1i ¼ lBi�2 Yð Þ; i ¼ 3; 4 ð2Þ

where Ai and Bi are the values of membership function

lAi Xð Þ and lBi�2 Yð Þ, respectively. These values are defined
by the following generalized Gaussian function [1]:

lx ¼ e
� x�Pi

ai

� �2

ð3Þ

where pi and ai are the mean and standard deviation of

data, respectively. In the literature, they are known as

premise parameters set.

In the second layer, each node produces the firing

strength by the following rule:

O2i ¼ lAi
ðxÞ � lBi�2

ðyÞ ð4Þ

The output of each node, in the third layer, is the nor-

malized firing strength obtained by the following equation:

O3i ¼ wi ¼
xiP2
i¼1 xi

ð5Þ

The fourth layer is composed of adaptive nodes and each

adaptive node creates the output, according to the function:

O4;i ¼ wifi ¼ wi pixþ qiyþ rið Þ ð6Þ

where pi, qi and ri are the consequent parameters of the ith

adaptive node.

Finally, in the fifth layer there is a single node as the

overall output. The value of the output is defined as:

O5 ¼
X
i

wifi ð7Þ

Fig. 1 Basic structure of ANFIS

[30]
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The adjustable parameters such as premise and the

consequent play a vital role in deciding the performance of

the ANFIS. Non-steady parameters pose issues in ANFIS.

Wider search space, slower convergence and getting trap-

ped easily in local optima are some of the issues in ANFIS

which can be minimized using a hybrid algorithm for

optimization. To reduce this problem, hybrid techniques

are widely employed. Inconsistent accuracy, more com-

putational time, has demanded the use of hybrid algorithms

to overcome these drawbacks.

3.2 Differential evolution

Differential evolution (DE) is an evolutionary algorithm,

introduced in 1997 by Storn and Price [21]. The algorithm

comprises of the following operations namely: mutation,

crossover and selection. Wrapper method is adopted in the

feature selection in selecting the feature set. Considering an

optimization problem of d-dimension with d parameters, an

n solution vector population is first generated. Consider xi,

where i = 1, 2… n. For each solution at any generation t,

chromosomes are represented by

xti ¼ xt1;i; x
t
2;i; . . .x

t
d;i

� �

Mutation: At any generation t, for each xi, three vectors

xp, xq, xr are chosen randomly at t. By this method of

mutation, the donors are represented by

vtþ1
i ¼ xtp þ F xtq � xtr

� �

F is the real and constant factor ranged [0, 2] called

differential weight or mutation factor. Ideal choice will be

0 to 1 for stability. The mutation factor F is a positive

control parameter preferred to scale and control the dif-

ference vector amplification. Value of F has to be carefully

chosen as small values would lead to small mutation step

sizes resulting in longer convergence time of the algorithm.

On the other hand, large F values will facilitate explo-

ration, instead would lead to overshooting good optima. In

order to improve local exploration and maintain diversity,

usually small F values are chosen.

Crossover: This process is controlled by crossover

constant C which ranges between 0 and 1. The crossover

constant influences on the algorithm diversity, as it takes

control of the number of elements that would change.

Larger values will tend to introduce more variation in the

new population, therefore increasing exploration capabili-

ties. A compromise has to be performed in ensuring both

local and global search capabilities. Crossover was per-

formed on each parameter. A uniformly distributed number

generated randomly ri [0, 1]; the jth component of vi is

computed as

utþ1
j;1 ¼ vj;i if ri �Cr;

xtj;1 otherwise,

�
j ¼ 1; 2. . .d: ð10Þ

One can randomly decide on exchanging each of the

component with donor.

Selection: Selection follows the same step as in GA.

Fittest individual is chosen with the minimum cost value as

xtþ1
i ¼ utþ1

i if f utþ1
i

� �
� f xti
� �

;
xti otherwise:

�

The search performance depends on controlling the most

sensitive crossover probability Cr and differential weight

F. Cr = 0.5 is found to be suitable in most cases and n can

be chosen between 5d – 10d. Pseudo code for DE is

depicted in Fig. 2.

3.3 Glowworm swarm optimization (GSO)

This algorithm, proposed by Krishnanand and Ghose [16],

is a simple method with fewer parameters to be adjusted

and said to have a better rate of convergence. Most

glowworms are able to find their position and share

information by transmitting rhythm like beam. Glowworms

find neighbors in their search scope by moving from one

initial position to other better position. Lastly they confine

to one or more extreme valued points. In GSO, the

attraction of the individual glowworm is in proportion to its

brightness and inverse to the distance between two indi-

vidual glowworms. Fitness function depends on the posi-

tion of the individuals. Pseudo code is given in Fig. 3

The steps followed in GSO process are detailed below

1. Initialize parameters such as: n individual glowworm,

lO—fluorescein value, rO—dynamic decision domain,

Fig. 2 Pseudo code for differential evolution
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s—step number, nt—threshold value in the domain,

q—fluorescein elimination coefficient, c—fluorescein

update coefficient, b—update co-efficient of the

domain, rs—maximum search radius, t—iteration

number.

2. Fitness function from J(xi(t)) is transmuted into li(t)

which is given below

liðtÞ ¼ ð1� qÞliðt � 1Þ
þ cJðxiðtÞÞ; xi��position at time t ð12Þ

3. In each ridðtÞ, select the higher fluorescein valued

individuals that form a set of neighborhood Ni(t).

NiðtÞ ¼ j :kxjðtÞ � xiðtÞ
��� ridðtÞ; liðtÞ� ljðtÞ

� 	
ð13Þ

4. Probability of the individual i that move toward j as

PijðtÞ ¼
ljðtÞ � liðtÞP

k2NiðtÞ lkðtÞ � liðtÞ
ð14Þ

5. Position of the individual i could be updated by

xiðt þ 1Þ ¼ xiðtÞ þ s
xjðtÞ � xiðtÞ
xjðtÞ � xiðtÞ
�� ��
 !

ð15Þ

6. Dynamic decision domain could be updated as

ridðt þ 1Þ ¼ min rs;max 0; ridðtÞ; b nt � NiðtÞj jð Þ
� 	� 	

ð16Þ

Initial neighborhood range of each glowworm is

denoted by r0 and the parameter that controls the

neighbor numbers is denoted by nt.

7. Iteration is continued till a maximum luciferin is

obtained.

3.4 FCM clustering

Defining the membership function is the most vital concept

in ANFIS. It is a clustering-based problem. Hence FCM is

employed to attain smaller number of fuzzy rules. In FCM,

the degree of data belonging to different clusters was

obtained by minimizing the objective function:

Tr¼
XN
i¼1

XC
t¼1

grit xi � ctkk 2; 1� r�1 ð17Þ

where r represents a real number[ 1. git denotes degree of

membership of the measured data xi [ Rd belonging to the

cluster with center ct [ Rd. Minimizing the above equation

results in fuzzy partitioning with update of the membership

(git) and the center of clusters (ct) using Eqs. (18) and (19).

git ¼
1

Pc
k¼1

xi�ctkk
xi�ckkk

� � 2
r�1ð Þ ð18Þ

ct ¼
PN

i�1 g
r
itxiPN

i�1 g
r
it

ð19Þ

This iteration will stop when maxit{|git
(k?1)-

- git
(k)|}\ [ ,, here [ [0, 1] is a stopping criterion.

Previous steps are repeated until the stopping condition is

attained.

3.5 Proposed methodology

In the proposed work, a novel predictive model for medical

diagnosis using a modified glowworm swarm algorithm

(GSO) is used in enhancing the performance of ANFIS. In

order to avoid GSO from getting trapped or stuck at local

minima, DE is used to support GSO in improving the

behavior of GSO. The methodology is illustrated in Fig. 4.

The proposed approach enhances the ANFIS model using

DE and GSO algorithms, called DE-GSO-ANFIS model.

ANFIS parameters are adjusted by supplying best weights

between the layers 4 and 5 of ANFIS.

Input is obtained from datasets and divided as train and

test set, normally in 70:30 ratios. Fuzzy C-mean (FCM) is

applied to compute the required number of membership

functions through clustering process [31]. Dataset is clus-

tered into different sets or groups. Then, ANFIS utilizes

these outcomes to initiate rest of the process. The weights

of ANFIS are adapted using DE–GSO algorithm. Explo-

ration starts now wherein the DE–GSO searches for solu-

tion in the problem search space.

DE is employed in generating the initial population of

GSO. The GSO then makes use of this generated popula-

tion to initiate the search for best possible weights for the

Fig. 3 Pseudo code for GSO
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ANFIS. The following equation represents the fitness value

of population given by

Objfunc ¼
XN
i¼1

Obsi � Predik k2min

! ð20Þ

where Obsi is the ith observed value and Predi is the ith

predicted value.

This function depicts the summation of the square error

between the original value and the predicted value. The

best solution is the one which has the minimum objective

function value. Hence, the weights that are chosen are

updated in accordance to error reduction between the true

or observed value and the predicted value during training.

These weights are then carried forward to the ANFIS that

prepares the problem outcomes. Training phase is stopped

if the stop conditions (maximum number of iterations and

error less than the small value) are satisfied. The DE–GSO

continues till maximum number of iterations is reached.

ANFIS is thus constructed based on the parameters arriving

from the best solution. Testing phase now starts, and the

best detected weights are carried to the ANFIS to generate

the result.

4 Experiment and results

The experimental results of DE–GSO–ANFIS model, tes-

ted on predefined medical datasets, are summarized in this

section and its performance is evaluated as a predictive

method for medical diagnosis.

4.1 Description of the dataset

For evaluating the DE–GSO–ANFIS method, two medical

diagnostic problems were experimented namely: Parkin-

son’s disease and Retinal abnormalities. The datasets were

taken from publicly available UCI machine learning data

repository and RIM-ONE dataset. Parkinson’s database

comprises of biomedical voice measurement which ranges

taken from 31 people out of which 23 are Parkinson’s. The

database aims to discriminate normal subjects from

Parkinson affected ones. The datasets are recorded with

numerous medical tests on the subject. Age group of the

people tested is in the range 46–85 years having 65.8 as

mean age. An average of 6 vowel phonations with 36 s

length each is recorded on the subject [32]. The PD dataset

has 195 cases in total with 147 affected and 48 normal

Fig. 4 Proposed Frame work
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cases. Table 1 shows the description of Parkinson’s disease

database.

The RIM-ONE retinal dataset contains 261 healthy

images, 194 affected images accounting for a total of 455

images. The dataset can be used to study retinal abnor-

malities like glaucoma, diabetic retinopathy which are

considered as the leading eye disorders globally. Nidek

AFC-210 camera having 21.1MP resolution is utilized to

acquire images [33]. Obtained images are preprocessed

using morphological operations and filters to remove

background noise. Adaptive histogram equalization (AHE)

is done to image enhancement. Texture is vital feature of

eye description. Gray-level co-occurrence matrix (GLCM)

[34] is a statistical approach commonly employed in

biomedical image feature extraction. Common features

used are entropy, energy, homogeneity, contrast and cor-

relation. These are called Haralick features and are defined

in [35].

Description of features used from RIM-ONE.

Contrast: Measure of local changes in the image.

Homogeneity: It is a closeness measure portraying the

distribution of elements in relation with the diagonal of the

GLCM.

Entropy: Randomness measure of image intensity.

Energy: Uniformity measure and estimated from angu-

lar second moment (ASM). Similar pixels generate high

values of ASM.

Correlation: Measure of linear dependency of gray-

level values in an image.

4.2 Experimental setup

MATLAB was used to conduct the test, run on Windows 7

ultimate operating system (OS) with Intel Core i3-3217U

CPU, 8 GB RAM. The algorithms were designed from

scratch. For comparison with other algorithms, the

parameters were standardized with population size fixed as

25 and maximum iteration fixed to 100. Number of features

is taken as the problem dimension. For ease of computa-

tion, data scaling was done as [- 1, 1]. K-fold cross-vali-

dation was performed to get unbiased results [36].

4.2.1 Performance evaluation

For a classifier, each instance is directly mapped on to

positive [P] and negative [N] class labels. A confusion

matrix consists of information on the actual or true classes

and the predicted classes performed by classifier. Table 2

shows such an instance on confusion matrix normally

followed in classification.

The different evaluation criteria used are mentioned in

Table 3

Table 1 Parkinson’s disease

Dataset Description
Features Attribute Description

F1 MDVP: Fo (Hz) Average vocal fundamental frequency

F2 MDVP: Fhi (Hz) Maximum vocal fundamental frequency

F3 MDVP: Fo (Hz) Minimum vocal fundamental frequency

F4 MDVP: Jitter (%) Several measures of variation in fundamental frequency

F5 MDVP: Jitter (Abs)

F6 MDVP: RAP

F7 MDVP: PPQ

F8 Jitter: DDP

F9 MDVP: Shimmer Several measures of variation in amplitude

F10 MDVP: Shimmer (dB)

F11 Shimmer: APQ3

F12 Shimmer: APQ5

F13 MDVP: APQ

F14 Shimmer: DDA

F15 NHR Two measures of ratio of noise to tonal components

in the voiceF16 HNR

F17 RPDE Two nonlinear dynamical complexity measures

F18 D2

F19 DFA Signal fractal scaling exponent

F20 Spread 1 Three nonlinear measures of fundamental frequency variation

F21 Spread 2

F22 PPE
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Apart from the above metrics, following are also utilized

in computing the efficiency of the DE–GSO–ANFIS

method as defined below:

1. Mean square error (MSE) Measure of data dispersion

around zero value calculated by

MSE ¼ 1

n

Xn
i¼1

yi � byið Þ2 ð21Þ

byi denotes ith predicted element, yi shows ith measured

element, sample number is denoted by n yi shows the

average of the corresponding predicted value.

2. Mean absolute error (MAE): Measure of the mean

absolute deviation of output values from that of target

values given by

MAE ¼ 1

n

Xn
i¼1

yi � byið Þ ð22Þ

3. RootMSE (RMSE): Measure of the square of MSE

computed by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

yi � byið Þ2
s

ð23Þ

4. Coefficient of determination (R2): Measure of relation-

ship between the obtained data value and the predicted

data value defined by

R2 ¼ 1�
Xn
i¼1

yi � byið Þ2

yi � byð Þ2
ð24Þ

5. Standard deviation (SD):

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

yi � byið Þ2
s

ð25Þ

4.3 Results and discussion

Assessment of the proposed DE-GSO-ANFIS method for

medical diagnosis is performed. The input dataset is cate-

gorized into 70% training and the rest onto testing. Besides,

the proposed method is also compared with other similar

methods, such as traditional ANFIS model, genetic algo-

rithm–ANFIS (GA–ANFIS), particle swarm optimization–

ANFIS (PSO-ANFIS), lion optimization algorithm—

ANFIS (LOA-ANFIS), differential evolution–ANFIS (DE–

ANFIS) and gray wolf optimization–ANFIS (GWO–

ANFIS). These were chosen based on their performance as

predictive models in various applications. In swarm algo-

rithms, the population size and iterations are considered as

key factors. In order to optimize the process, iteration was

fixed and population size was iterated to show the hybrid

nature of the algorithm proposed. Parameter settings were

done owing to proven records in the literatures as given in

Table 4.

FCM is executed to compute the optimal number of

membership functions (no. of clusters). FCM is applied at

different cluster number values, and the results are shown

in Fig. 5. It can be seen that the optimal numbers of

memberships are 3 and 6 with RMSE 0.33 and 0.32,

respectively. Therefore, the number of memberships is set

to 6.

Table 5 depicts the details of prediction results in terms

of prediction accuracy, sensitivity and specificity on the

Parkinson’s dataset using DE–GSO–ANFIS as a classifier

model with 100 iterations.

From the table, for the Parkinson’s dataset, it can be

inferred that a population size of 10 attained the best

accuracy with 98.4% sensitivity and 94.97% specificity for

the DE–GSO–ANFIS model. While the population size is

increased, the accuracy has some rise and falls. Similarly,

for the RIM-ONE dataset, 98.66% accuracy was achieved

with DE–GSO–ANFIS model for a population size of 10.

As the population size is increased, the accuracy varies.

Figure 6 shows the overall performance of DE–GSO–

Table 2 Confusion matrix

Actual/true class

P N

Predicted class

P True positive (TP) False positive (FP)

N False negative (FN) True negative (TN)

True positive (TP): Number of correct predictions that an instance is

positive

False positive (FP): Number of incorrect predictions that an instance

is positive

True negative (TN): Number of correct predictions that an instance is

negative

False negative (FN): Number of incorrect predictions that an instance

is negative

Table 3 Performance indices

Parameter Expression

Sensitivity (Sen) TP
TPþFN

Specificity (Spec) TN
TNþFP

Accuracy (Acc) TPþTN
TPþFNþTNþFP
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ANFIS in predicting the disease on Parkinson’s dataset for

varying population size.

Table 6 depicts the details of prediction results in terms

of accuracy, sensitivity and specificity on the RIM-ONE

dataset using DE–GSO–ANFIS as a classifier model with

100 iterations.

Figure 7 shows the overall performance of DE–GSO–

ANFIS in predicting the disease on RIM-ONE for varying

population size.

A comparison of the proposed with well-known models

by means of statistical analysis is illustrated in Tables 7 and

Table 4 Parameter settings for

comparison
Algorithm Parameter setting

K for Cross-validation 10

ANFIS Maximum epochs = 100, Initial Step = 0.01

Error goal = 0, Increase rate = 1, Decrease rate = 0.9,

GA-ANFIS Crossover = 0.8, mutation = 0.01

DE-ANFIS F = 0.8, C = 0.5

LOA-ANFIS Nomads = 40, Prides = 20

PSO-ANFIS wMax = 0.9, wMin = 0.2, C1 = 2, C2 = 2

GSO-ANFIS q = 0.4, c = 0.6, b = 0.08, nt = 5, s = 0.03, lO = 5

1.56 
1.48 

0.33 
0.45 

0.36 0.32 

0.97 

1.26 

1.06 

0.62 

1.08 

0.48 

1.22 1.16 
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Fig. 5 Results to compute

optimal number of clusters of

FCM

Table 5 Performance of DE–GSO–ANFIS on Parkinson’s disease

dataset

Population Size Accuracy (%) Sensitivity (%) Specificity (%)

4 93.37 96.14 92.68

10 97.99 98.4 94.97

16 94.24 95.22 87.65

20 95.11 94.88 93.07

80

85

90

95

100

4 10 16 20

Pe
rc

en
ta

ge

Popula�on Size

Performance of DE-GSO-ANFIS on Parkinson’s disease dataset

Accuracy (%) Sensi�vity (%) Specificity (%)

Fig. 6 Performance of DE–

GSO–ANFIS in predicting the

disease on Parkinson’s dataset
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8. Figures 8 and 9 show the statistical comparison of DE–

GSO–ANFIS on Parkinson’s disease dataset and RIM-

ONE dataset. It clearly shows the performance of the

proposed model on different datasets with statistical

parameters like MSE, MAE, RSME, R2 and SD.

The lowest values of MSE, RMSE, MAE indicate the

best method, and the higher R2 value depicts better corre-

lation for the method. It can be seen from the table that

DE–GSO–ANFIS provides the lowest MSE, RMSE and

MAE values next to GSO–ANFIS. R2 value is also seen to

be high. Lowest standard deviation is also achieved com-

paratively by this method. The traditional ANFIS provided

high MSE and RMSE values. Appreciable values are

obtained by DE and GSO individually but next only to the

proposed method. It can also be seen that the GSO–ANFIS

and DE–ANFIS also performed well in terms of R2 and

standard deviation compared to other algorithms other than

the DE–GSO–ANFIS model on both the datasets. The

combination of DE and GSO has proved its effectiveness

by attaining a balanced performance as the benefits of both

the individual algorithms are utilized in this work.

5 Conclusions and future work

Improvement of ANFIS model using DE–GSO algorithm is

proposed in enhancing its prediction capabilities with

respect to medical diagnosis such as Parkinson’s disease

and retinal abnormalities, considering it as an optimization

challenge. Experimental outcomes have proved that the

proposed DE–GSO–ANFIS model for the UCI dataset and

RIM-ONE dataset has outperformed other similar algo-

rithms in terms of performance indices and statistical

analysis. It is inferred that the DE–GSO–ANFIS has

recorded lowest MSE, RMSE and MAE values and has

highest R2 measure. The performance of ANFIS relies on

the parameters, and those parameters have to be estimated

by a suitable method. Hence, differential evolution and

glowworm swarm algorithms are combined and applied to

ANFIS to determine its parameters. This novel

Table 6 Performance of DE-GSO-ANFIS on RIM-ONE dataset

Population Size Accuracy (%) Sensitivity (%) Specificity (%)

4 95.89 97.84 91.58

10 98.66 99.38 98.16

16 95.92 97.33 96.26

20 94.32 96.22 94.77

86
88
90
92
94
96
98

100

4 10 16 20

Pe
rc

en
ta

ge

Popula�on Size

Performance of DE-GSO-ANFIS on RIM-ONE dataset

Accuracy (%) Sensi�vity (%) Specificity (%)

Fig. 7 Performance of DE–

GSO–ANFIS in predicting the

disease on RIM-ONE dataset

Table 7 Statistical comparison of DE–GSO–ANFIS on Parkinson’s

disease dataset

Model MSE MAE RMSE R2 SD

ANFIS 0.0415 0.1614 0.2037 0.6814 0.0563

PSO–ANFIS 0.0180 0.1065 0.1341 0.8462 0.0138

GA–ANFIS 0.0216 0.1551 0.1469 0.8145 0.0273

LOA–ANFIS 0.0284 0.1418 0.1685 0.8226 0.0356

DE–ANFIS 0.0150 0.1218 0.1052 0.8541 0.0125

GSO–ANFIS 0.0163 0.1062 0.1267 0.8842 0.0124

DE–GSO–ANFIS 0.0122 0.0948 0.1104 0.9218 0.0078

Table 8 Statistical comparison of DE–GSO–ANFIS on RIM-ONE

dataset

Model MSE MAE RMSE R2 SD

ANFIS 0.5184 0.268 0.72 0.458 0.0762

PSO–ANFIS 0.1878 0.1278 0.433 0.812 0.0148

GA–ANFIS 0.2216 0.1697 0.4708 0.785 0.0266

LOA–ANFIS 0.3284 0.142 0.5731 0.612 0.0386

DE–ANFIS 0.1250 0.122 0.3535 0.844 0.0145

GSO–ANFIS 0.0412 0.118 0.203 0.887 0.0122

DE–GSO–ANFIS 0.0215 0.0886 0.1466 0.976 0.0068
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combination, called DE–GSO, focused on enhancing the

ability of GSO in finding a global solution (ANFIS

parameters). The proposed DE–GSO–ANFIS model can be

used as a second opinion expert to grade suspect classes in

medical diagnosis. This model can prove as an expert

system where skilled professionals are in demand. The

method has to be tested on real-time retinal datasets to

prove the efficiency of model. As seen from the results, the

proposed DE–GSO–ANFIS model can be applied to pre-

dict other diseases like COVID-19, coronary heart disease,

hepatitis, etc., and also applied to forecast commodities in

industrial sector like refineries, foreign exchange, mining,

agriculture projects.
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