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Abstract 

Background:  This paper investigates the impact of malaria preventive interventions in Ghana and the prospects of 
achieving programme goals using mathematical models based on regionally diverse climatic zones of the country.

Methods:  Using data from the District Health Information Management System of the Ghana Health Service from 
2008 to 2017, and historical intervention coverage levels, ordinary non-linear differential equations models were 
developed. These models incorporated transitions amongst various disease compartments for the three main eco-
logical zones in Ghana. The Approximate Bayesian Computational sampling approach, with a distance based rejection 
criteria, was adopted for calibration. A leave-one-out approach was used to validate model parameters and the most 
sensitive parameters were evaluated using a multivariate regression analysis. The impact of insecticide-treated bed 
nets and their usage, and indoor residual spraying, as well as their protective efficacy on the incidence of malaria, was 
simulated at various levels of coverage and protective effectiveness in each ecological zone to investigate the pros-
pects of achieving goals of the Ghana malaria control strategy for 2014–2020.

Results:  Increasing the coverage levels of both long-lasting insecticide-treated bed nets and indoor residual spray-
ing activities, without a corresponding increase in their recommended utilization, does not impact highly on averting 
predicted incidence of malaria. Improving proper usage of long-lasting insecticide-treated bed nets could lead to 
substantial reductions in the predicted incidence of malaria. Similar results were obtained with indoor residual spray-
ing across all ecological zones of Ghana.

Conclusions:  Projected goals set in the national strategic plan for malaria control 2014–2020, as well as World Health 
Organization targets for malaria pre-elimination by 2030, are only likely to be achieved if a substantial improvement in 
treated bed net usage is achieved, coupled with targeted deployment of indoor residual spraying with high commu-
nity acceptability and efficacy.
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Background
Many malaria endemic countries, including Ghana, are 
making tremendous efforts aimed at achieving the 2016–
2030 agenda towards malaria control and elimination [1, 
2]. In line with this, the Ghana National Malaria Con-
trol Programme (NMCP) is guided by a national malaria 
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strategic plan to reduce the burden of malaria by 75.0% 
across the country by 2020. Among the key strategic 
interventions adopted by the NMCP for achieving this 
milestone is the scaling of insecticide-treated bed nets 
(ITNs)/long-lasting insecticide-treated bed nets (LLINs) 
distribution, targeted indoor residual spraying (IRS), and 
improving monitoring activities [3, 4].

In recent years, the NMCP, with support from part-
ners, such as the United States Agency for International 
Development (USAID), President’s Malaria Initiative 
(PMI) and The Global Fund to Fight AIDS, Tuberculosis 
and Malaria, have achieved considerable reductions in 
malaria-related mortalities, but progress towards sub-
stantial reductions in morbidity still remains a challenge 
[5]. These achievements follow the deployment of new 
intervention strategies following the adoption of new 
national policies on the use of the following:

–	 artemisinin-based combination therapy (ACT) 
as first line therapies for uncomplicated malaria 
between 2002 and 2004,

–	 scale up and distribution of ITNs in 2002 and there-
after,

–	 intermittent preventive treatment of malaria in preg-
nancy (IPTp) using sulfadoxine-pyrimethamine (SP) 
between 2003–2004,

–	 and IRS on a small scale in 2005 [5, 6].

Although these interventions are in place, evaluating 
their effectiveness using mechanistic models based on 
locally available data still remains largely unexplored [6]. 
Despite the contributions of earlier developed mathe-
matical models’ describing the transmission dynamics of 
malaria in the country, there still exist important knowl-
edge gaps in determining a rational basis for deploying 
these interventions and evaluating them in the three dif-
ferent ecological zones of Ghana [7].

The dynamics of malaria morbidity generally follow 
patterns of ecological factors such as rainfall and temper-
ature [8]. There is evidence supporting both this spatial 
heterogeneity in the ecology of Ghana and the burden of 
malaria. For this reason, the spatial scale should not be 
ignored in any malaria investigations of national scale. 
The country was, therefore, partitioned into zones along 
three main ecological zones of Ghana, namely the Guinea 
savannah, transitional forest, and coastal savannah, as 
described elsewhere [8]. The model was then fitted to 
data for each zone.

Examples abound of uses of compartmental models for 
investigation of diseases with the aim of understanding 
the underlying principles or processes governing dynam-
ics of diseases [9]. Since their introduction into public 
health by Bernoulli in 1766, applications of mathematical 

models focused on malaria transmission have continued 
to attract interest, with several models developed espe-
cially in the last fifty years. These models build on those 
formulated by Ross and vary in complexity and diversity, 
specifically to elucidate further understanding into the 
mechanism of malaria transmission in humans [10–13]. 
Currently, mathematical models are also being used, 
among others, to support the formulation of policies 
aimed at controlling diseases, including monitoring and 
evaluation of disease incidence [14].

The model developed in this study is based on the basic 
susceptible-infected-recovered-susceptible (SIRS) model 
[15, 16], which has been modified to include additional 
compartments and attributes of the transmission settings 
in Ghana, such as superinfection. The model structure 
includes a human population model coupled with a vec-
tor model, with climatic elements adapted from Agusto 
et al. [17].

The objective of this paper is to develop a mathemati-
cal model to project the impact of various intervention 
scenarios of malaria intervention control programmes 
in Ghana, simulated at a sub-population level that rep-
resents the three main ecological zones [7]. The impact 
of various levels of usage and protective effectiveness, as 
well as coverage of LLINs and IRS, is also investigated, 
and prospects of achieving relevant locally and interna-
tionally set goals of malaria control and elimination in 
Ghana are considered.

Methods
Ordinary differential equations were used to develop 
compartmental models for malaria transmission dynam-
ics in the three ecological zones of Ghana. The model 
diagram for both human and vector populations is as 
illustrated in Fig. 1. Further details and a description of 
the models are presented in Additional file 1: S1 Text, the 
online supplementary files.

Model structure
Human population S represents the susceptible human 
compartment (where different probabilities have been 
applied, respectively, to recruited naïve or non-immuned 
children under 6  years of age, children 6 and above, 
and adults and pregnant women into the latent stage L 
before the onset of gametocytes. The Ic, Ia, Is and Ism 
compartments represent symptomatic infection (clinical 
infection), asymptomatic infection, severe infection and 
sub-microscopic infection, respectively. Pregnant women 
attend antenatal clinic (ANC) without an infection in 
IANCN or progress from L3 into IANCP once infected. 
Tr1, Tr2, and Tr3 represent the treatment sought for 
confirmed uncomplicated malaria (Ic), severe malaria 
(Is), and routine monthly SP prophylaxis for pregnant 
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women at ANC, respectively. Trf1, Trf2 and Trf3 rep-
resent respective treatment failure due to adherence and 
possible drug resistance to the aforementioned three 
treatment options.

Vector population Lv represents the larvae population 
and Sm the susceptible mosquitoes. Exposed mosquitoes 
are captured in the Em compartment, whereas infectious 
mosquitoes are found in the Im compartment. The grey 
compartments represent the populations which are sus-
ceptible, yellow those with latent infection, brown those 
with a blood stage infection and green those with symp-
tomatic infection and which undergo treatment. Com-
partments for treatment failure are indicated in red. The 
red and blue arrows present the forces of infection from 
infectious mosquitoes to humans and infectious humans 
to mosquitoes, respectively.

The model diagram shown in Fig.  1 above depicts a 
vector-coupled malaria transmission model that includes 
compartments for various stages of malaria and subsec-
tions of the Ghanaian population. The subsections of the 
population captured are children ≥ 6  years and adults, 

children under 6  years, and pregnant women, even 
though the models are not age structured.

The stages of development of the malaria parasite and 
the mosquito are captured by four compartments rep-
resenting the young and adult mosquitoes, which can 
be classified as being susceptible, infected, and infec-
tious, once ingested parasite(s) complete the full cycle of 
development.

Source of clinical data
Confirmed cases of uncomplicated, severe malaria and 
malaria in pregnancy reported by health facilities span-
ning 2008 to 2017 were used. Data for each zone con-
sist of aggregated monthly caseloads for regions of the 
Guinea savannah (Upper East, Upper West and North-
ern regions), transitional forest (Ashanti, Brong-Ahafo, 
Eastern and Volta regions) and coastal savannah (Central, 
Greater Accra and Western regions) [8]. The health facili-
ties where data were captured are located in all 216 dis-
tricts across all regions of Ghana. The parameters used 
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Fig. 1  Malaria transmission model showing various compartments of both human and vector populations
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were sourced from literature or from the data fitting pro-
cess to account for zonal transmission diversity. This was 
done to capture the different dynamics of morbidity of 
malaria and to allow for a better evaluation of the effec-
tiveness of the various interventions in these zones.

While these parameters are captured in the table of 
parameters as shown in Table  1, reported biting rates 
of humans by mosquitoes used for the data fitting are 
shown in Fig.  2. The reported uncomplicated malaria 
data used in this study are depicted under Baseline of the 
results section.

The most populous of the zones is the transitional for-
est zone, with a population of 17.1 million, followed by 
the coastal savannah zone with 8.1 million, while the 
Guinea savannah zone accounts for 5.1 million people 
(using 2017 zonal estimated population from DHIMS2).

Force of infection
Transmission of malaria parasites between humans 
and mosquitoes is through the drawing of blood from 
humans by infectious mosquitoes. The likelihood of 
humans’ being infected upon a successful bite from a 
mosquito will to some extent depend on the level of sus-
ceptibility of getting infected. On the other hand, a non-
infected mosquito which draws blood from an infected 
human also has a probability of ingesting gametocytes 
which later develop into sporozoites.

In these models, a 50.0% chance (prob_inf ) of transmit-
ting the malaria parasite between humans and mosqui-
toes following a successful bite of an infected mosquito 
on humans, or an uninfected mosquito on humans in any 
of the infected stages, was considered [15].

Transmission is governed by the forces of infection 
(λmh and λhm) from mosquitoes to humans and human to 
mosquitoes, respectively.

The forces of infections are defined as:

Equation  (1) represents the force of infection from 
humans to mosquitoes and Eq.  (2) represents the force 
of infection from mosquitoes to humans. The contact 
rate is represented by the biting rate (BR). The BR data 
were obtained from field studies from each of the zones 
through human landing catches (HLC). They are defined 
as the average number of bites received by a human in 

(1)
�hm = prob_inf×

(

1− ITNcov× ITNeff× ITNusage
)

× (1− IRScov× IRSeff)× BR

×
(Ich + Iah + Isdh + Ismh + IancPh + Tr1h + Tr2h + Tr3h + Trf1h + Trf2h + Trf3h)

Nh

(2)�mh = prob_inf×
(

1− ITNcov× ITNeff× ITNusage
)

×(1− IRScov× IRSeff)×BR×
Im

Nh

the population per month (b/p/m), as shown in Fig. 2 [18, 
19].

As captured in Fig. 2a, biting rates in the Guinea savan-
nah could be as high as 170 (b/p/m), whereas those of the 
Transitional forest were 12 (b/p/m) and 10 (b/p/m) in the 
Coastal savannah during the peak transmission seasons 
respectively. Figure 2 suggests that even though biting (as 
well as transmission) seems to occur all year around, in 
all zones, the peak follows rising rainfall.

Levels of coverage, usage and effectiveness of ITNs 
and IRS are denoted by itnc(t) = (1 − itncov × itnus-
age × itneff) and irsc(t) = (1 − irscov × irseff) respectively, 
where itncov and irscov and itneff and irseff repre-
sent coverage levels and effectiveness for ITNs and IRS 
respectively, with t being time steps and itnusage the level 
of ITN/LLIN usage.

Immunity and superinfection
The stable nature of transmission and the variation in 
seasonality across all three ecological zones requires 
incorporating superinfection, acquired immunity, treat-
ment failure, and seasonality into the model structure. 
This is to account for the natural history of malaria as 
much as possible, which allows for the description of the 
transmission dynamics of malaria across Ghana.

The models do not incorporate levels of immunity fol-
lowing length of exposure based on age (two broad age 
classifications for children under 5 and adults); however, 
aspects of the model structure account for this concept, 
though not fully. Thus the transitions accounting for 
some level of immunity in the model are:

•	 Children born naïve or young children with little 
exposure to malaria infection:

•	 born into the Sn compartment or

•	 born with a congenital infection of malaria into the Ia 
compartment

•	 Adults in the population with several years of expo-
sure

•	 recruited into the Snn compartment



Page 5 of 21Awine and Silal ﻿Malar J          (2020) 19:423 	

Table 1  Parameter values

Parameter name Parameter value by Zone Parameter definition Source

Guinea Savannah Transitional 
Forest

Coastal 
Savannah

pc1 0.90 0.90 0.80 Probability of naive progressing into Ic Estimated

pa1 0.35 0.07 0.58 Probability of naive progressing into Ia Estimated

pc2 0.14 0.19 0.14 Probability of non-naive progressing into Ic Estimated

pa2 0.61 0.39 0.49 Probability of non-naive progressing into Ia Estimated

Ps 0.130 0.065 0.062 Probability of progressing into severe disease [52]

pt1 0.87 0.88 0.88 Probability of being tested/diagnosed for uncompli-
cated malaria

[53]

Ppc 0.81 0.70 0.80 Proportion of pregnant women from L3 progress-
ing to Ic

Estimated

Ppa 0.250 0.075 0.540 Proportion of pregnant women from L3 progress-
ing to Ia

Estimated

X 0.01 0.01 0.01 Probability of progressing from Ia to Ic Estimated

m1 0.57 0.10 0.10 Probability of infection among children under 
6 years and pregnant women

Estimated

m2 0.77 0.22 0.20 Probability of infection among non-naive popula-
tion 6 years and above

Estimated

Pst 0.80 0.71 0.73 Probability of seeking treatment at the health 
facility

[53]

Prob_inf 0.50 Probability of a bite resulting into a mosquito being 
infected or a human being infected following a 
bite from an mosquito

[15]

Pn 0.125 0.125 0.125 Proportion of population of children under 6 years [54]

Pm 0.874375 0.87425 0.8744125 Proportion of population 6 years and above [15]

pt2 0.99 0.99 0.99 Probability of being treated with QUININE [55]

ah1 0.385 0.385 0.385 Proportion non-adherent to ACT​ treatment [56]

ah2 0.092 0.082 0.082 Proportion non-adherent to QUININE treatment [55, 57]

Px 0.025 Proportion of pregnant women in the population [54]

rs1 0.04 0.04 0.04 Resistance against ACT​ (day 28 PCR-corrected 
failure rate (0.8–4.0%) for ASAQ and AL

[58]

rs2 0.01 0.01 0.01 Resistance against QUININE, intramusclar 
ARTEMETHER (day 28 parasitaemia failure rate)

[59]

rs3 0.0962 0.0962 0.0962 Resistance against SP (day 28 PCR-corrected failure 
rate (0.0962) for SP

[60]

ac1 0.134 0.126 0.112 Probability of asymptomatic malaria among preg-
nant women at ANC

[61–63]

ac2 0.097 0.097 0.097 Probability of sub-microscopic infection among 
pregnant women at ANC

[54]

pt3 0.367 Proportion of pregnant women taking up at least 
3 dose

[64]

ah3 0.633 Proportion of pregnant women not taking up at 
least 3 doses

[64]

Nn 5.1 × 106 17.1 × 106 8.1 × 106 Human population size (2018 mid-year estimated) 
(number)

DHIMS2

Ln 25 30.6 23.5 birth/death rate per 1000 population (year−1) [65–67]

Kv 7.8 × 105 4.2 × 107 2.5 × 107 Carrying capacity of the environment for larva and 
pupae stages of mosquitoes (ha−1)

estimated

LLIN 0.398 Protective efficacy of LLINs against malaria (based 
on the IRRa or ORb)

[31]

IRS 0.285 Protective efficacy of IRS against malaria (based on 
the IRRa or ORb)

[31]

Ss 365.25/5 Rate of progressing into severe disease (day−1) [68]

Q 365.25/194 Duration of progressing from Ia into Ic (day−1) [33, 56, 69]
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•	 Progressing from Ism to Ic
•	 Progressing from Ic to Ia
•	 Progressing from Ia to Ism
•	 Recovering naturally without treatment from Ism to 

Snn [20]; a state of susceptibility where one is more 
likely to have an asymptomatic episode of malaria.

Reinfection or superinfection was allowed in the mod-
els given the high transmission settings of all zones across 
Ghana. A factor that is dependent on the inverse of the 
sum of the rate of force of infection from mosquito to 
human and duration of infection, i.e. (1/�m+1/γ)−1

, was 
incorporated. This factor affects the populations in the 
infected compartments Ia and Ism. A proportion of the 
infected and superinfected therefore make the following 
transitions:

•	 Progressing from Ia to Ic
•	 Progressing from Ism to Ic

Vector dynamics
From Fig. 1, the vector compartments Lv, Sm, Em, and 
Im respectively represent young mosquitoes (larvae and 
pupae), susceptible mosquitoes, exposed mosquitoes, 
and infectious mosquitoes. The compartment for suscep-
tible mosquitoes is populated from the maturing larvae 
and pupae compartment, Lv. The egg deposition rate, ∅ , 
and maturing rate, θ, are both dependent on the carrying 
capacity (Kv) of the environment to support breeding, 

which in turn depends on rainfall (Rf) and environmental 
temperature (Temp). The incorporation of these environ-
mental factors, as shown in Fig.  2, drives the transmis-
sion dynamics of malaria incidence in the various zones, 
which generally lags behind seasonal rainfall [8]. Details 
of the governing equations of the Vector model can be 
found in the Additional file 1: S1 text file.

Data fitting
Zonal-specific monthly confirmed reported uncompli-
cated malaria cases, severe malaria cases, and malaria 
among pregnant women, were used for data fitting after 
the models attained steady state. With regards to data 
fitting, data from 2008 to 2017 on the DHIMS were 
used. The observed rising trend of malaria cases for this 
period seems to suggest an increasing trend in the inci-
dence of malaria in Ghana. However, as pointed out else-
where, this seeming increasing trajectory is largely due 
to reporting, increasing diagnostic testing (Fig.  3), and 
potential improvement in health-seeking behaviour [8].

The models were first individually implemented from 
1988 to 1997 to attain a steady state. They were then 
implemented across all zones from 1998 to 2017, incor-
porating reported levels of historical interventions, such 
as LLINs and IRS coverages. These were obtained from 
national surveys, such as Demographic and Health Sur-
veys (DHS) and the Multiple Indicator Cluster Surveys 
(MICS), and annual reports of the NMCP. Historical Sea-
sonal Malaria Chemotherapy (SMC) intervention cover-
age levels from 2015 were also incorporated in the data 

Table 1  (continued)

Parameter name Parameter value by Zone Parameter definition Source

Guinea Savannah Transitional 
Forest

Coastal 
Savannah

gamma 365.25/21 Duration of latent period in human population 
(day−1)

[70]

t1 365.25/3 Duration after onset of illness ACT​ treatment was 
sought (day−1)

[70]

rho1 365.25/3 Recovery rate after ACT treatment (day−1) [70, 71]

rho2 365.25/6 Recovery rate after QUININE treatment (day−1) [72]

V 52/5.5 Rate of recovery from Ia to Ism without treatment 
(week−1)

[73]

Nr 365.25/130 Rate of natural recovery from infection (day−1) [74]

AC 365.25/30 Rate of antenatal attendance (day−1) [75]

Hlsp 365.25/8 Rate of recovering after SP treatment at ANC 
(day−1)

[76]

RDTMicSens 0.49 Average sensitivity of RDTs and Microscopy in 
health facilities (proportion)

[77]

Reporting 0.969 0.966 0.947 Reporting probability of uncomplicated malaria at 
health facility (proportion)

Data from NMCP

a  IRR incidence rate ratio
b  OR Odds ratio
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fitting stages of the model for the Guinea savannah zone 
(Additional file 1: S1 Fig. 2). These SMC coverage levels 
were obtained from reports of the NMCP, among oth-
ers [21–24]. The data fitting phase was also adjusted for 
reporting probabilities of the health facilities’ capturing 
all confirmed cases of malaria onto the DHIMS plat-
form. The probabilities of seeking treatment and receiv-
ing a diagnostic test at the health facility were all taken 
into account in the fitting process. The sources of these 
parameters are referenced in the table of parameters, 
Table 1.

In all 120 data points, each of three time series for 
uncomplicated malaria, severe malaria, and malaria in 
pregnancy were used for data fitting, as well as 10 esti-
mated parameters as indicated in the table of parameters, 
Table 1. The incidence of confirmed malaria reported in 
2017 was considered as baseline for future predictions. 
All the parameters from 2017 were then held constant 
from 2017 to 2030, which is the prediction period for sce-
nario testing.

Data management was undertaken in Stata version 13.1 
(StataCorp LP., College Station, Texas, USA). All analyses 
and computation were performed using R version 3.3.2 
Copyright (C) 2018 [25].

Model calibration
The dimensionality of the monthly aggregated counts 
of confirmed multiple categories of malaria cases from 
each ecological zone made direct parameter estima-
tion through the computation of the likelihood difficult 
or intractable. The approximate Bayesian computation 

(ABC) approach was, therefore, deployed for model 
calibration.

Bayesian philosophy allows for the estimate of the 
posterior distribution of parameters to be computed 
using stochastic sampling of the prior parameter distri-
bution. This process allows the calibration of parame-
ters to be carried out, whilst avoiding the estimation of 
the likelihood function [26, 27]. ABC was implemented 
using a rejection criterion based on the Euclidean dis-
tance (Additional file  1: Eq.  (6) of the S1 text) between 
summary statistics of predictions arising out of sam-
pled parameter sets and summary statistics of observed 
monthly reported malaria cases in Ghana from 2008 to 
2017 [28, 29]. Out of 15,000 iterations, 10–20% of the 
sample was retained for parameter validation.

The bands around the graphs in Figs. 5, 6 and 7 in the 
results section are 95% pseudo-confidence intervals. 
These were constructed for each month using 2.5% and 
97.5% quantiles of the retained simulations.

Parameter validation
A cross validation of the accuracy of the parameters 
was undertaken using the R package cv4abc. The 
sample parameters retained and used were based on a 
distance criterion between a summary statistic of the 
observed data and the simulated data, seen in Addi-
tional file  1: S1 Eq.  (6). A leave-one-out cross valida-
tion was implemented, and the prediction error for 
each parameter, as well as sensitivity or robustness to 
various tolerance levels, was calculated [30]. All simula-
tions were performed on high performance computing 
facilities provided for by the ICTS High Performance 
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Computing team (http://hpc.uct.ac.za) of the Univer-
sity of Cape Town.

Sensitivity analyses
A multivariate regression-based sensitivity analysis of 
model parameters was performed for each zone. These 
investigations were carried out using the sample data 
obtained from the ABC analysis. The most sensitive 
parameters for each model were then obtained from an 
ordered set of standardized coefficients of parameters 
in the multivariate regression. Additional file  1: S1 text 
Tables 5, 6, and 7 show the most sensitive parameters by 
transmission zone.

Interventions tested
In this study, the interventions investigated include the 
impact of elevated coverage (universal coverage defined 
as 1 treated bed net per 2 household members) and 
usage (proportion of the population reported to be sleep-
ing under a treated bed net) levels, as well as protective 
effectiveness (PE) (proportion of cases of clinical malaria 
which could potentially be averted while using a treated 
bed net or dwelling in structures that have been sprayed 
with an approved insecticide to repel or kill mosquitoes) 
of ITNs or LLINs, and IRS.

Baseline LLIN and IRS average coverage levels in the 
various zones were 66.0%, 51.0%, 50.0% and 17.0%, 0.0%, 
0.0%, respectively for the Guinea savannah, transitional 
forest, and coastal savannah zones. Additionally, LLIN 
usage at baseline was also 56.0%, 45.0% and 35.0% for 
Guinea savannah, transitional forest, and coastal savan-
nah, respectively.

Various hypothetical scenarios were investigated with 
the aim of observing which ones resulted in the achieve-
ment of the targets set by the national malaria control 
strategic policy goals by fixed deadlines. The scenarios 
presented here include:

1.	 Implementation of only LLIN to achieve a univer-
sal coverage of 70.0% and 90.0% with usage at 60.0% 
within three years and IRS coverages at baseline 
across all zones.

2.	 Implementation of only IRS for a period of five years 
to achieve IRS coverage of 90.0% and PE of 30.0% and 
60.0%, with LLIN coverage and usage at baseline lev-
els (66.0% and 56.0% in the Guinea savannah, 51.0% 
and 45.0% in the transitional forest and 50.0% and 
35.0% in the coastal savannah, respectively).

3.	 LLIN and IRS coverage at 80.0% and 80.0% versus 
80.0% and 90.0%, respectively, maintaining LLIN 
usage at 60.0% and IRS PE at baseline (30.0% in the 
Guinea savannah, 30.0% in the transitional forest and 
30.0% in the coastal savannah, respectively).

Other interventions tested but not presented here 
include the impact of SMC among children under 6 years 
in the Guinea savannah zone and Mass Screen and Treat 
(MSAT) in the transitional forest and coastal savannah 
zones.

Investigations carried out in this study were largely 
guided by the goals and objectives of the national malaria 
control strategic policy of 2014–2020. The findings have 
neither been approved by, nor were the recommenda-
tions arrived at made in consultation with, the NMCP in 
Ghana [4].

Results
Baseline
As shown in Figs.  4a–c, the parameters were calibrated 
with data from 2008 to 2017, as shown in Additional file: 
S1 Figs. 4, 5 and 6. These figures depict the baseline sce-
narios for all zones.

Figure  4a shows that the incidence of uncomplicated 
malaria in the Guinea savannah follows the seasonal 
rainfall patterns, which is generally of a single peak. 
While similar patterns are observed in the transitional 
forest and coastal savannah, incidence of uncompli-
cated malaria peaks twice a year. As depicted in Fig. 4b, 
c below, there is, however, a relatively less prominent sec-
ond season in the coastal savannah compared to that of 
the transitional forest zone.

Estimated burden of all clinical cases of malaria 
(uncomplicated and severe) in the baseline year of 2018 
was 219 (95% p.CI [153, 315])/1000 population, 261 (95% 
p.CI [220, 312])/1000 population and 139 (95% p.CI 
[117, 154])/1000 population for the Guinea savannah, 
transitional forest, and coastal savannah zones respec-
tively. However, reported cases of uncomplicated malaria 
only in 2018 at the health facilities were estimated to 
be 173 (95% p.CI [121, 250])/1000, 199 (95% p.CI [168, 
238])/1000 and 104 (95% p.CI [88, 115])/1000 population 
in the Guinea savannah, transitional forest, and coastal 
savannah zones, respectively.

Predictions
Results of scaled up interventions implemented for 
3 years to achieve universal coverage levels with respect 
to LLINs, and 5 years to achieve targeted coverage levels 
of IRS, in the three zones, were simulated from 2018 to 
2030 under various intervention scenarios as presented 
in the sections below.

http://hpc.uct.ac.za
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Fig. 4  Model run time is 1988 to 2030. Steady state period spans from 1988 to 1997, 1998 to 2017 previous interventions implemented and 
reporting rates on DHIMS introduced. Data fitting and calibration from 2008 to 2017 for the a Guinea savannah, b transitional forest and c coastal 
savannah
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Impact of LLIN interventions
LLIN coverage of 70.0% and 90.0% at baseline usage (56.0%, 
45.0% and 35.0% for Guinea savannah, transitional forest 
and coastal savannah, respectively)
The impact of increasing the universal coverage levels of 
ITNs/LLINs was tested with selected scenarios for the 
various zones. Results obtained from the models after 
simulation show that achieving elevated levels of LLIN 
coverage of 70.0% and 90.0%, given usage at the baseline 
level of protective efficacy of LLINs at 40.0% and IRS at 
30.0% [31], while keeping the coverage levels of IRS at 
baseline at 2018, leads to a 2.5% and 8.9% reduction in 
uncomplicated cases in the Guinea savannah, 8.2 and 
17.3% in the transitional forest and 9.9% and 19.8% in the 
coastal savannah, respectively, Additional file 2: S2 Fig. 1.

For predictions of all reported clinical incidence of 
malaria (uncomplicated and severe), the correspond-
ing reductions in the incidence rates for all the zones are 
shown in Table 2.

LLIN coverage of 70.0% and 90.0% and usage at 60.0% 
across zones
When coverage levels were maintained at 70.0% 
and 90.0%, in all zones, reductions in predicted 

uncomplicated cases of 4.2% and 11.3%, respectively, in 
the Guinea savannah, 20.0% and 32.8% in the transitional 
forest, and 36.9% and 51.3% in the coastal savannah, were 
observed with an increased level of usage of LLINs of 
60.0%. PE of LLINs and IRS remained at baseline levels; 
see Additional file 2: S2 Fig. 1 and Fig. 5.

The incidence rates corresponding with an increased 
LLIN usage of 60.0% in the Guinea savannah were 166 
(95% p.CI [114, 242])/1000 and 156 (95% p.CI [104, 
230])/1000 population in 2020, and 165 (95% p.CI [112, 
241])/1000 and 151 (95% p.CI [94, 225])/1000 population 
by 2030, respectively, for LLIN coverage levels of 70.0% 
and 90.0%, as shown in Table 2 and Fig. 5.

The rates predicted in the transitional forest and the 
coastal savannah for elevated use of LLIN at 60.0%, and 
for LLIN coverage levels of 70.0% and 90.0% by 2020 and 
2030, are also shown in Table 2 and Fig. 5.

LLIN coverage of 70.0% and 90.0% and usage of 80.0% 
across all zones
A further proportion of predicted cases of reported 
uncomplicated malaria can be averted when the LLINs 
usage level is increased to 80.0%. The proportions of pre-
dicted cases averted in the Guinea savannah, transitional 

Table 2  Predictions of  reported clinical malaria (uncomplicated and  severe cases) incidence rate per  1000 population 
with 95% pseudo-confidence intervals (95% p.CI) for various coverage levels of LLINs and IRS and LLIN usage (%) or IRS 
protective efficacy (PE) (%) at 2020 and by 2030 by zone

a  95% p.CI 2.5 and 97.5% quantiles around the mean of the distribution of the predicted clinical cases of malaria
b  Baseline IRS coverage

Zone Intervention Coverage (%) Usage (%) PE (%) Incidence rate/1000 population

(95% p.CI) by yeara

LLIN IRSb LLIN LLIN IRS 2020 2030

Guinea savannah LLINs 70 17 56 40 30 169 (117, 245) 168 (116, 245)

60 40 30 166 (114, 242) 165 (112,241)

80 40 30 150 (97, 223) 148 (91,222)

90 17 56 40 30 160 (108, 245) 155 (100, 230)

60 40 30 156 (104, 230) 151 (94, 225)

80 40 30 136 (84, 206) 125 (62, 196)

Transitional forest LLINs 70 0 45 40 30 189 (157, 226) 177 (139, 215)

60 40 30 171 (139,206) 148 (103, 186)

80 40 30 146 (115,179) 107(57,145)

90 0 45 40 30 179 (148, 226) 159 (109, 190)

60 40 30 158 (126, 191) 113 (64, 151)

80 40 30 130 (100, 160) 60 (22, 93)

Coastal savannah LLINs 70 0 35 40 30 97 (79, 110) 87 (63, 104)

60 40 30 77 (60, 91) 51 (26,78)

80 40 30 62 (47, 77) 27 (10,55)

90 0 35 40 30 92 (74, 110) 73 (47, 94)

60 40 30 69 (53, 83) 31 (12, 58)

80 40 30 53 (39, 67) 11 (4, 28)
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Fig. 5  Impact of attaining various levels of LLINs coverage within a 3-year implementation programme at a usage level of 60.0% while maintaining 
IRS coverage and PE at prevailing baseline levels in the a Guinea savannah, b transitional forest and c coastal savannah



Page 13 of 21Awine and Silal ﻿Malar J          (2020) 19:423 	

forest, and coastal savannah are 13.5%, 36.6%, and 56.7% 
for a 70.0% LLIN coverage and 24.4%, 53.2% and 69.0%, 
for LLIN coverage of 90.0%, respectively, across all the 
zones (Additional file 2: S2 Fig. 1).

At 80.0% usage level of LLINs, the rates for various 
zones are shown in Table 2. They demonstrate consider-
able reductions in incidence of malaria in these zones.

Impact of IRS interventions
IRS coverage of 90.0% and PE of 30.0% and 60.0%, LLIN 
coverage and usage at baseline levels (66.0% and 56.0% 
in the Guinea savannah, 51.0% and 45.0% in the transitional 
forest and 50.0% and 35.0% in the coastal savannah, 
respectively)
A relatively higher number of cases of uncomplicated 
malaria could potentially be averted with a 90.0% IRS 
coverage level and PE levels of 30.0% and 60.0% across all 
the zones (Fig. 6 and Additional file 2: S2 Fig. 2).

In the Guinea savannah, averting 72.0% and 79.0% of 
uncomplicated cases could be attained by 2030 for IRS 
PE at 30.0% and 60.0% levels, respectively (Additional 
file 2: S2 Fig. 2 and Fig. 6).

The impact of these declines in the Guinea savannah on 
the incidence of all cases of malaria cases was observed 
to be 146 (95% p.CI [95, 218])/1000 and 105 (95% p.CI 
[59, 164])/1000 population by 2020, and 102 (95% p.CI 
[36, 169])/1000 and 6 (95% p.CI [1, 15])/1000 population 
by 2030, for a 30.0% and 60.0% PE respectively, for an IRS 
coverage of 90.0% (Table 3).

Likewise, in the transitional forest zone, potentially 
75.7% of uncomplicated malaria cases could be averted 
with an IRS coverage of 90.0% and PE of 30.0%, and 
78.5% for an IRS PE of 60.0%, by 2030 (Additional file 2: 
S2 Figs. 2 and Fig. 6).

Correspondingly, the rates of incidence of all cases of 
malaria were 159 (95% p.CI [128, 192]) and 121 (95% p.CI 
[94, 149]) for an IRS PE of 30.0% and 60.0%, respectively, 
by 2020, and 35 (95% p.CI [12, 32]) and 1 (95% p.CI [1]) 
for an IRS PE of 30.0% and 60.0%, respectively, by 2030 
(Table 3 and Fig. 6).

For IRS only, uncomplicated cases averted, as shown 
in Fig. 6 and Additional file 2: S2 Fig. 2, was 78.5% ver-
sus 80.9% for a 90.0% IRS coverage with 30.0% and 60.0% 
levels of PE, respectively, by 2030. The correspond-
ing incidence rates for all cases of malaria following the 
attainment of these intervention targets by 2020 and 
2030, respectively, are shown in Table 3 and Fig. 6.

Impact of deploying LLINs and IRS
LLIN coverage at 80.0% and IRS coverage at 80.0% with LLIN 
usage and IRS PE at baseline settings (56.0% and 30.0% 
in the Guinea savannah, 45.0% and 30.0% in the transitional 
forest and 35.0% and 30.0% in the coastal savannah, 
respectively)
Achieving 80.0% LLIN and IRS coverage while maintain-
ing LLIN usage and IRS PE at baseline potentially results 
in 30.8%, 58.0% and 64.7% of reported uncomplicated 
malaria cases averted in the Guinea savannah, transi-
tional forest, and coastal savannah, respectively (Addi-
tional file 2: S2 Fig. 3).

The proportions of malaria cases averted for imple-
menting an 80.0% LLIN and IRS coverage at base-
line LLIN usage and IRS PE was likely to give rise to 
reductions in incidence, as shown in Table 4 and Fig. 7. 
When the coverage levels of LLIN and IRS were both 
increased to 90.0%, but all other scenarios remained as 
in the previous scenario, cases averted were observed 
to be 39.1%, 64.1% and 69.0% in the Guinea savannah, 
transitional forest and coastal savannah zones, respec-
tively, as shown in Additional file 2: S2 Fig. 3. The cor-
responding rates for the various zones are captured in 
Table 4 and Fig. 7. 

LLIN coverage at 80.0% and IRS coverage at 80.0% with LLIN 
usage at 60.0% and IRS PE at baseline settings (30.0% 
in the Guinea savannah, transitional forest, and coastal 
savannah)
Given coverage levels of LLIN and IRS of 80.0%, but 
with LLIN usage increased to 60.0% in all zones, 33.0%, 
65.8% and 74.6% of uncomplicated cases of malaria could 
be averted in the Guinea savannah, transitional forest, 
and coastal savannah, respectively (Additional file  2: S2 
Fig.  3). Various rates corresponding to these reductions 
for all cases of malaria by 2020 and 2030, respectively, are 
as shown in Table 4 and Fig. 7.

LLIN coverage at 80.0% and IRS coverage at 90.0% with LLIN 
usage of 60.0% and IRS PE at baseline settings (30.0% 
in the Guinea savannah, transitional forest, and coastal 
savannah, respectively)
The corresponding proportions of cases potentially 
averted, with LLIN coverage of 80.0% and usage of 60.0%, 
deployed in combination with an IRS coverage of 90.0%, 
as shown in Additional file  2: S2 Fig.  3, could be 37.7% 
for uncomplicated malaria in the Guinea savannah. The 
associated reductions in the incidence of all clinical cases 
of malaria by 2020 and 2030, respectively, are depicted in 
Table 4 and Fig. 7.
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Fig. 6  Impact of attaining various levels of IRS coverage within a 5-year implementation programme at various protective efficacy (PE) while 
maintaining IRS coverage at 90.0% and PE, coverage levels and usage of LLINs at prevailing baseline levels in the a Guinea savannah, b transitional 
forest and c coastal savannah
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In the transitional forest zone, 68.3% of uncomplicated 
cases were predicted to be averted by 2030 (Additional 
file 2: S2 Fig. 3). The associated incidence rates, as shown 
in Table  4, were 129 (95% p.CI [100, 159])/1000 and 10 
(95% p.CI [4, 20])/1000 population for the transitional 
forest by the years 2020 and 2030, respectively.

Similarly, for the coastal savannah, the proportion of 
uncomplicated malaria cases potentially averted was 
76.1% (Additional file  2: S2 Fig.  3). Correspondingly, 

incidence rates for all clinical cases of malaria under this 
scenario were predicted to be 53 (95% p.CI [33, 34])/1000 
and 2 (95% p.CI [1, 4])/1000 population by 2020 and 
2030, respectively (Table 4 and Fig. 7).

Discussion
The potential impact of malaria interventions was 
investigated by simulating various implementation 
scenarios, while taking into account the diversity of 

Table 3  Predictions of  reported clinical malaria (uncomplicated and  severe cases) incidence rate per  1000 population 
with 95% pseudo-confidence intervals (95% p.CI) for various coverage levels of LLINs and IRS and LLIN usage (%) or IRS 
protective efficacy (PE) (%) in 2020 and by 2030 by zone

a  95% p.CI 2.5 and 97.5% quantiles around the mean of the distribution of the predicted clinical cases of malaria

Zone Intervention Coverage (%) Usage (%) PE (%) Incidence rate/1000 population

(95% p.CI) by yeara

LLIN IRS LLIN LLIN IRS 2020 2030

Guinea savannah IRS 66 90 56 40 30 146 (95, 218) 102 (36, 169)

56 40 60 105 (59, 164) 6 (1, 15)

56 40 80 78 (39, 125) 0 (0, 1)

Transitional forest IRS 51 90 45 40 30 159 (128, 192) 35 (12,59)

45 40 60 121 (94, 149) 1 (1,1)

45 40 80 99 (75, 122) 0 (0, 0)

Coastal savannah IRS 50 90 35 40 30 75 (59, 89) 8 (3, 20)

35 40 60 53 (40, 65) 0 (0, 0)

35 40 80 40 (30, 51) 0 (0, 0)

Table 4  Predictions of  reported clinical malaria (uncomplicated and  severe cases) incidence rate per  1000 population 
with 95% pseudo-confidence intervals (95% p.CI) for various coverage levels of LLINs and IRS and LLIN usage (%) or IRS 
protective efficacy (PE) (%) in 2020 and by 2030 by zone

a  95% p.CI 2.5 and 97.5% quantiles around the mean of the distribution of the predicted clinical cases of malaria

Zone Intervention Coverage (%) Usage (%) PE (%) Incidence rate/1000 population

(95% p.CI) by yeara

LLIN IRS LLIN LLIN IRS 2020 2030

Guinea savannah LLIN and IRS 80 80 56 40 30 144 (93, 214) 103 (37, 170)

90 90 56 40 30 136 (86, 204) 83 (20, 146)

80 80 60 40 30 140 (89, 210) 98 (33, 165)

80 90 60 40 30 137 (86, 206) 86 (23,151)

Transitional forest LLIN and IRS 80 80 45 40 30 150 (120, 183) 29 (9, 51)

90 90 45 40 30 142 (113, 173) 16 (5,29)

80 80 60 40 30 133 (103, 163) 16 (5, 30)

80 90 60 40 30 129 (100, 159) 10 (4, 20)

Coastal savannah LLIN and IRS 80 80 35 40 30 72 (56, 85) 7 (3, 18)

90 90 35 40 30 67 (52, 80) 4 (2, 10)

80 80 60 40 30 55 (41, 68) 2 (1,6)

80 90 60 40 30 53 (39, 66) 2 (1, 4)
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Fig. 7  Impact of attaining a combination of various levels of LLINs and IRS coverage within 3 and 5 year implementation programme respectively 
at baseline protective Efficacy (PE) of IRS (30.0%) and elevated level of LLINs (60.0%) usage in the a Guinea savannah, b transitional forest and c 
coastal savannah
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morbidity in the three ecological zones across Ghana. 
These investigations, which were conducted spanning 
2018 to 2030, also assessed the prospects of achieving 
some goals of the Ghana National Malaria Strategic 
Plan, 2014–2020, as well as those of the World Health 
Organization (WHO) Global Technical Strategy mile-
stones on malaria control [1].

The models take into account the population sizes 
of the different transmission settings. Differences in 
transmission potential for young children, adults, and 
pregnant women were also considered. The gradual 
improvement in the data capture and reporting, through 
the DHIMS infrastructure, at the district level in gov-
ernment health facilities and faith-based private facili-
ties across the country, was accounted for by allowing 
for various levels of reporting and system improvements 
from 2008 to 2018. Years of improvement in all suspected 
cases receiving a malaria diagnostic test was also incor-
porated (Fig. 3) [32, 35].

The roll out of LLINs on a large scale basis in Ghana 
began in 2003 [32]. This resulted in a substantial improve-
ment in the proportion of households with at least one 
LLIN, as well as at least one LLIN per every two mem-
bers of a household (universal coverage) across the coun-
try [24]. For instance, as at 2016, the average proportions 
of households with at least one LLIN were 89.0%, 74.8%, 
and 70.0%, compared to 59.0%, 42.5% and 37.6% in 2008 
for the Guinea savannah, transitional forest, and coastal 
savannah zones, respectively [21, 24]. On the other hand, 
the average coverage levels (universal) of LLINs in 2016 
were 65.7%, 50.5% and 49.9% for the Guinea savannah, 
transitional forest, and coastal savannah zones, respec-
tively [24]. These achievements have largely contributed 
to the gradual decline in the prevalence of malaria among 
children aged 6–59 months of age, with the latest (2016) 
measurement’s having fallen to 21.0%, from 27.0% in 
2014 [24].

ITN/LLIN usage is relatively low across the coun-
try. On average, 56.0%, 45.0%, and 35.2% of the popula-
tions in the Guinea savannah, transitional forest and 
coastal savannah zones, respectively, were reported to 
have slept in an ITN/LLIN in 2016, a marginal increase 
from 47.1%, 45.6%, and 32.5% in 2008, for children under 
the age of five years [21, 24, 36]. These observations fol-
low the results of this study, which suggest that ITN or 
LLIN usage could be low given the current level of cover-
age and incidence of malaria across all of the zones. The 
results from the models show that, with elevated levels of 
usage of LLINs, which improves PE, a significant number 
of predicted incidence cases could be averted.

For example, as described earlier, the predicted cases 
averted by increasing the coverage levels of LLINs to 
targeted levels of 70.0% and 90.0%, during a three year 

implementation campaign period, leads to only a mar-
ginal improvement from the baseline scenario, without 
a corresponding increase in the PE of the LLINs (Addi-
tional file 2: S2 Fig. 1). This observation may explain why 
the relatively high universal coverage levels of LLINs 
currently observed (at least 50.0% across all zones as at 
2016) may not be reducing the level of predicted cases as 
expected.

Even though LLIN deployment has been reported to 
be one of the most efficient packages, which can lead 
to a 75.0% reduction in disease, in much of Africa [37], 
averting more predicted cases through LLINs may 
only be possible through intensifying the campaign to 
persuade the population to comply with proper LLIN 
usage, while continuous efforts are made to sustain the 
coverage already achieved. Many reasons have been 
reported for people’s not sleeping in ITN/LLIN includ-
ing an inability to hang them, real or perceived health 
concerns, difficulty in breathing when sleeping under 
them, and other factors [38–40].

This calls for further and continuous advocacy on the 
usage of ITNs/LLINs, including the use of formal edu-
cation channels, and community hang-up/social behav-
iour communication change campaigns, on the proper 
usage of the LLINs, while highlighting the potential 
biting patterns of mosquitoes to avert unnecessary out-
door exposure [18, 19].

Given the proven efficacy of LLINs, and the relatively 
high coverage levels currently prevailing in the various 
zones, correspondingly higher reductions in the bur-
den of malaria could have been achieved if the usage 
of these LLINs was equally as high, as demonstrated 
throughout the results of various intervention sce-
narios simulated in this study with increasing levels of 
usage (Additional file 2: S2 Fig. 1).

Following the WHO guidelines for vector control, 
Ghana may have attained a high enough LLIN coverage 
level in selected areas, especially in the Guinea savan-
nah zone, where transmission is highly seasonal and 
coverage is relatively higher, to begin the roll out of IRS 
on a targeted large-scale basis as a complementary vec-
tor control measure [8, 40].

However, relative to LLINs, the coverage of IRS is by 
far the lowest across the country. Although parts of the 
Guinea savannah and the Transitional forest zones have 
had some implementation of IRS on pilot bases, studies 
of any such activities rolled out in the Coastal savannah 
are yet to be cited [32, 34, 41].

It was shown in parts of the Guinea savannah that 
districts where IRS was deployed compared to non-IRS 
districts resulted in a reduction of 39.0%, on average, in 
malaria incidence during the six months after spraying. 
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These gains were, however, reversed when the IRS 
activities were not sustained [41, 42].

Results in this study also show that a potential 
increase in the reduction of predicted cases of malaria, 
from 48.9% to 90.4%, could be attained with an 
increased deployment of IRS in the various zones, for 
varying levels of PE of a spraying programme that takes 
up to five years to attain and maintain these coverage 
levels (80.0% and 90.0%), Additional file  2: S2 Fig.  2. 
At these levels of decline, pre-elimination could be in 
sight, as observed in the incidence rates of 1 (95% p.CI 
[1])/1000 population or less. This is possible if a 90.0% 
coverage of IRS is attained within five years and main-
tained up to 2030 across the country (Table 3).

IRS might hold a promise of averting more cases of 
malaria compared to LLINs, given the relatively low 
level of dependence on human behaviour for usage. 
However, the feasibility of rolling out IRS as an addi-
tional intervention to LLNs on a large or targeted basis 
may depend on the level of community acceptability, 
and the considerable additional cost given the limited 
operational budget space.

As shown in Fig.  7 and Table  4, LLIN usage in the 
presence of targeted IRS deployment seems to avert a 
substantial number of incidence cases in all zones. This 
reinforces the importance of using the LLIN as recom-
mended, in order for the possible optimal benefit of 
malaria prevention to be realized.

Evidence from some previous field and modelling 
studies suggests that combining the LLINs and IRS 
offers higher protective effectiveness. For instance, the 
impact of the combination compared to only IRS was 
found to be OR = 0.71 (95% CI (0.59–0.86)) in Equa-
torial Guinea and OR = 0.63 (95% CI (0.50–0.79)) in 
Mozambique. Another study in Kenya reported simi-
lar results with PE of ITN and IRS, compared with 
ITN only, to be 62% (95% CI  ( 0.50–0.72)) [43, 44]. 
Similarly, a cluster randomized study in the north-
west of Tanzania showed that there was an enhanced 
benefit of combined ITN and IRS utilization. The odds 
of infection for a population that used ITNs in village 
clusters which were sprayed was reported to be con-
siderably (two-thirds) lower than those with either 
ITN or IRS (OR = 0.34, 95% CI 0.23–0.53). This reduc-
tion was significantly higher compared to using ITN 
only (OR = 0.83), and yet greater still than reported 
for village clusters sprayed with IRS (OR = 0.41) only 
[45]. These findings are largely consistent with those 
reported in this study in Additional file 2: S2 Figs. 1, 2 
and 3. Therefore, combining both LLINs and IRS will 
likely contribute very significantly, not only to averting 
many more predicted cases across Ghana, but to driv-
ing the annual incidence of malaria presented at the 

health facilities down towards pre-elimination levels 
if IRS coverage is scaled up across all three zones, and 
LLIN usage is improved substantially, a combination 
which has been suggested to be justified [44, 46, 47].

All investigations in this study considered hypothetical 
scenarios of deploying both LLINs and IRS. Moreover, 
IRS was considered as a supplementary intervention to 
LLIN. For practical and financial considerations, it may 
be infeasible to achieve universal coverage of both LLINs 
and IRS across the country. This makes efforts towards 
improving the effectiveness of LLIN, at the already high 
coverage levels, imperative; otherwise, it amounts to not 
achieving value for money for the investment over the 
years.

Therefore, as continuous efforts are being made by the 
NMCP and other stakeholders to scale up various vector 
control measures across the country, an even stronger 
advocacy needs to be made for education of the popula-
tion through various channels such as radio, television 
messages and programmes, and community durbars, on 
the uptake of the various malaria interventions, espe-
cially LLINs [48, 49].

There are possible high levels of LLIN non-usage in 
Ghana, at 58.0% (2016), which is relatively higher com-
pared to its neighbours, Benin at 28.9% (2017), Burkina 
Faso at 33.0% (2014) and Côte d’Ivoire at 49.6% (2016). As 
such, the community health officers stationed in the vari-
ous Community-Based Health Planning Services (CHPS) 
zones may be of great use in undertaking these additional 
tasks of educating and mounting hang-up campaigns and 
other means of communication to improve the usage of 
LLINs [36, 38, 50, 51].

From the results thus far, it is unlikely, with the cur-
rent observed rate of decline, that Ghana will achieve 
the principal target of reducing the burden of malaria 
by 75.0% (which translates to 47 cases per 1000 popula-
tion per year, using cases reported in 2012 as baseline) 
by close of 2020, as projected in the National Malaria 
Strategic plan of 2014–2020, even though large declines 
have been achieved with malaria-attributable deaths 
[4]. Meeting the goals of the strategic plan by 2030 may 
require a full scale deployment of IRS in targeted districts 
and communities complementary to LLINs in all the 
zones to at least 80.0% coverage, using insecticides with 
high level of protective efficacy (Table 4).

The relatively high treatment-seeking (72.0%) and diag-
nosis (90.0%) levels for the Guinea savannah, transitional 
forest, and coastal savannah were taken into account 
when testing the impact of the various interventions. 
Attaining improved coverage levels of vector control 
interventions across the country will require more invest-
ment in a multi-pronged approach to roll out interven-
tions such as LLINs and IRS (in targeted districts) to 
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prevent cases and to treat cases concurrently. This should 
occur along with rallying all citizenry to improve usage of 
LLINs, to seek treatment promptly, and to invest in per-
sonal protection.

Conclusions
This study has shown that it is possible to achieve targets 
set out by the NMCP, and those of the Global strategy 
for malaria, using current interventions, if compliance 
to their recommended applications is improved. There-
fore, any programmes and strategies which would fur-
ther increase the patronage and proper and continuous 
use of ITN/LLIN should be encouraged and supported. 
As shown in the results, improvement in the coverage 
of LLIN only, without a corresponding improvement in 
usage, does not reduce the incidence of malaria in the 
population.

With respect to IRS, districts with incidence rates of 
malaria above zonal average levels could be targeted 
for IRS to complement LLINs, as recommended by 
the WHO, since the LLIN coverage is relatively high. 
If desired levels of malaria-related morbidity are to be 
attained, as projected by the National strategic policy of 
2014–2020 [4], then a rapid and momentous effort needs 
to be made to improve upon the uptake and sustained 
usage of the LLINs, while consideration is given to tar-
geted IRS, especially in high risk districts in the transi-
tional forest and coastal savannah zones.

The findings of this study may contribute to future pol-
icy formulation for malaria control in the country.
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