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Abstract

Asthma puts a tremendous overhead on healthcare. To enable effective preventive care to improve 

outcomes in managing asthma, we recently created two machine learning models, one using 

University of Washington Medicine data and the other using Intermountain Healthcare data, to 

predict asthma hospital visits in the next 12 months in asthma patients. As is common in machine 

learning, neither model supplies explanations for its predictions. To tackle this interpretability 

issue of black-box models, we developed an automated method to produce rule-style explanations 

for any machine learning model’s predictions made on imbalanced tabular data and to recommend 

customized interventions without lowering the prediction accuracy. Our method exhibited good 

performance in explaining our Intermountain Healthcare model’s predictions. Yet, it stays 

unknown how well our method generalizes to academic healthcare systems, whose patient 

composition differs from that of Intermountain Healthcare. This study evaluates our automated 

explaining method’s generalizability to the academic healthcare system University of Washington 

Medicine on predicting asthma hospital visits. We did a secondary analysis on 82,888 University 

of Washington Medicine data instances of asthmatic adults between 2011 and 2018, using our 

method to explain our University of Washington Medicine model’s predictions and to recommend 

customized interventions. Our results showed that for predicting asthma hospital visits, our 

automated explaining method had satisfactory generalizability to University of Washington 

Medicine. In particular, our method explained the predictions for 87.6% of the asthma patients 

whom our University of Washington Medicine model accurately predicted to experience asthma 

hospital visits in the next 12 months.
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Index Terms—
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I. INTRODUCTION

Background

Asthma affects 7.7% of American people, resulting in 3,441 deaths, 188,968 

hospitalizations, and 1,776,851 emergency department (ED) visits annually [1]. Currently, 

the leading method for cutting down the number of asthma hospital visits involving 

hospitalizations and ED visits is to adopt a model to predict which asthma patients are most 

likely to incur poor outcomes at a later date. We then place these patients into a care 

management program, letting care managers follow up with them regularly and help them 

book services on healthcare and other related aspects. This method is used by numerous 

healthcare systems including University of Washington Medicine, Kaiser Permanente 

Northern California [2], and Intermountain Healthcare, as well as many health plans 

encompassing those in nine of 12 metropolitan communities [3]. With proper 

implementation, we can use this method to avoid as many as 40% of future hospital visits of 

the patients [4–7].

A care management program has the capacity to accommodate only a small fraction of the 

patients [8]. Hence, the predictive model’s accuracy puts an upper limit on the program’s 

efficacy. Yet, due to not including some important features in the model, none of the prior 

published models for predicting asthma hospital visits in asthma patients [2], [9–21] is 

accurate enough. Every prior published model misses over 50% of the patients who will 

experience future asthma hospital visits (i.e., sensitivity < 50%) and misclassifies many 

other patients to incur such visits. This limited model accuracy leads to suboptimal patient 

outcomes and unneeded healthcare costs. To tackle this prediction accuracy issue, we 

recently used extreme gradient boosting (XGBoost) [22] and extensive candidate features to 

create two machine learning models to predict asthma hospital visits in the next 12 months 

in asthma patients. Both models were more accurate than the prior published models. One 

model was built on Intermountain Healthcare data [23]. The other was built on University of 

Washington Medicine (UWM) data [24]. As is common in machine learning, neither model 

supplies explanations for its predictions, despite explanations are essential for care managers 

to understand the predictions, decide whether the patient should be enrolled in the care 

management program, and find appropriate tailored interventions for the patient. To tackle 

this interpretability issue of black-box models, we developed an automated method to 

produce rule-style explanations for any machine learning model’s predictions made on 

imbalanced tabular data and to recommend customized interventions without degrading the 

prediction accuracy [25]. Our method exhibited good performance in explaining the 

predictions made by our Intermountain Healthcare model [25].
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Problem statement and objectives

Yet, it stays unknown how well our automated explanation method generalizes to academic 

healthcare systems, whose business practices and patient composition differ from those of 

Intermountain Healthcare. Usually, academic healthcare systems handle sicker and more 

complex patients than non-academic healthcare systems [26]. This study assesses how well 

our automated explanation method generalizes to UWM with regard to predicting asthma 

hospital visits.

II. METHODS

A. ETHICS APPROVAL AND STUDY DESIGN

This secondary analysis retrospective cohort study using administrative and clinical data was 

approved by UWM’s institutional review board.

B. PATIENT COHORT

UWM is the largest academic healthcare system in Washington State. Starting from 2011, its 

enterprise data warehouse began to collect complete clinical and administrative data from 12 

clinics and 3 hospitals that mainly take care of adults. We employed the same patient cohort 

used in our prior UWM predictive model paper [24]: asthmatic adults (age≥18) who 

received care at any of these UWM facilities between 2011 and 2018. We regarded a patient 

to have asthma in a given year if in that year, the patient had at a minimum one asthma 

diagnosis code (International Classification of Diseases, Tenth Revision [ICD-10]: J45.x; 

International Classification of Diseases, Ninth Revision [ICD-9]: 493.0x, 493.1x, 493.8x, 

493.9x) record in the encounter billing database [10], [27], [28]. The exclusion criterion was 

to drop the patients who died in that year.

C. PREDICTION TARGET (ALSO CALLED THE DEPENDENT VARIABLE)

We employed the same prediction target used in our prior UWM predictive model paper 

[24]. There, an asthma hospital visit was defined as an ED visit or hospitalization whose 

principal diagnosis is asthma (ICD-10: J45.x; ICD-9: 493.0x, 493.1x, 493.8x, 493.9x). For 

every patient whom we regarded to have asthma in a given index year, the outcome of 

interest was whether the patient experienced any asthma hospital visit in the next 12 months. 

In training and testing our UWM model and our automated explanation method, we took the 

patient’s data through the end of the year to predict the patient’s outcome in the next 12 

months.

D. DATA SET

We employed the same structured, administrative and clinical data set from UWM’s 

enterprise data warehouse used in our prior UWM predictive model paper [24]. This data set 

covered the patient cohort’s visits at the 12 UWM clinics and 3 UWM hospitals between 

2011 and 2019. Because the outcome of interest occurred in the next 12 months, our data set 

contained eight years of effective data (2011–2018) over the nine-year span of 2011–2019.
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E. DATA PRE-PROCESSING, FEATURES (ALSO CALLED INDEPENDENT VARIABLES), 
AND PREDICTIVE MODEL

We employed the same data pre-processing method used in our prior UWM predictive 

model paper [24] to prepare, normalize, and clean the data. Our UWM model [24] uses 71 

features and the XGBoost classification algorithm [22] to predict asthma hospital visits in 

the next 12 months in asthma patients. As detailed in Table 2 in our prior UWM predictive 

model paper’s [24] Appendix, these 71 features were calculated using the structured 

attributes in our data set and involve various aspects like medications, patient demographics, 

diagnoses, vital signs, visits, laboratory tests, and procedures. An example feature is the 

number of ED visits related to asthma that the patient had in the previous 12 months. Each 

input data instance entered into our UWM model contains these 71 features, pinpoints to an 

(index year, patient) pair, and is used to predict the patient’s outcome in the next 12 months. 

As in our prior UWM predictive model paper [24], we placed the cutoff point for binary 

classification at the top 10% of asthma patients who had the highest predicted risk.

F. REVIEW OF OUR AUTOMATED EXPLANATION METHOD

In 2016, we published an automated method to produce rule-style explanations for any 

machine learning model’s predictions made on tabular data and to recommend customized 

interventions without lowering the prediction accuracy. Our original method [29] was 

created for reasonably balanced data. We subsequently extended the method to cope with 

imbalanced data [25], in which one outcome value is much less prevalent than another. 

Imbalanced data appear in predicting asthma hospital visits in asthma patients because the 

two possible values of the outcome of interest have a skewed distribution. At UWM, ~2% of 

asthma patients would experience asthma hospital visits in the next 12 months. The 

following sections focus on the extended automated explanation method.

1) BASIC IDEA: As Fig. 1 shows, the fundamental idea of our automated explanation 

method is to adopt two models at the same time to set producing and explaining predictions 

apart. Each model plays a distinct role in this system. We employ the first model to produce 

predictions. It can be any model taking categorical and continuous features and is usually set 

to the most accurate model. The second model is composed of class-based association rules 

[30], [31] mined from prior data. It is employed to explain the first model’s predictions 

instead of producing predictions. To create the second model, we first use an automated 

discretizing method [30], [32] to turn continuous features into categorical features. Then we 

use a standard method such as Apriori to mine the association rules [31]. Every generated 

rule expresses a feature pattern connecting to an outcome value c in the form of

b1AND b2AND …AND br c .

For binary classification of good vs. poor outcomes, c is normally the poor outcome value. 

r’s and c’s values can vary across rules. Each item bi (1 ≤ i ≤ r) is a feature-value pair (h, w). 

When w is a value, bi expresses that feature h has value w. When w is a range, bi expresses 

that h’s value is in w. The rule denotes that when a patient satisfies all of b1, b2, …, and br, 

the patient’s outcome tends to be c. Here is an example rule to illustrate these relationships:
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The patient received ≥20 diagnoses of asthma with (acute) exacerbation in the 

previous 12 months

AND cumulatively ≥4 systemic corticosteroid medications were ordered for the 

patient in the previous 12 months

→ the patient will experience asthma hospital visit in the next 12 months.

2) MINING AND PRUNING ASSOCIATION RULES: Our automated explanation 

method has five parameters: the lower limit of commonality, the lower limit of confidence, 

the upper limit number of items allowed on the left hand side of a rule, the confidence 

difference bound, and the number of top features adopted to form rules. For a specific rule

b1AND b2AND …AND br c,

its commonality gives its coverage in c’s context: among all of the data instances linked to c, 

the percentage of data instances fulfilling b1, b2, …, and br. Its confidence gives its 

precision: among all of the data instances fulfilling b1, b2, …, and br, the percentage of data 

instances linked to c. Our method employs the rules whose commonality is no less than 

commonality’s lower limit, whose confidence is no less than confidence’s lower limit, and 

each with at most the allowed upper limit number of items on the rule’s left hand side.

To avoid running into an exceedingly large number of association rules, we employ three 

techniques to drop rules. First, we drop every more specific rule when there is a more 

general rule whose confidence is lower by at most the confidence difference bound. Second, 

if the first model uses too many features, we form rules using just the top few features with 

the biggest importance values computed by, e.g., XGBoost [22]. Third, a clinician in the 

automated explaining function’s design team inspects all allowed values and value ranges of 

these features, and tags those that could be positively correlated with the poor outcome 

value. Rules are permitted to contain only the tagged feature values and value ranges.

For every feature-value pair item taken to form association rules, a clinician in the 

automated explaining function’s design team assembles zero or more interventions. We call 

an item actionable if it connects to one or more interventions. Every rule coming through the 

rule pruning process is auto-connected to the interventions linking to the actionable items on 

the rule’s left hand side. We call a rule actionable if it connects to one or more interventions.

3) THE EXPLANATION METHOD: For every patient the first model predicts to incur a 

poor outcome value, we explain the prediction by displaying the association rules in the 

second model with that value on their right hand sides. Each rule presents a reason why the 

patient is predicted to incur that value. For every actionable rule displayed, we present next 

to it its linked interventions. From them, the automated explaining function’s user can 

pinpoint customized interventions appropriate for the patient. Normally, the rules in the 

second model give common reasons for incurring poor outcomes. Some patients will incur 

poor outcomes for other reasons. Hence, the second model can explain most, but not all, of 

the poor outcomes the first model accurately predicts.
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G. PARAMETER SETTING

In our experiments, we set parameters in the same way as in our prior automated explanation 

paper [25]. Each association rule had at most five items on its left hand side. Our UWM 

model [24] adopted 71 features, all of which were used to form rules. We set confidence’s 

lower limit to 50%, the same as what we used on Intermountain Healthcare data [25].

For predicting asthma hospital visits, our UWM model [24] reached a higher area under the 

receiver operating characteristic curve on UWM data than our Intermountain Healthcare 

model on Intermountain Healthcare data [23]. Our prior automated explanation paper [25] 

points out that the harder the outcome is to predict, the smaller the lower limit of 

commonality needs to be. This ensures our automated explanation method can provide 

explanations for a large fraction of the patients the first model accurately predicts to incur a 

poor outcome value. Applying this strategy to UWM data, we set commonality’s lower limit 

to 1%. This lower limit is larger than the value 0.2% we used on Intermountain Healthcare 

data [25].

To set the confidence difference bound t, we plotted the number of association rules coming 

through the rule pruning process vs. t. Our prior paper [25] showed that this number first 

declines quickly as t elevates, and then declines slowly when t grows large enough. We set 

t’s value at the shift point.

H. DATA ANALYSIS

1) SPLIT OF THE TEST AND TRAINING SETS—We employed the same method 

used in our prior UWM predictive model paper [24] to split the full data set into the test and 

training sets. Because the outcome of interest occurred in the next 12 months, our data set 

contained eight years of effective data (2011–2018) over the nine-year span of 2011–2019. 

To match future use of our UWM model and our automated explanation method in clinical 

practice, we used the 2011–2017 data as the training set to mine the association rules 

employed by our automated explanation method and train our UWM model. We then used 

the 2018 data as the test set to measure our automated explanation method’s performance.

2) PERFORMANCE METRICS—To measure our automated explanation method’s 

performance, we employed the same performance metrics in our prior automated 

explanation paper [25]. One performance metric about our method’s explanation power is: 

among the asthma patients our UWM model accurately predicted to experience asthma 

hospital visits in the next 12 months, the fraction our method could produce explanations for. 

We calculated the average number of (actionable) rules applying to such a patient. If a 

patient satisfies all of the items on a rule’s left hand side, we say that the rule applies to the 

patient.

Our prior automated explanation paper [25] demonstrated that in many cases, several rules 

applying to a patient differ by only one item on their left hand sides. When a lot of rules 

apply to a patient, the amount of essential information they contain is normally much less 

than the number of rules in them. To fully quantify and present the amount of information 

embedded in the automated explanations offered on the patients, we graphed the following 
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distributions of asthma patients our UWM model accurately predicted to experience asthma 

hospital visits in the next 12 months: the distribution by the number of (actionable) rules 

applying to a patient, and the distribution by the number of unique actionable items 

pinpointed on a patient. The latter number refers to the number of unique actionable items 

contained in all of the rules applying to the patient.

III. RESULTS

A. OUR PATIENT COHORT’S DEMOGRAPHIC AND CLINICAL CHARACTERISTICS

Each data instance pinpoints to an (index year, patient) pair. Tables 2 and 3 in our prior 

UWM predictive model paper [24] display the demographic and clinical characteristics of 

our UWM patient cohort during 2011–2017 and 2018 separately. The two sets of 

characteristics are similar to each other. In 2011–2017, we had 68,244 data instances, 1.74% 

(1,184) of which linked to asthma hospital visits in the next 12 months. In 2018, we had 

14,644 data instances, 1.49% (218) of which linked to asthma hospital visits in the next 12 

months. Our prior UWM model paper [24] compared these two sets of characteristics in 

detail.

B. THE NUMBER OF LEFTOVER ASSOCIATION RULES

We mined 2,400,948 association rules from the training set. Fig. 2 presents the number of 

leftover rules vs. the confidence difference bound t. This number first declines quickly as t 
elevates, and then declines slowly when t grows ≥0.15. Correspondingly, we set t’s value to 

0.15 and obtained 257,898 leftover rules.

Our team’s asthma clinical expert (AIM) manually tagged the values and value ranges of the 

features that could be positively correlated with asthma hospital visits in the next 12 months. 

After removing the association rules involving other values or value ranges, we obtained 

227,621 rules. Each of them was actionable and presented a reason why a patient was 

predicted to experience asthma hospital visits in the next 12 months.

C. EXEMPLAR ASSOCIATION RULES EMPLOYED BY THE SECOND MODEL

The following five exemplar rules are provided to help concretely explain the association 

rule concept that is central to the second model:

1. Rule 1: The patient encountered ≥7 ED visits related to asthma in the previous 12 

months

→ the patient will experience asthma hospital visit in the next 12 months.

Encountering many ED visits related to asthma signifies bad asthma control. An 

intervention linked to the item “the patient encountered ≥7 ED visits related to 

asthma in the previous 12 months” is to employ control strategies to help the 

patient avoid requiring emergency care.

2. Rule 2: The patient received ≥20 diagnoses of asthma with (acute) exacerbation 

in the previous 12 months AND cumulatively ≥4 systemic corticosteroid 

medications were ordered for the patient in the previous 12 months
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→ the patient will experience asthma hospital visit in the next 12 months.

Receiving many diagnoses of asthma with (acute) exacerbation signifies bad 

asthma control. An intervention linked to the item “the patient received ≥20 

diagnoses of asthma with (acute) exacerbation in the previous 12 months” is to 

give the patient suggestions on ways to gain better asthma control.

Consuming lots of systemic corticosteroids signifies bad asthma control. An 

intervention linked to the item “cumulatively ≥4 systemic corticosteroid 

medications were ordered for the patient in the previous 12 months” is to advise 

the patient to better adhere to daily asthma control medications or to better avoid 

asthma triggers.

3. Rule 3: The patient received ≥28 asthma diagnoses in the previous 12 months

AND the patient had zero outpatient visit in the previous 12 months

→ the patient will experience asthma hospital visit in the next 12 months.

Receiving many asthma diagnoses signifies bad asthma control. An intervention 

linked to the item “the patient received ≥28 asthma diagnoses in the previous 12 

months” is to give the patient suggestions on ways to gain better asthma control.

In many cases, having zero outpatient visit indicates that the patient has no 

primary care provider. Yet, as part of the asthma management process, an asthma 

patient is expected to visit the primary care provider from time to time. An 

intervention linked to the item “the patient had zero outpatient visit in the 

previous 12 months” is to ensure that the patient has a primary care provider and 

to encourage the patient to see that provider on a regular basis.

4. Rule 4: The patient received ≥18 primary or principal asthma diagnoses in the 

previous 12 months

AND the patient incurred ≥5 no shows in the previous 12 months

AND cumulatively ≥10 short-acting beta-2 agonist medications were ordered for 

the patient in the previous 12 months

→ the patient will experience asthma hospital visit in the next 12 months.

Receiving many primary or principal asthma diagnoses signifies bad asthma 

control. An intervention linked to the item “the patient received ≥18 primary or 

principal asthma diagnoses in the previous 12 months” is to give the patient 

suggestions on ways to gain better asthma control.

Incurring a large number of no shows is correlated with having bad outcomes. 

An intervention linked to the item “the patient incurred ≥5 no shows in the 

previous 12 months” is to provide social resources to address social chaos 

contributing to missed appointments.

Consuming lots of short-acting beta-2 agonists signifies bad asthma control. An 

intervention linked to the item “cumulatively ≥10 short-acting beta-2 agonist 

medications were ordered for the patient in the previous 12 months” is to advise 
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the patient to better adhere to daily asthma control medications or to better avoid 

asthma triggers.

5. Rule 5: The patient is black

AND the patient received ≥28 asthma diagnoses in the previous 12 months

AND the patient’s mean respiratory rate in the previous 12 months is >16.89

AND the patient was a smoker according to the most recent record

→ the patient will experience asthma hospital visit in the next 12 months.

Black people are inclined to have worse asthma outcomes than other people in 

the U.S. Having a high respiratory rate signifies bad asthma control. An 

intervention linked to the item “the patient’s mean respiratory rate in the 

previous 12 months is > 16.89” is to improve asthma control to decrease 

respiratory rate.

Smoking is a strong trigger of asthma symptoms. An intervention linked to the 

item “the patient was a smoker according to the most recent record” is to suggest 

the patient to stop smoking.

D. OUR AUTOMATED EXPLANATION METHOD’S PERFORMANCE

As shown in our paper [24], our UWM model reached on the test set an area under the 

receiver operating characteristic curve of 0.902, an accuracy of 90.6%, a sensitivity of 

70.2%, a specificity of 90.9%, a positive predictive value of 10.5%, and a negative predictive 

value of 99.5%.

Our automated explanation method was evaluated on the test set. Our method explained the 

predictions for 134 (87.6%) of the 153 asthma patients our UWM model accurately 

predicted to experience asthma hospital visits in the next 12 months. For an average such 

patient, our method gave 5296.58 explanations, each from one rule, and pinpointed 26.62 

unique actionable items.

For the asthma patients our UWM model accurately predicted to experience asthma hospital 

visits in the next 12 months, Fig. 3 and 4 plot their distribution by the number of actionable 

rules applying to a patient. This distribution is markedly skewed towards the left and has a 

long tail. As the number of rules applying to a patient grows, the number of patients, to each 

of whom so many rules apply, tends to fall non-monotonically. The maximum number of 

rules applying to a patient is quite large: 35,484. Nevertheless, there is just one patient to 

whom so many rules apply.

For the asthma patients our UWM model accurately predicted to experience asthma hospital 

visits in the next 12 months, Fig. 5 plots their distribution by the number of unique 

actionable items pinpointed on a patient. The maximum number of unique actionable items 

pinpointed on a single patient is 47, much smaller than the maximum number of actionable 

rules applying to a patient. As described in our prior automated explanation paper [25], 

several actionable items pinpointed on a patient often relate to the same intervention.
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Our automated explanation method produced explanations for 147 (67.4%) of the 218 

asthma patients who would experience asthma hospital visits in the next 12 months.

IV. DISCUSSION

A. MAIN RESULTS

The results in this paper are similar to those published in our prior automated explanation 

paper [25]. For predicting asthma hospital visits, our automated explanation method had 

satisfactory generalizability to UWM. Notably, our method explained the predictions for 

87.6% (134/153) of the asthma patients our UWM model accurately predicted to experience 

asthma hospital visits in the next 12 months. This percentage is sufficiently high to allow 

deployment of our automated explanation method for routine clinical use, and is similar to 

the corresponding percentage (89.68%) our prior automated explanation paper [25] reported 

on Intermountain Healthcare data. After further optimization to raise its accuracy, our UWM 

model integrated with our automated explanation method could be deployed to help direct 

use of asthma care management resources to improve patient outcomes and cut healthcare 

costs.

Our automated explanation method produced explanations for 67.4% (147/218) of the 

asthma patients who would experience asthma hospital visits in the next 12 months. This 

percentage is less than our method’s 87.6% (134/153) success rate in explaining the 

predictions for the asthma patients our UWM model accurately predicted to experience 

asthma hospital visits in the next 12 months. As explained in our prior automated 

explanation paper [25], this pattern is likely due to correlation among distinct models’ 

computational results. If a patient’s future outcome is easier to predict, it is likely to be also 

easier to explain.

Overall, this work provides a crucial, rational, clinical explanation structure for our UWM 

model’s predictions on asthma outcomes, which also suggests customized interventions. 

This is vital for our UWM model’s acceptability by clinical users and future clinical 

adoption.

B. LIMITATIONS

Below are two limitations of this study that can direct future work:

1. This study assessed our automated explanation method’s generalizability to a 

single healthcare system for one outcome of a single chronic disease. It would be 

useful to assess our automated explanation method’s generalizability to other 

healthcare systems, diseases, and outcomes [33].

2. Our current automated explanation method is developed for non-deep-learning 

machine learning algorithms and structured data. It would be useful to extend our 

method to apply to deep learning models created on longitudinal data [33], [34].
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V. RELATED WORK

Many other research groups have developed a range of methods to automatically produce 

explanations for machine learning models’ predictions, as recently surveyed by Guidotti et 
al. [35]. Such explanations are typically not presented as clear decision rules. None of these 

published methods could automatically suggest customized interventions. Also, many of 

these published methods lower the prediction accuracy, and/or are developed for a fixed 

machine learning algorithm. In comparison, our automated explanation method produces 

rule-style explanations for any machine learning model’s predictions made on tabular data, 

and simultaneously suggests customized interventions without lowering the prediction 

accuracy. Rule-style explanations are easier to understand and can be used to suggest 

customized interventions more directly than other types of explanations. This will facilitate 

adoption and clinical implementation of the predictive model by providing some logic and 

rationale that clinicians and other users can understand.

VI. CONCLUSIONS

In the first assessment of its generalizability to an academic healthcare system, our 

automated explanation method had satisfactory generalizability to UWM for predicting 

asthma hospital visits. After further optimization to raise its accuracy, our UWM model 

integrated with our automated explanation method could be deployed to help direct use of 

asthma care management resources to improve patient outcomes and cut healthcare costs.
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XGBoost Extreme gradient boosting
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Fig. 1. 
The flow chart of our automated explanation method.
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Fig. 2. 
The number of leftover rules vs. the confidence difference bound t.
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Fig. 3. 
For the asthma patients our UWM model accurately predicted to experience asthma hospital 

visits in the next 12 months, their distribution by the number of actionable rules applying to 

a patient.
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Fig. 4. 
For the asthma patients our UWM model accurately predicted to experience asthma hospital 

visits in the next 12 months, their distribution by the number of actionable rules applying to 

a patient when this number is ≤250.

Tong et al. Page 19

IEEE Access. Author manuscript; available in PMC 2020 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
For the asthma patients our UWM model accurately predicted to experience asthma hospital 

visits in the next 12 months, their distribution by the number of unique actionable items 

pinpointed on a patient.
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