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Abstract

Huntington disease (HD) is a fatal autosomal dominant neurocognitive disorder that causes 

cognitive disturbances, neuropsychiatric symptoms, and impaired motor abilities (e.g., gait, 

speech, voice). Due to its progressive nature, HD treatment requires ongoing clinical monitoring of 

symptoms. Individuals with the Huntingtin gene mutation, which causes HD, may exhibit a range 

of speech symptoms as they progress from premanifest to manifest HD. Speech-based passive 

monitoring has the potential to augment clinical information by more continuously tracking 

manifestation symptoms. Differentiating between premanifest and manifest HD is an important yet 

under-studied problem, as this distinction marks the need for increased treatment. In this work we 

present the first demonstration of how changes in speech can be measured to differentiate between 

premanifest and manifest HD. To do so, we focus on one speech symptom of HD: distorted 

vowels. We introduce a set of Filtered Vowel Distortion Measures (FVDM) which we extract from 

read speech. We show that FVDM, coupled with features from existing literature, can differentiate 

between premanifest and manifest HD with 80% accuracy.
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1. Introduction

Huntington disease (HD) is a fatal autosomal dominant neurocognitive disorder that causes 

cognitive disturbances, neuropsychiatric symptoms, and impaired motor abilities (e.g., gait, 

speech, voice) [1–4]. Individuals who have a family history of HD can undergo a gene test to 

learn if they carry the gene mutation that causes HD (i.e., are gene-positive). Individuals 

who are gene-positive will develop clinically significant symptoms of HD, resulting in an 

HD diagnosis, typically in their mid-40’s [5]. These individuals are considered premanifest 

before the onset of these symptoms, and manifest after. No cure exists, but timely diagnosis 

of HD (i.e., manifestation) coupled with treatment allows individuals to manage their 

symptoms.
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At-home passive symptom monitoring captures patient health as it relates to real-world 

functioning [6]. Providing clinicians with this information can allow for a more timely 

diagnosis of HD and a better understanding of its progression for treatment planning. 

Disordered speech is one symptom of HD, and previous work has demonstrated changes in 

speech occur before an HD diagnosis, and become more noticeable as HD progresses. [7–

10]. This suggests the potential of passively tracking speech symptoms to better understand 

HD progression.

Vowel distortion is one speech symptom of HD [11–13], and tracking this symptom may 

augment passive monitoring. However, methods of automatically quantifying vowel 

distortion from speech have not been extensively explored. Kaploun et al. extracted jitter and 

shimmer from a sustained vowel task to characterize vowel distortion, and they 

demonstrated its prevalence as an HD symptom [7]. Works differentiating between healthy 

and disordered speech (a range of conditions in the Kay Elemetrics Disordered Voice 

Dataset [14]) have extracted measures of system stability from sustained vowel tasks, 

suggesting the potential of stability measures for capturing vowel distortion [14–17]. 

However, there is no guarantee that measures extracted from sustained vowel tasks can be 

applied to connected speech. Vowels in connected speech differ because they are 1) modified 

and often nonstationary due to coarticulation and 2) shorter, which may pose problems for 

distortion measures that rely on lengthy signals. Thus, to incorporate tracking of vowel 

distortion into passive speech monitoring, we must assess how these measures relate to HD 

when extracted from connected speech. In this work we analyze read speech, which is one 

type of connected speech and includes short vowel samples that are modified due to 

coarticulation.

The novelty of this work is a new set of Filtered Vowel Distortion Measures (FVDM), which 

account for the nonstationarities in connected speech and reliably measures vowel distortion 

as it relates to HD. Supplementing features identified in previous work with FVDM, we 

present the first system to classify premanifest versus manifest HD, doing so with 80% 

accuracy.

2. Related work

2.1. HD classification using speech

Previous works have demonstrated the potential of passively monitoring speech to assist in 

managing neurocognitive disorders such as Parkinson’s [18, 19] and Alzheimer’s [20–22]. 

Individuals with HD exhibit similar speech symptoms, suggesting the potential of 

monitoring speech to aid in managing HD.

Prior works in automatically classifying HD stages have not studied how to differentiate 

between premanifest and manifest HD, but they have differentiated between healthy controls 

and individuals who are gene-positive. Kaploun et al. used speaking rate from a reading 

passage and jitter and shimmer of a sustained vowel to classify individuals as healthy 

controls or premanifest, illustrating the subtle speech symptoms that may occur even in the 

premanifest population [7]. Perez et al. used speaking rate, pause information, and goodness 

of pronunciation features to classify individuals as healthy controls or gene-positive [10]. In 
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doing so, they demonstrated the difficulty of differentiating between the premanifest and 

manifest subcategories: half of premanifest individuals were classified as healthy controls, 

and the other half as gene-positive. To the best of our knowledge, no work has focused on 

extracting speech features to classify premanifest versus manifest HD.

2.2. Vowel distortion

Vowel distortion is a prevalent symptom of HD [11–13]. Prior works have quantified vowel 

distortion from sustained vowels using a variety of perturbation measures, and used these 

measures to classify a range of disorders. As mentioned above, Kaploun et al. used jitter and 

shimmer from a sustained vowel task to differentiate between healthy controls and 

individuals with premanifest HD [7]. Vaziri et al. extracted the correlation dimension (CD) 

and the Maximal Lyapunov Exponent (MLE) from sustained vowels, and used these 

measures to classify voice disorders in the Kay Dataset [17]. Little et al. extracted recurrence 

period density entropy (RPDE) and detrended fluctuation analysis (DFA) from sustained 

vowels to more accurately classify voice disorders in the Kay Dataset [15]. An open 

question is if these measures can provide insight into manifest HD.

Furthermore, these previous works have only examined measuring vowel distortion in 

sustained vowel tasks, potentially limiting their applicability to connected speech. These 

tasks allow for the analysis of vowel distortion without needing to account for changes due 

to coarticulation, which is the influence of surrounding phones on the vowel of interest. 

Coarticulation may lead to changes in the vowel, including nonstationarities (i.e., changing 

mean and variance) [15, 23], which limit the applicability of some existing vowel distortion 

measures. These controlled tasks also allow for analysis on longer signals, and the 

applicability of some measures may be further limited if they do not scale to the short 

vowels within connected speech.

3. Data description

In this paper we use data collected as part of a study on acoustic biomarkers for HD at the 

University of Michigan. The participants in this study provided speech samples that were 

recorded at 44.1kHz with a Hosa XVM-102M XLR microphone. We use two tasks: the 

sustained vowel, in which participants were instructed to hold the vowel /a/ for as long as 

possible, and the Grandfather Passage (GFP). The GFP contains nearly all of the phonemes 

of American English and is a standard reading passage used in assessing motor speech and 

voice disorders [24].

The data contains speech from 62 individuals, in which 31 are healthy controls and 31 are 

gene-positive. Gene-positive individuals are assigned to specific HD stages (premanifest, 

manifest early-stage, and manifest late-stage) using the Unified Huntington’s Disease Rating 

Scale (UHDRS) [25]. First, the premanifest versus manifest labels are determined based on 

the clinician-determined Diagnostic Confidence Level (DCL) within the Total Motor Score 

(TMS) portion of UHDRS. DCL ranges from 0 (no symptoms) to 4 (symptoms of HD with 

>99% confidence). We label participants with a DCL of less than 4 as premanifest, and 

participants with a DCL of 4 as manifest. Within the manifest group, we label participants as 

early-or late-stage based on their Total Functional Capacity (TFC) scores [26]. TFC scores 
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provide a clinician-rating of functional capacity, and range from 0 (low functioning) to 13 

(high functioning). We label participants with a TFC score of 7–13 early-stage and those 

with a TFC score of 0–6 as late-stage [10,27].

This paper focuses on analyzing speech of gene-positive individuals. Of these participants, 

one was unable to hold the sustained vowel. To provide a consistent comparison across 

experiments, we exclude this participant from our analysis. Thus in this paper we use data 

collected from 30 individuals: 12 premanifest, 11 with early-stage HD, and 7 with late-stage 

HD. We focus on differentiating between premanifest and manifest.

4. Methods

4.1. Data segmentation

We segment three vowel sample types: sustained vowels, shortened sustained vowels, and 

vowels extracted from the GFP. Table 1 summarizes these samples.

We first analyze the sustained vowel recordings. In this task participants were instructed to 

hold the vowel /a/ for as long as possible and the interviewer provided an example. 

Recordings varied in length (12.8s ± 8.5s), as some participants could hold the vowel for 

longer than others. To enable a consistent comparison, we segment two seconds of the vowel 

for each participant, as in [16]. We drop the initial second of the sample, as during this time 

participants were settling in to a stable vibration. A similar assumption was made in [15]. 

We then choose to use the beginning two seconds of the remaining sample. Thus, for each 

participant, we extract the sustained vowel (SV) sample from seconds 1–3 of their sustained 

vowel recording.

To analyze vowel distortion within read speech, we manually segment the vowels from GFP 

recordings. We focus on phones that closely resembled the sounds in SV, as this would limit 

potential variation due to sound. More specifically, we extract the phones [ɑ] (as in the the 

second /a/ in “grandfather”), [ə] (as in the final /a/ in “banana”), and [ɔ] (as in “small”). We 

listen to each GFP recording to identify occurrences of these phones, and then identify their 

endpoints by assessing changes in the sound and associated spectrogram. We verify that the 

sound of the resulting sample minimally contained surrounding phones. The number and 

length of samples vary by each participant, as there were variations in pronunciation and 

noise, making some occurrences of the phones difficult to segment. Ultimately, we extract 

11.6 ±1.7 vowel samples for each participant, and these are 140ms ± 94ms in length. We 

refer to these samples as GFP vowels (GFPV).

To understand the impact of vowel length versus vowel changes within read speech, we 

sample an intermediate set of vowels from SV, but of a length representative of GFPV. We 

sample shortened sustained vowels (SSV) by choosing 10 segments of 140ms (the average 

length of GFPV) from each SV.

4.2. Feature extraction

Baseline features.—We first develop a set of baseline features for the task of classifying 

premanifest versus manifest HD. In prior work, Perez et al. extracted 252 features (81 
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relating to speaking rate, 100 relating to pause information, and 71 relating to goodness of 

pronunciation) from the GFP (for details, see [10]). They demonstrated that these features 

could differentiate between healthy individuals and gene-positive individuals with 87% 

accuracy, but did not focus on separating the premanifest and manifest populations.

Vowel distortion measures overview.—In the previous works highlighted in Section 

2.2, researchers extracted a range of vowel distortion measures from sustained phonation: 

jitter and shimmer, CD, MLE, RPDE, and DFA. In our preliminary analysis, when extracted 

from GFPV, DFA was notably more correlated with HD manifestation than other measures. 

Thus, we limit our discussion of existing measures here to DFA.

In the remainder of this section we introduce the Hurst exponent (HE) and describe two 

types of vowel distortion measures derived from this: DFA and our proposed FVDM1. We 

extract DFA from SV, SSV, and GFPV. FVDM are designed for short segments of vowels, so 

we extract FVDM from SSV and GFPV. For each participant we aggregate the values of all 

individual vowels within SSV and GFPV with six statistics: minimum, median, maximum, 

range, mean, and standard deviation.

Hurst exponent introduction.—The HE is an index of series stability [28]. If we think 

of distorted vowels as “unstable,” we can use the HE to quantify this. An HE closer to 1 

indicates more stability, and an HE closer to 0 indicates more distortion. This level of 

interpretability makes the HE a desirable measure. The traditional approach for extracting 

the HE is rescaled range analysis (see [28]). This approach involves dividing the signal into 

small windows, evaluating the deviation from the mean within each window, and calculating 

the average rescaled range (R/S) across all windows of that size. This process is repeated for 

windows of larger sizes. The slope of the line fit to the graph of log(average R/S) versus 

log(window size) is the HE. In general this process expects that within each window the 

signal is stationary. DFA, described below, is a technique that can be used when stationarity 

does not hold within each window, and has previously been applied to speech signals [15]. 

However, as we also describe below, despite potential nonstationarities in small windows, 

we find that the traditional R/S approach generally produces a linear log-log plot. Thus we 

also explore the use of this approach to measure speech stability.

Detrended fluctuation analysis.—DFA is a method for estimating the HE from data 

when nonstationarities are present [29]. The obtained measure is also referred to as DFA. 

The primary difference between DFA and the R/S approach is that DFA removes trends 

within each window by fitting and adjusting for low-order polynomials. We extract DFA 

using Python [30].

Filtered vowel distortion measures.—We propose a set of FVDM that can describe 

the distortion of vowels within connected speech even when nonstationarities are present. 

Our pipeline for extracting these measures, which is summarized in Figure 1, first quantifies 

and corrects for the multiplicative and additive trends causing the nonstationary, and then 

calculates the HE of the remaining signal using the R/S approach. The main idea is that the 

1Code available at https://github.com/amritkromana/FVDM
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trend components removed by DFA may themselves contain relevant information about HD 

manifestation. As a result, we aim to quantify these trend components, while also using the 

HE to estimate stability. The proposed pipeline provides three FVDM for each vowel: 

multiplicative component variance (FVDM-MCV), additive component variance (FVDM-
ACV), and vowel stability (FVDM-VS).

Step 1:  Removing the multiplicative trend. A multiplicative trend in speech indicates 

changes in volume. We hypothesize that individuals with manifest HD will have a higher 

variance in their volume. We address this trend by first calculating the average decibels 

relative to full scale (dBFS, a measure of amplitude) of the vowel. We then apply a 

convolutional filter, with a window of 25ms and a shift of 10ms, to calculate the average 

dBFS within each window. We calculate the variance of these dBFS values and save it as 

FVDM-MCV. We then correct for this trend by applying the necessary gain or decay to each 

window so that it matches the average dBFS of the entire vowel.

Step 2:  Removing the additive trend. An additive trend in speech is a potential artifact of 

coarticulation. We hypothesize that individuals with manifest HD display different patterns 

of coarticulation, which will be evident in the variance of this trend. We address the additive 

trend using empirical mode decomposition-based filtering. Wu et al. demonstrated that 

additive trends could be removed by decomposing the signal into intrinsic mode functions 

(IMFs) [31]. Certain IMFs will contain signal information, and others will contain trend 

information. Chatlani et al. provide methods to associate IMFs with each component for 

voiced sounds, which have distinct IMF properties [32]. They demonstrated how the 

variance of each IMF component drops after the fourth IMF, and suggest that the first four 

IMFs contain relevant signal information. Figure 2 illustrates that within our SSV data the 

first six IMFs have higher variance, after which variance drops. Based on this analysis, we 

decompose the signal into IMFs [33], sum the first six IMFs to reconstruct the stationary 

vowel, and sum the remaining IMFs as the additive component. We calculate the variance of 

this additive component and save it as FVDM-ACV.

Step 3:  Calculating stability. Finally, we explore using the traditional R/S approach to 

calculate the HE of the filtered signal [30]. Although the filtering process corrects for 

stationarity across the entire signal and not necessarily within small windows, we find the 

R/S approach generally produces a linear log-log graph, suggesting we can use the slope of 

this graph without detrending in the small windows. This gives us FVDM-VS.

5. Results

5.1. Feature correlations across sample types

Table 2 lists the correlations between the vowel distortion measures extracted from each 

sample type and the manifest labels. For both DFA and FVDM we see that the correlations 

are highest when measured from GFPV, suggesting that vowel distortion is more pronounced 

within read speech. We particularly highlight the high correlation of 0.75 between the range 

of FVDM-VS and the manifest label, suggesting that individuals with manifest HD exhibit a 

wider range of vowel distortion within speech when compared to premanifest individuals. 
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The correlations for FVDM-ACV are not as strong as hypothesized, but we find a significant 

negative correlation between the minimum FVDM-ACV and the manifest label, which is 

consistent with less articulator movement due to disease manifestation. Finally, we find that 

several statistics over FVDM-MCV are positively correlated with manifest HD, suggesting 

that individuals with manifest HD exhibit more volume variation within vowels.

5.2. Classifying manifest HD

We explore the feasibility of detecting HD manifestation from speech by training a logistic 

regression model to predict if a speaker has premanifest or manifest HD. We train the model 

using a leave-one-subject-out paradigm. Our baseline feature set includes the features from 

[10] and we augment this set with DFA and FVDM. We use DFA and FVDM extracted from 

the GFPV samples because the baseline features were extracted from the GFP, and this 

provides the most insight into how to passively predict manifestation from connected 

speech. We perform z-score normalization on each of the features. We use three-fold cross-

validation over the training data to choose the number of features (5, 10 or 15, selected using 

maximal relevance minimum redundancy (mRMR) [34]) and the inverse regularization 

parameter (0.1 or 1). Table 3 lists classification accuracies averaged over 10 random 

initializations of the model.

While DFA improves baseline classification, FVDM provide a greater improvement. Table 4 

illustrates how the Baseline+FVDM model classifies late-stage manifest with high accuracy, 

but has more difficulty differentiating between premanifest and early-stage manifest.

Further analysis into the Baseline+FVDM model shows that mRMR selects FVDM-VS 

range and standard deviation for each training fold. The learned β parameters for FVDM-VS 

range and standard deviation are significant for 65% and 58% of training folds, respectively. 

We also confirm that these β parameters are interpretable. The positive β parameters 

illustrate that individuals with manifest HD exhibit a higher range of vowel distortion within 

speech compared to individuals with premanifest HD (β = 0.62 ± 0.30 for range and β = 

0.42 ± 0.13 for standard deviation). While Table 2 demonstrates that other statistics over 

FVDM-VS and some statistics over FVDM-MCV and FVDM-ACV are correlated with the 

manifest label, mRMR only includes these features in a small number of cases.

FVDM provide information that is supplementary to existing speech features, and improve 

manifest HD classification accuracy from 63% to 80%. Furthermore, we observe that the 

relationship between FVDM and HD manifestation is consistent with understandings of 

vowel distortion within HD [11–13].

6. Conclusions

In this paper we present FVDM, a small and human interpretable feature set. We show that 

these features can classify HD manifestation with 80% accuracy. These results bring us 

closer to being able to passively detect HD manifestation.

In future work we will analyze how FVDM compare across different vowels. We will then 

explore how the FVDM pipeline can be coupled with vowel detection methods to 

Romana et al. Page 7

Interspeech. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



automatically extract FVDM from spontaneous speech (as opposed to read speech). Finally, 

we will examine the use of FVDM to classify other disorders which present themselves with 

distorted vowels.
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Figure 1: 
Pipeline for extracting Filtered Vowel Distortion Measures (FVDM). Note: 

MCV=multiplicative component variance, ACV=additive component variance, VS=vowel 

stability, HE=hurst exponent, R/S=rescaled range
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Figure 2: 
IMF Variance for SSV
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Table 1:

Three types of vowel samples

Sample type Description

SV 2 seconds of holding the vowel /a/

SSV 10 randomly selected segments from the SV, each 140ms

GFPV The phones [ɑ], [ə], and [ɔ] manually segmented from the Grandfather Passage reading
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Table 2:

Spearman correlation coefficients between vowel distortion features and manifest label for each sample type. 

Significant correlations (p < 0.05) are in bold.

Sample Stat DFA
FVDM

VS ACV MCV

SV −0.24

SSV

min −0.23 −0.30 −0.13 0.11

med −0.26 −0.15 −0.06 0.31

max −0.07 0.12 0.03 0.39

range 0.22 0.37 0.21 0.33

mean −0.20 −0.17 −0.06 0.35

std 0.23 0.37 0.20 0.31

GFPV

min −0.63 −0.69 −0.41 0.04

med −0.51 −0.36 −0.20 0.12

max −0.19 0.00 −0.14 0.47

range 0.61 0.75 0.09 0.48

mean −0.43 −0.46 −0.20 0.35

std 0.58 0.71 −0.06 0.47

Note: SV=sustained vowel, SSV=shortened sustained vowels, GFPV=Grandfather Passage vowels, DFA=Detrended fluctuation analysis, 
FVDM=Filtered vowel distortion measures, VS=Vowel stability, ACV=additive component variance, MCV=multiplicative component variance.
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Table 3:

Accuracy in classifying premanifest vs manifest HD: mean and std across all subjects and 10 model 

initializations

Features Classification Accuracy

Baseline 0.63 ± 0.04

Baseline+DFA 0.68 ± 0.04

Baseline+FVDM 0.80 ± 0.03
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Table 4:

Confusion matrix from Baseline+FVDM manifest HD classification experiment. Rows=label, 

columns=prediction.

Premanifest Manifest

Premanifest 0.81 0.19

Early-stage manifest 0.30 0.70

Late-stage manifest 0.03 0.97
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