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One Sentence Summary: Microbial classifier highlights specific taxa predictive of SARS-CoV-

2 prevalence across diverse microbial niches in a COVID-19 hospital unit. 

 

Abstract: Synergistic effects of bacteria on viral stability and transmission are widely documented 

but remain unclear in the context of SARS-CoV-2. We collected 972 samples from hospitalized 

patients with coronavirus disease 2019 (COVID-19), their health care providers, and hospital 

surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, 

characterized microbial communities using 16S rRNA gene amplicon sequencing, and 

contextualized the massive microbial diversity in this dataset through meta-analysis of over 20,000 

samples. Sixteen percent of surfaces from COVID-19 patient rooms were positive, with the highest 

prevalence in floor samples next to patient beds (39%) and directly outside their rooms (29%). 

Although bed rail samples increasingly resembled the patient microbiome over time, SARS-CoV-

2 was detected less there (11%). Despite viral surface contamination in almost all patient rooms, 

no health care workers contracted the disease, suggesting that personal protective equipment was 

effective in preventing transmissions. SARS-CoV-2 positive samples had higher bacterial 

phylogenetic diversity across human and surface samples, and higher biomass in floor samples. 

16S microbial community profiles allowed for high SARS-CoV-2 classifier accuracy in not only 

nares, but also forehead, stool, and floor samples. Across distinct microbial profiles, a single 

amplicon sequence variant from the genus Rothia was highly predictive of SARS-CoV-2 across 

sample types and had higher prevalence in positive surface and human samples, even compared to 

samples from patients in another intensive care unit prior to the COVID-19 pandemic. These 

results suggest that bacterial communities may contribute to viral prevalence both in the host and 

hospital environment. 
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Introduction 1 

 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of 2 

a novel infectious disease, COVID-19, that has reached pandemic proportions. COVID-19 was 3 

first detected in Wuhan, China, in patients with pneumonia in December 2019. This pandemic has 4 

been characterized by sustained human to human transmission and it has caused more than 44 5 

million cases and over 1.2 million deaths worldwide (as of 1 November 2020, WHO report). The 6 

United States now has the largest number of cases worldwide at over 11 million as of November 7 

20th, 2020 (1). COVID-19 is primarily transmitted via either respiratory droplets or aerosols 8 

produced by an infected person and inhaled by another individual. Other routes of transmission 9 

have also been proposed including fecal oral transmission (2, 3) and fomite transmission (4) 10 

although the relative importance of various transmission routes is uncertain (5–8). The potential 11 

role of fomite transmission is especially concerning as SARS-CoV-2 has been detected on a variety 12 

of surfaces including plastic, stainless steel, cardboard, and copper, and in aerosols  (9). A more 13 

comprehensive understanding of what influences SARS-CoV-2 stability, transmission, and 14 

infectivity is crucial to implementing effective public health measures.  15 

Viruses exist in a complex microbial environment, and virus-bacterial interaction has been 16 

increasingly documented in humans. In the animal microbiome, the gastrointestinal tract contains 17 

the highest amount of bacteria and many virus-bacterium interaction studies have therefore 18 

focused on enteric viruses. Gut bacteria have been shown to directly modulate enteric virus 19 

infectivity via improving thermostability (10), increasing environmental stability (11), and 20 

encouraging viral genetic diversity and fitness (12). Virus-bacterium interactions have also been 21 

observed in upper-respiratory tract infections including influenza A (13, 14) and oral human 22 

papillomavirus infection (15). Most recently, prevalent bacteria in the human microbiome have 23 
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been demonstrated to alter the human glycocalyx thereby modulating the ability of SARS-CoV-2 24 

to bind host cells (16). Given the nature of known virus-bacterium interactions, we hypothesized 25 

that virus-bacterium interactions may also exist in indoor spaces (the ‘built environment’).  26 

 The risk of contracting SARS-CoV-2 is higher indoors than outdoors particularly in poorly 27 

ventilated areas (17), and the built environment has a distinct microbiome (18). The built 28 

environment microbiome is usually dominated by human-associated microbes (19), and it is 29 

estimated that humans shed approximately 37 million bacterial genomes per hour into their built 30 

environments (20). In a study following the building of a new hospital, we discovered that the 31 

indoor spaces were colonized with microbes from patients and health care workers, and 32 

metagenomic analysis was used to infer transmission between occupants via surface transmission 33 

(21). To test whether specific bacterial taxa in the host or built environment influence SARS-CoV-34 

2 persistence, we collected samples from hospital surfaces, patients, and health care workers in the 35 

intensive care unit (ICU) and medical-surgical floor during the onset of the COVID-19 outbreak 36 

and screened for viral presence and microbial context. 37 

 38 

Results 39 

SARS-CoV-2 detection across surfaces and patient samples 40 

Sample collection for SARS-CoV-2 detection is typically performed using viral transport 41 

media containing fetal bovine serum and a cocktail of antibiotics, which could negatively influence 42 

studies of bacteria and other microbes (22, 23). For this study, swab samples were stored in 95% 43 

EtOH, in order to inactivate the virus for safe transportation (24) while stabilizing the microbial 44 

community (25). A total of 972 samples were collected longitudinally from 16 patients with 45 

clinical laboratory confirmed SARS-CoV-2 infection (118 samples), 10 health care workers 46 
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assigned to these patients (113 samples), and 734 hospital surfaces either inside or immediately 47 

outside of the patients’ rooms over the span of two months (Fig. 1A).  48 

The 16 patients enrolled in this study ranged from age 20 to 84, with a median age of 49.5 49 

(Fig S1). 31% were female and 69% were male, consistent with reports that men tend to experience 50 

more severe COVID-19 symptoms (26). Of the patients for whom antibiotic treatment information 51 

was collected, 77% were on antibiotics, of which 80% were taking more than one antibiotic. The 52 

number of days spent in the hospital ranged from 1 to 25, with a median stay of 9 days. 53 

Each sample was screened for the presence of SARS-CoV-2 using three distinct 54 

primer/probe sets: the U.S. Center for Disease Control N1 and N2 targets, and the World Health 55 

Organization E-gene target (see methods). The US Food and Drug Administration has issued 56 

Emergency Authorization for more than 150 RT-qPCR assays for the detection of SARS-CoV-2, 57 

the majority of which define a positive result as amplification in a single target (27).  Accordingly, 58 

we designated samples as positive if at least one out of three targets amplified with a Ct value 59 

below 40. Serial dilutions of quantified virus amplicons were included in each RT-qPCR plate in 60 

order to extrapolate the viral load of each sample. Of the surfaces sampled, 13.1% were positive 61 

for SARS-CoV-2, including those touched primarily by health care workers (keyboard, ventilator 62 

buttons, door handles inside, and outside the rooms) and those directly in contact with the patient 63 

(toilet seats, bed rails). Of the patients enrolled in the study, we collected at least one positive 64 

sample from  15/16 patients (nares, forehead, or stool) and from 14/15 associated hospital rooms. 65 

In rooms where patient samples were not available, surfaces screened positive at least once for 6/6 66 

COVID-19 rooms and 4/5 non-COVID-19 rooms.  67 

Floor samples had the highest positivity rates (36% of samples collected from the floor 68 

near the patients’ bed, i.e. “Inside Floor”, and 26% of samples collected from the floor immediately 69 
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outside of the patient room, i.e. “Outside Floor”) (Fig. 1B, Fig. S2). In some cases, SARS-CoV-2 70 

was detected on the floors of rooms with patients who tested negative for COVID-19 and in rooms 71 

that had been cleaned following COVID-19 patient occupancy (Fig. 1B, Fig. S3B). Most of the 72 

positive surface samples amplified only one or two out of the three SARS-CoV-2 targets (Fig. 1C) 73 

and had significantly lower viral load over time compared to patient nares and stool samples 74 

(p<0.003, non-parametric test from sparse functional principal components analysis) (28), but 75 

similar viral load to patient forehead samples (Fig. 1D).  76 

SARS-CoV-2 viral load tended to decrease in patients over time (Fig. 1E) but was 77 

detectable in patient nares up to 27 days after symptom onset. Trajectories of viral load varied for 78 

different patients (Fig. S3). For a COVID-19-positive patient’s stay, viral load also tended to 79 

decrease slightly on hospital surfaces including bed rails and floor samples but remained detectable 80 

up to 16 days after patient admission (Fig. 1F).  81 

Of 113 health care worker samples, only one stool sample amplified for one of the three 82 

viral targets. No other samples collected from this health care worker, and no samples from any 83 

other health care worker treating COVID-19 patients had any viral target amplification. Moreover, 84 

all health care workers in this study did not have detectable serum antibodies against SARS-CoV-85 

2.  86 

 87 

 88 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.19.20234229doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.19.20234229
http://creativecommons.org/licenses/by/4.0/


5 

 89 

Figure 1. Summary of SARS-CoV-2 detection in the dataset. A) Schematic diagram of the 90 

experimental design highlighting the time frame for sample collection across sample types. B) 91 

Percent and number of COVID-positives for each sample type collected from rooms occupied or 92 

not occupied by COVID-19 patients. Not occupied includes both post-cleaning rooms and rooms 93 

currently occupied by a patient negative for COVID-19. C) Number of samples and SARS-CoV-94 

…Patient arrival
1d 2d 3d0.5d

Patient discharge
Terminal clean

Sample category Sample type COVID+ patient 
in room

No COVID+ 
patient in room

Hospital Surface

Outside doorhandle 3% (2/68) 0% (0/29)
Inside doorhandle 3% (2/68) 0% (0/30)
Bedrail 11% (10/92) 0% (0/30)
Keyboard 4% (3/68) 0% (0/30)
Toilet Seat 6% (1/16) 0% (0/10)
Ventilator Buttons 15% (4/27) 0% (0/4)
Inside floor 39% (35/90) 27% (8/30)
Outside floor 29% (26/90) 17% (5/30)
Other assorted 0% (0/10) 0% (0/12)

Patient

Forehead 33% (16/48)
Nares 78% (39/50)
Stool 77% (10/13)
Throat 75% (3/4)
Tracheal Aspirate 67% (2/3)

Healthcare Worker

Forehead 0% (0/36)
Nares 0% (0/39)
Stool 3% (1/31)
Throat 0% (0/5)

Figure 1.

A)

B)

C)

D)

E) F)
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2 screening results for 3 gene targets (N1, N2, and E-gene). D) Boxplot of time-incorporated 95 

principal scores on viral load for different sample types. Each dot represents the functional 96 

principal component score for each viral load trajectory over time, which was estimated from 97 

sparse functional principal components analysis on viral load over time; *p<0.05, **p<0.01, 98 

***p<0.001, ****p<0.0001, Wilcoxon signed-rank test. E) Viral load per swab relative to date of 99 

symptom onset across COVID-19 patient sample types, where only sample types with both n 100 

positive>10 and % positive>10% are included. (F) Viral load per swab relative to date of room 101 

admission across hospital surface sample types, where samples from rooms occupied by a COVID-102 

19 patient at the time of sampling are included. Again, sample types with both n>10 and % 103 

positive>10% are included. 104 

 105 

Diverse microbial context of SARS-CoV-2 106 

16S V4 rRNA gene amplicon (16S) sequencing was performed and a total of 589 out of 107 

the 972 samples passed quality filtering (see methods). Most of the sample dropouts were low 108 

biomass samples from surfaces in the built environment (49% of hospital surface samples 109 

compared to 9% of human samples). Fewer samples that failed 16S sequencing were SARS-CoV-110 

2 positive (6.7%) compared to samples that sequenced successfully (23.9%). A meta-analysis with 111 

samples from the Earth Microbiome Project (29), an intensive care unit microbiome project (30), 112 

and a hospital surface microbiome study performed at another hospital (21) (a total of 19,947 113 

samples) contextualized the microbial composition of samples from this hospital study and the 114 

broad range of microbial diversity covered in this dataset (Fig. 2A). Through source-tracking (31) 115 

on the meta-analysis we found that floor samples, which cluster separately from the rest of this 116 

dataset (Fig. 2C), are similar to built environment samples from previous studies (Fig. S4).  117 
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Beta-diversity estimated using unweighted UniFrac distances (32) in this study showed 118 

that floor samples, stool samples, and nares/forehead samples formed three distinct clusters with 119 

other surfaces falling between the human skin and floor samples (Fig. 2B-C). SARS-CoV-2 viral 120 

load was weakly correlated with unweighted UniFrac beta-diversity (PERMANOVA R2 <0.01, p-121 

value = 0.043, Fig. S5). 122 

We compared beta-diversity between human samples and paired built environment 123 

samples from the patients’ respective hospital rooms. Microbial composition of high touch 124 

surfaces routinely used by healthcare workers, such as keyboards and floor samples, were 125 

significantly more similar to health care worker samples, whereas samples from bed rails that are 126 

not frequently touched by health care workers were significantly more similar to the patient 127 

samples (Fig. 2D). Notably, the percent of SARS-CoV-2 positive bed rail samples was lower than 128 

floor (11% vs 39%) despite the high similarity of bed rail microbiomes to the corresponding patient 129 

microbiomes.  130 
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 131 

Figure 2. Microbial diversity of SARS-CoV-2 patients, health care workers, and the built 132 

environment  in COVID-19 units. A) Principal Coordinates Analysis (PCoA) of unweighted 133 

UniFrac distances comparing the Earth Microbiome Project meta-analysis (n=19,497, small dots) 134 

and this study (n=591, large dots). B) PCoA of unweighted UniFrac distances in this study. C) 135 

Heatmap of unweighted UniFrac distance among surface and patient sample types. Diagonal lines 136 

represent median distances within individual sample types. D) Pairwise unweighted UniFrac 137 

distance between the human surface (i.e. forehead and nares) and their paired surface samples. 138 

Statistics represent bootstrapped Kruskal-Wallis; *p<0.05, **p<0.01, ***p<0.001. 139 
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 141 

Longitudinal beta-diversity analysis reveals patient-surface microbial convergence 142 

 To account for the longitudinal nature of this dataset, we applied a compositional tensor 143 

factorization method implemented through the Gemelli QIIME2 plugin (33, 34) (Fig. 3A). 144 

Actinomycetales and Bacteroidales were the most highly ranked taxa driving the separation of 145 

patient’s forehead and nares samples from surface samples, separating those two groups along the 146 

first principal component axis (PC1). Bacillales was also ranked among the top contributors to 147 

microbial separation in our dataset and has been successfully used for biocontrol on hospital 148 

surfaces (35–38). The log-ratio of Bacillales versus Actinomycetales and Bacteroidales was higher 149 

in surface samples compared to human samples (Fig. 3B). The trajectory of this log-ratio showed 150 

that with longer hospitalizations, bed rail samples became more similar to patients' nares and 151 

forehead samples. Upon patient discharge and room cleaning, this log-ratio converged back 152 

towards floor samples.  153 
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 154 

Figure 3. Longitudinal beta-diversity analyses of patients, health care workers and surfaces. A) 155 

Beta-diversity of human (n = 171; forehead, nares, and stool) and surface (n= 242; bed rail, inside 156 

and outside floor) samples accounting for repeated time point measures by Compositional Tensor 157 

Factorization (CTF). Arrows represent the top eight ASVs with the highest loadings, and are 158 

labelled by their order classification. B) Trajectory of differentially abundant taxa in human and 159 

surface samples across time. Lowercase letters represent pairwise comparisons with Bonferroni-160 

corrected p-values <0.05; Inside Floor vs Outside Floor (a), Inside Floor vs Bed rail (b), Inside 161 

Floor vs Nares (c), Inside Floor vs Stool (d), Inside Floor vs Forehead (e), Outside Floor vs Bed 162 

rail (f),Outside Floor vs Nares (g),Outside Floor vs Stool (h),Outside Floor vs Forehead (i), Bed 163 

A)

B)

Figure 3.
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rail vs Nares (j), Bed rail vs Stool (k), Bed rail vs Forehead (l), Nares vs Stool (m), Nares vs 164 

Forehead (n), Stool vs Forehead (o). Full statistics in Data File S1. 165 

 166 

Positive association of microbial diversity and biomass with SARS-CoV-2 167 

Next, we evaluated potential alpha diversity differences associated with SARS-CoV-2 168 

detection. Overall, Faith’s phylogenetic alpha-diversity was significantly higher among surface 169 

samples than patient or health care worker samples (Fig. 4A). Across all sample types, Faith’s 170 

phylogenetic diversity tended to be higher in SARS-CoV-2 positive samples, and was significantly 171 

higher in forehead, inside floor, and outside floor samples (Fig 4B).  172 

 173 

Figure 4. Alpha-diversity is higher in SARS-CoV-2 positive samples. A) Faith’s phylogenetic 174 

Diversity (rarefied to 4,000 reads per sample) of human and surface samples over time, fitted with 175 

locally estimated scatterplot smoothing (LOESS) curves. B) Faith’s phylogenetic diversity of 176 

humans and their surface samples grouped by SARS-CoV-2 screening results. Statistics resulted 177 

from Wilcoxon signed rank tests; *p<0.05, **p<0.01. 178 

 179 
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The high alpha-diversity of floor samples and significant association with SARS-CoV-2 180 

detection led us to examine potential differences in biomass across floor samples. Two 181 

independent metrics were used to assess biomass; 16S rRNA gene amplicon sequencing read 182 

count, which because of our equal volume sequencing library pooling approach correlates with 183 

total bacterial load (39, 40), and the Ct value from the CDC’s human RNAse P RT-qPCR target, 184 

which correlates with human biomass. 16S read count and human RNAse P Ct values are indirect 185 

measures of total bacterial and human biomass, respectively, and were significantly correlated 186 

(Pearson R2 = -0.40, p<0.0001). 16S read count was significantly higher in floor samples with 187 

detected SARS-CoV-2, but did not correlate with the number of viral copies detected (Fig. 5B). 188 

The abundance of human RNAse P was also significantly higher in floor samples with SARS-189 

CoV-2 (lower Ct values), and positively correlated with viral load (Pearson R2 = -0.31, p-value = 190 

0.011) (Fig. 5C); this correlation was not observed for the other sample types examined (nares, 191 

forehead, stool, bed rail). These results suggest that due to gravity SARS-CoV-2 is more likely to 192 

be detected on floors with high load of total microbial and human biomass.  193 

To determine if SARS-CoV-2 affected microbial composition in the built environment, we 194 

performed forward stepwise redundancy analysis (41) on unweighted UniFrac (42) principal 195 

components from floor samples (n=215). We chose floor samples for this analysis since floor 196 

samples had the largest number and highest biomass of all surfaces sampled (Fig. S6).  Three non-197 

redundant variables had a significant effect size, explaining a total of 21.7% variation in the data 198 

(Fig. 5C). The variable with the strongest effect size was patient identity (17.5%, p-value = 199 

0.0002), which aligns with previous work demonstrating that the built environment microbiome is 200 

contributed from the humans inhabiting that space (21). Whether the sample was an inside floor 201 

sample (next to patient bed) or outside floor sample (hallway directly in front of patient room) also 202 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.19.20234229doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.19.20234229
http://creativecommons.org/licenses/by/4.0/


13 

had a small, yet significant effect size (0.8%, p-value=0.04). Importantly, SARS-CoV-2 detection 203 

status also significantly contributed to microbial variation (3.4%, p-value = 0.0004). 204 

 205 

Figure 5. Floor sample SARS-CoV-2 status is associated with higher biomass and significantly 206 

contributes to microbial composition. (A) Abundance of 16S rRNA gene amplicon sequencing 207 

read count in SARS-CoV-2 positive floor samples showing no correlation with SARS-CoV-2 viral 208 

load. (B) Ct value of human RNAse P in SARS-CoV-2 positive floor samples showing significant 209 

correlation with SARS-CoV-2 viral load. Statistical analysis of scatter plots represents Pearson 210 

correlation, and box plots represents independent t-tests; *p<0.05, **p<0.01, ***p<0.001. (C) 211 

Effect size of significant, non-redundant variables identified from Redundancy Analysis on 212 

unweighted UniFrac PCoA of floor samples. 213 

 214 
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 215 

Unique microbial signatures predict SARS-CoV-2 across patient sample types 216 

 To identify microbial features associated with SARS-CoV-2 positive samples, we 217 

independently trained Random Forest (RF) classifiers on nares (N=76), stool (N=44), and forehead 218 

samples (n=79) from COVID-19 patients and health care workers. Based on 16S rRNA gene 219 

amplicon sequencing microbial profiles, the RF models predicted SARS-CoV-2 status (positive 220 

vs. not detected) with 0.89 area under the receiver operating characteristic curve (AUROC) in 221 

unseen nares samples (Fig. 6A). Strikingly, skin (AUROC = 0.79) and stool (AUROC = 0.82) also 222 

showed high classifier accuracy. As the SARS-CoV-2-negative samples were overrepresented in 223 

the data, we also employed the area under the precision recall curves (AUPRC) to evaluate the 224 

prediction performance of each classifier, which were 0.76, 0.72, and 0.7 for nares, stool and 225 

forehead, respectively (Fig. 5B). A RF model built from bacterial profiles on the inside floor also 226 

showed a moderate prediction accuracy for discriminating SARS-CoV-2 status (AUROC=0.71; 227 

AUPRC=0.6, Fig. 5A and B). RF classifiers trained on outside floor and bed rail samples did not 228 

perform well, especially in the precision recall curves (Fig. S7). 229 

The phylogenetic relationship of the top 100 ranked amplicon sequence variants (ASV) 230 

from the RF models were visualized with EMPress (43) (Fig. 5C). Stool and inside floor samples 231 

each had distinct sets of taxa driving the RF model compared to nares and forehead samples, which 232 

were more similar. Many of the highly ranked ASVs in the stool samples are from the class 233 

Clostridiales, a polyphyletic group of obligate anaerobes that were also identified as predictive of 234 

SARS-CoV-2 status in a wastewater study (2).  235 

ASVs from the genera Actinomyces, Anaerococcus, Dialister, Gemella, and Schaalia were 236 

in the top 40 ranked features of both forehead and nares samples (Data File S2); these taxa are 237 
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normally found in anterior nares samples (44–46), but are not commonly described in forehead 238 

microbiome samples. Interestingly, from Figure 2C, we observed that the unweighted UniFrac 239 

distance between samples from the same individual’s nares and forehead were more similar in 240 

COVID-positive room surfaces, suggesting that patients who shed virus into their environment 241 

could be cross-contaminating bacteria between nares and forehead (Fig. S8).  242 

One ASV with an exact match to Rothia dentocariosa (GenBank ID CP054018.1) was 243 

highly ranked across all four disparate sample types: nares, forehead, stool, and inside floor. 244 

Further investigation shows this ASV is more prevalent in SARS-CoV-2 positive samples across 245 

all sample types examined. To exclude the possibility of this Rothia ASV being associated with 246 

sick patients generally, we examined the prevalence of this ASV in an intensive care unit 247 

microbiome study that was performed in 2016 (30), and found that high Rothia prevalence is 248 

specific to SARS-CoV-2 positive patient samples (Fig. 5D).  249 

 250 

 251 
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 252 

Figure 6. Bacterial composition is predictive of SARS-CoV-2 status in nares, forehead, stool and 253 

inside floor samples. The prediction performance of Random Forest classifiers on SARS-CoV-2 254 

status for each sample type was assessed using AUROC (A) and AUPRC (B) for nares (n=76), 255 

forehead (n=79), stool (n=44), and inside floor (n=107), in a 100-fold cross-validation approach 256 

(see methods). (C) EMPress plot of the 100 features most predictive of SARS-CoV-2 status in 257 

nares, forehead, stool and inside floor samples, where a single ASV with 100% alignment to Rothia 258 

dentocariosa was identified across all sample types. Top 100 random forest importance ranks and 259 

GreenGenes taxonomy from nares, forehead, stool, and inside floor samples are available in Data 260 
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File S2. (D) Proportion of samples containing the highly predictive Rothia dentocariosa ASV in 261 

SARS-CoV-2 positive and negative samples from the current study, and from (30) (ICU 2016 pre-262 

COVID19). 263 

 264 

Discussion 265 

 The COVID-19 pandemic continues unabated as outbreaks ebb and flow around the globe. 266 

Because evidence for the synergistic effects of host-associated bacteria on viral pathogen stability 267 

and transmission continues to emerge, we set out to identify possible correlations between host- 268 

or surface-associated bacteria with SARS-CoV-2 presence and abundance in the built 269 

environment. At the onset of sampling, no hospital rooms or health care workers enrolled in the 270 

study had known exposure to SARS-CoV-2.  Despite patients continually testing positive and 271 

shedding virus resulting in consistent surface contamination in the patient rooms, all samples 272 

collected from health care workers providing direct patient care to patients with COVID-19 were 273 

negative by both clinical RT-qPCR and antibody tests (data not shown). This includes the 3 health 274 

care workers who collected samples for the study. Aside from one stool sample where one of three 275 

viral targets amplified in our screening, all of the health care worker samples in this study (n=113) 276 

were negative for SARS-CoV-2, similar to findings from previous studies of exposed health care 277 

workers using airborne, contact and droplet protective PPE (47–49). This contrasts with early 278 

reports of high SARS-CoV-2 transmission levels among health care workers before the 279 

implementation of general hospital-wide masking of healthcare workers and patients and of eye 280 

protection when interacting with an unmasked patient (50, 51). Our findings highlight the 281 

importance of providing healthcare workers with appropriate PPE and with rigorous training in 282 

donning and doffing procedures to minimize self-contamination.  In this hospital, the infection 283 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.19.20234229doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.19.20234229
http://creativecommons.org/licenses/by/4.0/


18 

prevention measures (universal masking, eye protection, and appropriate PPE) were effective in 284 

preventing transmissions.  285 

In this study, approximately 16% (83/529) of surface samples from hospital rooms 286 

occupied by COVID-19 patients and 6% (13/205) of surface samples from hospital rooms not 287 

currently occupied by COVID-19 patients had detectable levels of SARS-CoV-2.  Not 288 

surprisingly, of the various surfaces sampled in this study, floor samples had the highest prevalence 289 

of SARS-CoV-2 detection. The intense and frequent oropharyngeal, respiratory, skin, bowel care 290 

provided to these critically ill patients is expected to produce shedding and contamination of the 291 

environment in close proximity of the patient, including the floors.  Our findings replicate previous 292 

studies where floors had the highest prevalence of SARS-CoV-2 of all hospital room surfaces (52, 293 

53). Previous studies of environmental contamination report higher surface prevalence of SARS-294 

CoV-2 in hospital settings, ranging from 25% to over 50% (52, 54–56). The lower SARS-CoV-2 295 

prevalence rates in this study could be due to differences in sampling strategy (e.g. area sampled, 296 

storage and extraction methods), more careful environmental cleaning of high touch areas around 297 

the patient, or due to physiological differences since different surface types differentially influence 298 

viral persistence (57). Furthermore, contamination of hospital room surfaces with SARS-CoV-2 299 

tends to be highest during the first 5 days after symptom onset (Chia et al., 2020). All patients 300 

enrolled in our study had symptoms for at least 6 days before admission to the hospital and 301 

enrollment in this study. 302 

While SARS-CoV-2 was identified via RT-qPCR for both patient and hospital room 303 

samples, it cannot be determined whether the detected virus was viable. Infectivity is both a 304 

function of viral viability and abundance. One study assaying infectivity and RT-qPCR in parallel  305 

showed that samples with Ct values >30 were not infectious (56). In our study, only 2 out of 79 306 
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positive surface samples amplified at least one SARS-CoV-2 target under 30 cycles, suggesting a 307 

relative low viral abundance. Interestingly, both of these samples were from the floor directly next 308 

to the patient bed in rooms that hosted patients who were mechanically ventilated during their stay. 309 

One of these potentially infectious samples was collected after the patient was transferred to the 310 

ICU and after room cleaning, and there were no other surface positives detected at that same time 311 

point. The other low-Ct floor sample came from a room where the patient had a consistently high 312 

viral load (Fig. S3B). However, the high Ct values for a majority of built environment samples in 313 

this study, and the lack of health care worker infection, suggest that the positive surfaces identified 314 

are an unlikely source of viral transmission in the hospital setting when contact precautions (gowns 315 

and gloves) are used correctly. 316 

It should be acknowledged that transportation of samples in ethanol (to ensure the safety 317 

of those handling samples, as well as to enable microbiome analysis) instead of using viral 318 

transport media may have resulted in overall lower viral RNA yield. Despite these potential 319 

sources of variation, we found that bed rail and patient samples were highly similar in microbiomes 320 

to one another before cleaning, but this similarity disappeared after cleaning. Microbial community 321 

composition was also more similar between humans and the surfaces they touched (including 322 

between health care workers and keyboards, as well as patients and bed rails), supporting the 323 

robustness of our microbial sample collection and processing protocols.  324 

It is both a strength and a limitation of this study that standard of care environmental 325 

cleaning was performed and was not influenced or altered by the study team. The daily cleaning 326 

regimen can vary depending on staff and other variables (hospital room surface types and 327 

disinfection protocols are summarized in Table S1) which is representative of hospital 328 

environmental practices worldwide. SARS-CoV-2 was amplified from floor samples, albeit at a 329 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.19.20234229doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.19.20234229
http://creativecommons.org/licenses/by/4.0/


20 

relatively low abundance based on Ct values, in rooms even without COVID-19 patients and after 330 

cleaning. This highlights the importance of maintaining effective cleaning practices to mitigate the 331 

risk of viral spread via fomites. Although transmission risk from the floor is likely negligible as 332 

discussed above, the relatively high positivity rate for floor samples allowed us to use them as a 333 

proxy to study how microbial communities are interrelated with shed virus.  334 

In the built environment, microbial load, human biomass and alpha-diversity were higher 335 

in floor samples positive for SARS-CoV-2. Floor samples also had the highest biomass of all the 336 

surface samples tested, including high-touch surfaces (e.g. bedrail, keyboard, door handles). This 337 

may help explain the higher prevalence of positive floor samples in COVID-19 patient rooms 338 

(39%) versus bed rail samples (11%), despite their distance from the patient. This is in agreement 339 

with previous research showing that bacterial- and viral load are positively correlated in built 340 

environment samples (58). The relatively low prevalence of SARS-CoV-2 contamination on bed 341 

rail samples may also be because many of the patients were deeply sedated and were not actively 342 

moving in bed including touching the bedrails or because high touch areas in close proximity to 343 

the patient are cleaned by nurses at each shift, and/or due to differences in material (vinyl versus 344 

plastic).  345 

Using Random Forest models to classify microbes associated with SARS-CoV-2 detection, 346 

we found 16S microbial profiles had high predictive accuracy of SARS-CoV-2 presence in nares, 347 

stool, forehead, and inside floor samples. Despite these sample types having distinct microbiomes 348 

covering a broad range of microbial diversity (Fig. 2), we identified a single Rothia ASV that was 349 

highly ranked in the Random Forest classifier across all four sample types. This ASV was also 350 

more prevalent in SARS-CoV-2 positive samples across all human sample types and floor and bed 351 

rail samples in our dataset. By comparing the prevalence of this ASV across our dataset and a 2016 352 
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study from an intensive care unit (30), we found that this signal is specific to SARS-CoV-2 positive 353 

samples, and not other factors associated with an ICU admission such as antibiotic use. This 354 

finding supports previous work reporting Rothia to be enriched in SARS-CoV-2 positive stool (59) 355 

and bronchoalveolar lavage fluid (60), and further suggests a role in nares, forehead, and surfaces. 356 

While the mechanism remains unclear, the consistent Rothia ASV prevalence trend across 357 

both patient and surface sample types suggest an association of this bacteria with SARS-COV-2. 358 

Species from the genus Rothia are common to the human oral microbiome (61), but have also been 359 

identified as opportunistic pathogens (62). Oral microbes have been found to colonize the 360 

gastrointestinal tract, especially in disease states (63). This suggests a possible increased oral-fecal 361 

transmission triggered under viral infection that manifests as a hallmark of COVID-19. 362 

Interestingly, we also found that patients with cardiovascular disease comorbidities tended to have 363 

higher prevalence of the Rothia ASV associated with SARS-CoV-2, compared to patients with 364 

pre-existing cardiovascular disease (45% versus 26%, respectively). Rothia dentocariosa can 365 

cause endocarditis, particularly in patients with a history of cardiovascular disease (62, 64). Using 366 

data from the American Gut Project (65), we tested for the presence of this Rothia ASV in samples 367 

from those self reporting a medical diagnosis of a cardiovascular disease, and those self reporting 368 

not having a cardiovascular disease. We observed a significantly higher prevalence of Rothia in 369 

samples with a medical reporting (Fisher’s exact test, p=0.041) than those without, suggesting that 370 

Rothia may be associated with cardiovascular disease even outside of the context of SARS-CoV-371 

2. Cardiovascular disease can predispose individuals to worse outcomes with COVID-19, and 372 

COVID-19 itself can cause cardiovascular problems (66). Further studies are required to determine 373 

the mechanism underlying this association and how it may be translated into effective methods for 374 

reducing SARS-CoV-2 transmission.  375 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2020. ; https://doi.org/10.1101/2020.11.19.20234229doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.19.20234229
http://creativecommons.org/licenses/by/4.0/


22 

This large-scale study is the first to examine the microbial context of SARS-CoV-2 in a 376 

hospital setting. We detected viral contamination across a variety of surfaces in the ICU and the 377 

general medical-surgical unit, including rooms that were not used to treat patients with COVID-378 

19 infection. Nonetheless, current hospital infection prevention measures including standard 379 

environmental cleaning and the use of PPE were adequate in preventing hospital transmission of 380 

SARS-CoV-2 to healthcare workers who directly provided care to patients with COVID-19 381 

infection. Across a remarkable diversity of microbiomes (floor, nares, stool, skin), we identified a 382 

single bacterial ASV, Rothia dentocariosa, that was highly predictive of and co-identified with 383 

SARS-CoV-2. This association could be a result of direct interactions with the virus, or indirect 384 

correlations through effects on the host, but both possibilities present exciting new avenues to 385 

combat SARS-CoV-2 virulence. Our discovery of bacterial associations with SARS-CoV-2 both 386 

in humans and the built environment demonstrates that bacteria-virus synergy likely plays a role 387 

in the COVID-19 pandemic. 388 

 389 

Materials and Methods 390 

Study Design 391 

Sample collection 392 

Patients admitted to the UCSD Medical Center - Hillcrest who were either confirmed 393 

COVID-19 patients or Persons Under Investigation (PUI: have symptoms and undergoing testing) 394 

were approached for informed consent upon admission. Patients whose clinical test was negative 395 

were included in the study as controls for surface sampling. Health care workers providing direct 396 

care for PUI’s and COVID-19 patients were included in the study. Following hospital policy, all 397 

underwent daily symptomatic screening and wore the following PPE during treatment of PUI and 398 
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COVID-19 patients:  goggles or face-shield, N95 mask, gown, gloves; hair and shoe coverings 399 

were available but inconsistently used. All participants were consented under UCSD Human 400 

Research Protections Program protocol 200613. 401 

We followed the excretion pattern of the virus from the skin, respiratory tract, and 402 

gastrointestinal tract. From patients and health care workers, specimen samples were obtained 403 

from the forehead, nares, and stool. Additional throat swabs and/or tracheal aspirate samples were 404 

collected for a subset of patients and health care workers; ‘oral’ samples. Patient samples were 405 

collected by gloved health care workers via dual-tipped synthetic swabs which were immediately 406 

transferred to tubes containing 95% ethanol. Stool was collected from patient bed pans or from 407 

collection bags that were connected to a rectal tube. Health care workers self-collected swabs over 408 

a time series of 4 days. A chronological series was also employed for patient samples, with the 409 

target sampling schemes as follows: samples collected within the first 12 hours of hospital 410 

admission with sequential samples obtained once daily for the first 4 days of hospitalization and a 411 

subset of samples collected regularly until the patient vacated the room (Fig. 1A). Actual sample 412 

collection timing varied by patient availability and duration in the hospital (Fig. S3). 413 

Dual-tipped polyester swabs (BD BBL CultureSwabs #220145) were pre-moistened by 414 

dipping for 5 seconds into 95% spectrophotometric-grade ethanol solution (Sigma-Aldrich 415 

#493511), then used to vigorously swab surfaces that are frequently in contact with health care 416 

workers or patients. Surfaces were swabbed for 10-15 seconds with moderate pressure, and swabs 417 

were returned to the collection container. Outside of patient rooms, prior to entering the room, the 418 

floor (1 foot at the entrance from the door) and outside door handle were swabbed. Inside patient 419 

rooms, the inside door handle, floor (1 foot near the patient’s bed on side closest to door), bedrail 420 

(side closest to door), and keyboard were swabbed. Depending on the patient room, if an air filter 421 
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was present, the intake was swabbed. For a subset of samples, patient care equipment such as 422 

portable ultrasound and ventilator screen were also swabbed, as well as the toilet seat. After sample 423 

collection, dual-tipped swabs were returned to the swab container. Surface samples were collected 424 

at the same time as patient sample collection, as well as prior to patient admission and following 425 

patient discharge and room cleaning, when possible.  426 

Nucleic acid extraction 427 

Sample plating and extractions of all clinical and environmental specimens were carried 428 

out in a biosafety cabinet Class II in a BSL2+ facility. Sample swabs were plated into a bead plate 429 

from the 96 MagMAX™ Microbiome Ultra Nucleic Acid Isolation Kit (A42357 Thermo Fisher 430 

Scientific, USA). Following the KatharoSeq low biomass protocol (Minich 2018), each sample 431 

processing plate included eight positive controls consisting of 10-fold serial dilutions of the 432 

ZymoBIOMICS™ Microbial Community Standard (D6300 Zymo, USA) ranging from 5 to 50 433 

million cells per extraction. Each plate also contained a minimum of 8 negative controls. Nucleic 434 

acids purification was performed on the KingFisher FlexTM robots (Thermo Fisher Scientific, 435 

USA) using the MagMAXTM Microbiome Ultra Nucleic Acid Isolation Kit (Applied 436 

BiosystemsTM), as instructed by the manufacturer. Briefly, 800 μL of lysis buffer was added to 437 

each well on the sample processing plate, and briefly centrifuged to bring all beads to the bottom 438 

of the plate. Sample swab heads were added to the lysis buffer and firmly sealed first with 439 

MicroAmp™ clear adhesive film (Thermo Fisher Scientific, UK)  using a seal roller, and the 440 

sealing process repeated twice using foil seals. The plate was beaten in a TissueLyser II (Qiagen, 441 

Germany) at 30 Hz for 2 minutes and subsequently centrifuged at 3700 x g for 5 minutes. Lysates 442 

(450 μL/well) were transferred into a Deep Well Plate (96 well, Thermo Fisher Scientific, USA) 443 

containing 520 μL of MagMaxTM binding bead solution and transferred to the KingFisher FlexTM 444 
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for nucleic acid purification using the MagMaxTM protocol. Nucleic acids were eluted in 100 µL 445 

nuclease free water and used for downstream SARS-CoV-2 real time RT-qPCR. 446 

SARS-CoV-2 RT-qPCR and viral load quantification 447 

The Center for Disease Control (CDC) 2019-Novel Coronavirus Real-Time RT-PCR 448 

Diagnostic Panel (67) , and the E-gene primer/probe from the World Health Organization (68), 449 

were used to assess SARS-CoV-2 status via reverse transcription, quantitative polymerase chain 450 

reaction (RT-qPCR). Accordingly, each plate of extracted nucleic acid (96-well plate) was 451 

aliquoted into a 384-well plate with four separate reactions per sample; two reactions targeted the 452 

SARS-CoV-2 nucleocapsid gene (CDC N1 and N2), one reaction targeted the SARS-CoV-2 453 

virporin forming E-gene (WHO E-gene), and one reaction targeted the human RNAse P gene as a 454 

positive control for sample collection and nucleic acid extraction (CDC). 455 

Each reaction contained 3 μL of TaqPathTM 1-Step RT-qPCR Master Mix (Thermo Fisher 456 

Scientific, USA), 400 nm forward and reverse primers and 200 nm FAM-probes (IDT, USA - table 457 

with sequences below), 4 µL RNA template, and H2O to a final volume of 10 µL. Master mix and 458 

sample plating were performed using an EpMotion automated liquid handler (Eppendorf, 459 

Germany). Each plate contained both positive and negative controls. The positive control was 460 

vRNA and eight serial dilutions of viral amplicons for viral load quantification (details below). 461 

Six extraction blanks and one RT-qPCR blank (nuclease-free H2O) were included per plate as 462 

negative controls. RT-qPCR was performed on the CFX384 Real-Time System (BIO-RAD). 463 

Cycling conditions were reverse transcription at 50°C for 15 minutes, enzyme activation at 95°C 464 

for 2 minutes, followed by 45 cycles of PCR amplification (Denaturing at 95°C for 10 s; 465 

Annealing/Extending at 55°C for 30 s). Cycle threshold (Ct) values were generated using the 466 

CFX384 Real-Time System (BIO-RAD) software. 467 
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Viral load quantification was performed using a standard ladder comprising serially diluted 468 

target amplicons. SARS-CoV-2 viral RNA was reverse transcribed into cDNA using the 469 

Superscript IV enzyme (Thermo Fisher, USA) and PCR amplified with KAPA SYBR® FAST 470 

qPCR Master Mix (KAPA Biosystems, USA) using the N1, N2, and E gene primers in duplicate 471 

20 µL reactions with cycling parameters as detailed above. Each amplicon reaction was run across 472 

a 1.5% agarose gel and the resulting bands were excised and purified into 100 µl nuclease-free 473 

water with the MinElute Gel Extraction Kit (Qiagen, Germany). Amplicons were quantified with 474 

in duplicate with the Qubit™ dsDNA HS Assay Kit (Thermo Fisher, USA) and copies per µL were 475 

calculated based on predicted amplicon length (N1 72 bp, N2 67 bp, and E gene 113 bp). Eight, 476 

10-fold serial dilutions were added to the RT-qPCR for final estimated copy input per reaction of 477 

10 million to one. Viral load per swab head was calculated by first using the slope and intercept 478 

from the N1 amplicon ladder linear regression per plate to determine the number of viral copies 479 

per reaction, and then multiplying this number by 25 since 4 µL out of a total 100 µL extracted 480 

nucleic acid was used as input to the RT-qPCR.  481 

 482 

Primer/Probe Sequence (5’ -> 3’) 

2019-nCoV_N1-F GAC CCC AAA ATC AGC GAA AT 

2019-nCoV_N1-R TCT GGT TAC TGC CAG TTG AAT CTG 

2019-nCoV_N1-P FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1 

2019-nCoV_N2-F TTA CAA ACA TTG GCC GCA AA 

2019-nCoV_N2-R GCG CGA CAT TCC GAA GAA 
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2019-nCoV_N2-P FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1 

RP_F AGA TTT GGA CCT GCG AGC G 

RP_R GAG CGG CTG TCT CCA CAA GT 

RP_P FAM – TTC TGA CCT GAA GGC TCT GCG CG – BHQ-

1 

E_Sarbeco_F1 ACAGGTACGTTAATAGTTAATAGCGT 

E_Sarbeco_R2 ATATTGCAGCAGTACGCACACA 

E_Sarbeco_P1 56-FAM/AC ACT AAG C/ZEN/C ATC CTT ACT GCG 

CTT CG/3IABkFQ/  

 483 

16S rRNA gene amplicon sequencing 484 

16S rRNA gene amplification was performed according to the Earth Microbiome Project 485 

protocol (Thompson et al., 2017). Briefly, Illumina primers with unique reverse primer barcodes 486 

(Caporaso et al., 2012) were used to amplify the V4 region of the 16S rRNA gene (515f-806rB, 487 

Walters et al., 2016). Amplification was performed in a miniaturized volume (69), with single 488 

reactions per sample (70). Equal volumes of each amplicon were pooled, and the library was 489 

sequenced on the Illumina MiSeq sequencing platform with a MiSeq Reagent Kit v2 and paired-490 

end 150 bp cycles. Raw data is available through EBI under accession ERP124721 and associated 491 

feature tables are publicly available in Qiita (qiita.ucsd.edu) (Gonzalez et al., 2018) under study 492 

ID 13092. 493 

 494 
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Statistical Analysis  495 

Data pre-processing 496 

Raw 16S rRNA gene amplicon sequencing data was demultiplexed, quality filtered, and 497 

denoised with deblur (71) through Qiita (72) under study ID 13092. Downstream data processing 498 

was performed using Qiime2 (33). The serially diluted mock communities included in each 499 

extraction plate (see Nucleic Acid Extraction section) were used to identify the read count threshold 500 

at which 80% of sequencing reads aligned to the positive control according to the KatharoSeq 501 

protocol (40) (code available at https://github.com/lisa55asil/KatharoSeq_ipynb), and all samples 502 

falling below the threshold set for each independent sequencing run were removed from 503 

downstream analysis. The KatharoSeq-filtered feature tables were merged, and features present in 504 

less than three samples were removed from downstream analysis, with the final feature table 505 

containing 589 samples and 9461 features. 506 

 507 

Beta-diversity analyses 508 

To verify that study samples of particular types clustered with similar types from other 509 

microbial studies, we estimated the UniFrac phylogenetic distance between samples and visualized 510 

the distance of variation of our current project in reference to samples from the Earth Microbiome 511 

Project. For significance testing based on distances from sequencing data, a permutation test was 512 

used. This was chosen since univariate statistical tests often assume that observations are 513 

independently and identically distributed, which is not the case with distance calculations. Similar 514 

to PERMANOVA, the group labels were shuffled, and a Kruskal-Wallis test was applied.  P-values 515 

were calculated by (#(K > Kp) + 1) / (number of permutations + 1) where K is the kruskal-wallis 516 
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statistic on the original statistic and Kp is the Kruskal-Wallis statistic computed from the permuted 517 

grouping. 1000 permutations were used for the permutation test. 518 

 519 

Longitudinal data analysis  520 

To detect microbial changes over time without being limited by interindividual variation, 521 

we used a dimensionality reduction tool, compositional tensor factorization (CTF) (34). This tool 522 

incorporates microbiome information from an individual host or sample source, which has been 523 

sampled across multiple time-points and reveals the net differences in microbial beta-diversity 524 

across sample types or patient profiles. We used Bayesian Sparse Functional Principal 525 

Components Analysis (SFPCA) (73) methodology to model temporal variations and sample type 526 

differences in viral load. 527 

To quantify the contribution of potential source environments (i.e. patient microbiome) to 528 

the hospital surface microbiome (as a sink), SourceTracker2 (31) was used.  529 

 530 

Random Forest Analysis 531 

We performed machine learning analysis of bacterial profiles derived from 16S rRNA gene 532 

amplicon sequencing from multiple sample types (nares, skin, stool, inside floor, outside floor, 533 

and bed rail) to predict the samples’ SARS-CoV-2 status according to RT-qPCR (i.e., “positive” 534 

or ”not detected”). For each sample type, a Random Forest sample classifier was trained based on 535 

the ASV-level bacterial profiles with tuned hyperparameters as 20-time repeated, stratified 5-fold 536 

cross-validation using the R caret package (74). The dataset of each sample type was repeatedly 537 

split into five groups with similar class distributions, and we trained the classifier on 80% of the 538 

data, and made predictions on the remaining 20% of the data in each fold iteration. We evaluated 539 
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each classifier using both area under the receiver operating characteristic curve (AUROC) and area 540 

under the precision-recall curve (AUPRC) based on the samples’ predictions in the holdout test 541 

set using the R PRROC package (75). For all four sample types, our data had an imbalanced 542 

representation of SARS-CoV-2 status, and “not detected” was consistently the majority class 543 

(nares: 45 not detected vs. 31 positives;  forehead skin: 63 not detected vs. 16 positives; stool: 33 544 

not detected vs. 11 positives; inside floor: 67 not detected vs. 40 positive;  inside floor: 81 not 545 

detected vs. 27 positives; bed rail: 38 not detected vs. 8 positives). To assess how well a classifier 546 

can predict the SARS-CoV-2 positive samples (the minority class) using microbiome data, the 547 

AUPRC was calculated by assigning “positive” as the positive class. Next, the importance of each 548 

ASV for the prediction performance of the four classifiers (for nares, forehead skin, stool, and 549 

inside floor) was estimated by the built-in Random Forest scores in the 100-fold cross-validation. 550 

For each body site or environmental site, we finally ranked all ASVs by their average ranking of 551 

importance scores in the 100 classification models.  The code for generating the multi-dataset 552 

machine learning analysis is available at https://github.com/shihuang047/crossRanger and is based 553 

on Random Forest implementation from R ranger package (76).  554 

To identify the ASVs consistently important to the prediction of SARS-CoV-2 across the 555 

four different sample types, we visualized the top 100 ranked important ASV’s and their 556 

phylogenetic relationship for each sample type using EMPress (43).  557 

 558 

Redundancy Analysis  559 

To quantify the effect size of different metadata variables on our 16S rRNA gene amplicon 560 

sequencing dataset, we applied redundancy analysis on the robust Aitchison principal coordinates 561 

analysis biplot (77) as described previously (41). Briefly, RDA employs the varpart function in R 562 
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which uses linear constrained ordination to estimate the independent and shared contributions of 563 

multiple covariates on microbiome composition variation. 564 

 565 
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Figure S1. Patient (n=16) demographics (A), antibiotics intake (B), comorbidities (C). 879 
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 881 

Figure S2. Ili’ spatial mapping of standard hospital (non-ICU) room and intensive care unit (ICU) 882 

room. Heatmap depicts the percent of samples collected at each site that were positive for SARS-883 

CoV-2. 884 
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 886 

Figure S3. Snapshot of variability in longitudinal sample collection and SARS-CoV-2 viral load 887 

per swab between patients and their hospital rooms, starting at patient admission time. For samples 888 

where SARS-CoV-2 was detected (+), a darker color indicates a higher viral load. White boxes 889 

represent samples with no detectable virus (-). Patient A was admitted 12 days after symptom onset 890 

and was moved to a general surgery unit room after 6 days in the ICU. Patient B was admitted 8 891 

days after symptom onset and moved from general surgery to the ICU, where they were intubated. 892 

Patient C was admitted to the ICU 9 days after symptom onset, and despite having symptoms 893 
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consistent with COVID-19 repeatedly tested negative by clinical nasopharyngeal swab; their only 894 

clinical positive came from a tracheal aspirate sample mid-way through their stay in the ICU.  895 

 896 

 897 

 898 

Figure S4. Source tracker on meta-analysis data. Floor samples formed a distinct cluster in this 899 

dataset; source tracking (31) with floor samples (n=215) as the sink and meta-analysis samples 900 

(n=1,990) as the source reveals that these floor samples match other built environment samples. 901 

The other built environment samples included in this meta-analysis were mostly floor (27.7%), 902 

faucet handles (19.6%), and gloves (15%).  903 

 904 

 905 
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 906 

Figure S5. Beta-diversity has a statistically significant but weak correlation with viral load. PCoA 907 

of unweighted UniFrac distances between samples, with SARS-CoV-2 positive samples colored 908 

by viral load across the whole dataset (A) and subset by each patient with at least one surface 909 

positive (B). Statistical analysis performed with Adonis (PERMANOVA) found a small (R2 < 910 

0.01) but significant (p-value = 0.043) association between beta-diversity and viral load across all 911 

samples. 912 

 913 
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 914 

 915 

Figure S6. Bacterial (16S rRNA gene amplicon sequencing read count) and human biomass 916 

(RNAse P Ct) is higher in floor samples than other surface sample types. 917 

 918 
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 919 

Figure S7. Random Forest classifier performance with 100-fold cross validation in the outside 920 

floor (n=108; 81 not detected vs. 27 positives) and bed rail samples (n=46; 38 not detected vs. 8 921 

positives). 922 

 923 

 924 

 925 

 926 

Figure S8. Unweighted UniFrac distance between forehead and nares samples from the same host. 927 

‘Shedder’ (n=12) is a patient who had detectable virus on the surface in their room and ‘non-928 

shedder’ (n=4) did not. Bootstrapped  Kruskal-Wallis p-value is 0.003. 929 

 930 
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 931 

 932 

 933 

Table S1. Hospital surface materials and cleaning practices. 934 

 935 

 936 

Data file S1. Statistical analysis of pairwise differences in log-ratio across sample types from 937 

figure 3D trajectory plot. 938 

 939 

Data file S2. Top 100 random forest importance ranks and GreenGenes taxonomy from nares, 940 

forehead, stool, and inside floor samples. 941 
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