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ABSTRACT Core genome multilocus sequence typing (cgMLST) has gained popular-
ity in recent years in epidemiological research and subspecies-level classification. cg-
MLST retains the intuitive nature of traditional MLST but offers much greater resolu-
tion by utilizing significantly larger portions of the genome. Here, we introduce a
cgMLST scheme for Vibrio cholerae, a bacterium abundant in marine and freshwater
environments and the etiologic agent of cholera. A set of 2,443 core genes ubiqui-
tous in V. cholerae were used to analyze a comprehensive data set of 1,262 clinical
and environmental strains collected from 52 countries, including 65 newly se-
quenced genomes in this study. We established a sublineage threshold based on
133 allelic differences that creates clusters nearly identical to traditional MLST
types, providing backwards compatibility to new cgMLST classifications. We also
defined an outbreak threshold based on seven allelic differences that is capable
of identifying strains from the same outbreak and closely related isolates that
could give clues on outbreak origin. Using cgMLST, we confirmed the South
Asian origin of modern epidemics and identified clustering affinity among sublin-
eages of environmental isolates from the same geographic origin. Advantages of
this method are highlighted by direct comparison with existing classification
methods, such as MLST and single-nucleotide polymorphism-based methods. cg-
MLST outperforms all existing methods in terms of resolution, standardization,
and ease of use. We anticipate this scheme will serve as a basis for a universally
applicable and standardized classification system for V. cholerae research and ep-
idemiological surveillance in the future. This cgMLST scheme is publicly available
on PubMLST (https://pubmlst.org/vcholerae/).

IMPORTANCE Toxigenic Vibrio cholerae isolates of the O1 and O139 serogroups are
the causative agents of cholera, an acute diarrheal disease that plagued the world
for centuries, if not millennia. Here, we introduce a core genome multilocus se-
quence typing scheme for V. cholerae. Using this scheme, we have standardized the
definition for subspecies-level classification, facilitating global collaboration in the
surveillance of V. cholerae. In addition, this typing scheme allows for quick identifica-
tion of outbreak-related isolates that can guide subsequent analyses, serving as an
important first step in epidemiological research. This scheme is also easily scalable
to analyze thousands of isolates at various levels of resolution, making it an invalu-
able tool for large-scale ecological and evolutionary analyses.
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Cholera is transmitted in a fecal-oral route mostly by contaminated food or water (1,
2). The case fatality rate (CFR) of this disease can be up to 50% without treatment,

but with proper medical care, the CFR is usually less than 1% (2, 3). In developed
countries with proper water treatment facilities, cholera is practically nonexistent aside
from imported cases. Unfortunately, this cannot be said for many developing countries
lacking this infrastructure, where cholera has been endemic for centuries, such as in
parts of South Asia (4). As it is also difficult to eradicate cholera (5), this disease often
becomes endemic in regions where it has been introduced, for example, in Latin
America in 1991 (6, 7), Haiti in 2010 (8), and Yemen in 2016 (9). It is estimated that there
are over a million cholera cases each year, resulting in tens of thousands of deaths
worldwide (10). Being an indicator of health care and socioeconomic disparities (11, 12),
this disease is often underreported due to its negative influence on tourism, as it
implies poor water quality (13). Together with the lack of a universally applicable and
standardized classification method, outbreak surveillance and source attribution is
often challenging (1, 8). The Haiti outbreak, for example, due to these limitations,
required extensive genomic and epidemiological research from the beginning of the
outbreak to determine the source of introduction, which was not confirmed until
August 2011, even though cholera broke out in July 2010 (8, 14–17).

A typing method for use in global surveillance of pandemic-causing pathogens,
such as V. cholerae, should be efficient and easy to use, with the potential to be applied
to all V. cholerae strains around the world. Therefore, it must have the capacity to
analyze thousands of genomes efficiently, and new genomes should be easily typed as
they get sequenced. As all cholera outbreaks are caused by a single lineage of V.
cholerae, the pandemic-generating/phylocore genome (PG) lineage, which includes the
7th pandemic El Tor, El Tor sister, El Tor progenitor, classical, and classical sister clades
(5, 18, 19), this method should also be able to differentiate isolates at a fine scale and
separate outbreaks caused by genetically similar strains. Such a method will help create
a comprehensive database with detailed epidemiological data that will allow for the
analysis of future outbreak strains in a global context and guide subsequent epidemi-
ological analyses. Different methods for subspecies-level classification and outbreak
surveillance have been developed for V. cholerae. These methods include serotyping,
multilocus sequence typing (MLST) (20, 21), multilocus variable number of tandem
repeats (VNTR) analysis (MLVA) (22, 23), and single-nucleotide polymorphism (SNP)-
based approaches (14). Despite the popularity of these methods, there are important
limitations to each.

Serotyping based on the presence of cell surface O antigens is one of the earliest
attempts at subspecies-level classification of V. cholerae. There are now over 200
serogroups of V. cholerae identified; however, only the toxigenic members of the O1
and O139 serogroups have been found to be responsible for all major documented
epidemics and pandemics (24, 25). Serogroup O1 can be further divided into two
biotypes (El Tor and classical) and three serotypes (Inaba, Hikojima, and Ogawa) (2). The
lack of resolution within the epidemic strains and the possibility of serogroup conver-
sion (26) limit the use of serotyping in epidemiological studies.

MLST provides a standardized classification method that is usually based on a
collection of six or seven well-defined housekeeping genes (27). MLST was used to
study a number of cholera outbreaks and allowed the descriptions of general popula-
tion structure (28, 29). It is reproducible and provides reliable results; however, it is
unable to differentiate between closely related strains, which limits its use in outbreak
surveillance (30, 31). In addition, direct comparisons between different MLST schemes
are difficult, as different schemes utilize different housekeeping genes.

MLVA utilizes VNTR regions, which are under less selective pressure than house-
keeping genes. Therefore, this method provides greater resolution than MLST for some
bacterial species (32, 33). However, due to their rapid mutation rate, VNTR regions are
more affected by homoplasy, where two isolates may share the same MLVA profile due
to convergent mutation and not by vertical descent (34). As a result, MLVA may
produce clusters that do not necessarily reflect phylogenetic relationships (35). Two
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common PCR-based methods exist for the typing of VNTR regions, but each has
significant limitations (36). The first method is multiplex PCR, which can analyze all loci
at once, but it is impossible to determine which bands correspond to which loci;
therefore, this method only produces a banding pattern for strain identification, which
makes it difficult to standardize and communicate results. The second method is the
separate amplification of VNTR regions, but determining the number of repeats based
on amplicon size information alone is difficult if the difference in size is not large
enough. In addition, different types of mutations that do not necessarily change the
number of repeats can cause a change in amplicon size. Sequencing is needed to
confirm MLVA profiles, but repeat regions increase the chances of sequencing errors
(37). Due to these limitations, stringent quality control is required for reliable MLVA (38).

SNP-based analysis is one of the most common whole-genome-based methods
currently being used and was applied to various outbreaks (14, 39, 40). It relies on the
identification of conserved SNPs in strains of interest using next-generation sequence
reads or assembled genomes. The number of SNPs can then be related to the
evolutionary distance between isolates. SNP-based analysis provides reliable results
with sufficient resolution for epidemiological studies, but it is sensitive to horizontal
gene transfer and recombination events, as each event will result in many SNPs being
created. The number of SNPs between two strains, therefore, does not necessarily
reflect the true phylogenetic relationship. Therefore, SNPs found in recombinogenic
regions should be removed, which, depending on the organism of interest, can be
anywhere from 30% to 97% of SNPs identified (41, 42). Since recombination and
horizontal gene transfer events are common within V. cholerae (43–45) and between
the species and its close relatives (46, 47), SNP-based methods, although suitable in
individual epidemiological studies, will have difficulty serving as a universal classifica-
tion method for V. cholerae.

Core genome MLST (cgMLST), also known as the gene-by-gene approach, over-
comes the various limitations of the previously mentioned subtyping methods and was
established to serve as a universally applicable standardized typing scheme. Similar to
MLST, cgMLST relies on individual gene sequences to differentiate between closely
related strains; however, instead of using only six or seven housekeeping genes,
cgMLST utilizes hundreds to thousands of core genes, which are genes commonly
found in all strains of a species. By utilizing a much larger portion of the genome,
cgMLST provides superior resolution compared to traditional MLST schemes. By com-
bining the expandable and standardized classification method that made traditional
MLST favorable with the resolution of whole-genome-based methods, cgMLST is
becoming more popular in epidemiological and ecological studies (48–54). This
method has the added advantage of backwards compatibility with all MLST schemes.
This means that it is possible to determine MLST profiles of any isolates based on their
cgMLST profiles, since cgMLST would include all housekeeping genes by definition. This
allows for a 1:1 mapping of any previously established MLST scheme to the cgMLST
scheme, which helps consolidate existing classification information.

Another major benefit of cgMLST is that, much like traditional MLST methods, it is
possible to establish different clustering thresholds to define important groups. Clonal
complexes are examples of clustering thresholds established by MLST schemes, where
each clonal complex corresponds to a cluster of isolates that share, at most, one allelic
difference across all seven genes sequenced. Some important clonal complexes were
shown to correspond to either groups established by a previous typing method (55) or
major outbreak strains (56). However, cgMLST offers even greater flexibility than MLST
in this regard, given the number of loci considered. With large clustering thresholds, it
is possible to identify lineage level differences to study large-scale patterns and answer
broader ecological questions (e.g., examining the entire PG lineage). Furthermore, with
smaller clustering thresholds where groups are created based on the sharing of a larger
number of alleles, it is possible to identify very closely related strains, which is useful in
epidemiological studies. The benefits of defining clustering thresholds through cgMLST
have already been demonstrated in other human pathogens, such as Brucella melitensis
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(52), Campylobacter jejuni (51), Clostridium difficile (53), Enterococcus faecium (50), and
Listeria monocytogenes (49).

In this study, we introduce a cgMLST scheme for the genome-wide typing of V.
cholerae and demonstrate its universality and efficacy by applying it to known cholera
outbreaks around the world. The advantages of cgMLST are presented by comparing
the scheme with previously established classification methods. Additionally, we have
produced a 1:1 mapping of the cgMLST scheme against two previously established
MLST schemes for V. cholerae (20, 21), allowing for the consolidation of existing
classification information. The cgMLST scheme, genome sequences used in this study,
and relevant epidemiological information are publicly available on PubMLST (https://
pubmlst.org/vcholerae/), which allows for the automatic annotation and subsequent
analyses of hundreds of newly uploaded V. cholerae genomes in a global context. This
increase in efficiency, standardizability, and resolution compared to current methods
make cgMLST the most suitable classification scheme for large-scale V. cholerae sur-
veillance. By applying this scheme to our collection of over 1,200 isolates collected
around the world, it was possible to establish outbreak and sublineage thresholds that
allowed us not only to validate the South Asian origin of many modern epidemics, as
proposed in previous studies (5, 57, 58), but also to identify clustering affinity among
environmental strains, where isolates from the same sublineage are also likely from the
same geographic region. This pattern is not seen in clinical isolates, as human hosts
readily carry them over large geographical distances.

RESULTS AND DISCUSSION
A high-resolution typing scheme for pandemic V. cholerae. The highest level of

resolution of any cgMLST scheme is defined by core genome sequence types (cgSTs),
where a unique cgST represents a unique allelic profile. Isolates that belong to the same
cgST are expected to be phylogenetically very closely related, as although they may not
have the exact genomic sequence, they do have the same sequence for all 2,443 core
gene loci used in cgMLST. We identified a total of 1,026 cgSTs from 1,262 genomes
collected from 52 countries. Even with our extensive data set, we have yet to sample
anywhere close to the total predicted cgST diversity for the global V. cholerae popu-
lation (see Fig. S1 in the supplemental material). All isolates were given at least one
cgST designation and up to two MLST sequence type (ST) designations based on two
previously established MLST schemes (20, 21) (Table S1). MLST STs are defined based on
the unique combination of all loci of a particular MLST scheme, which typically uses six
or seven well-defined housekeeping genes. Only 12 STs are exclusively present in the
7th pandemic El Tor lineage identified using traditional MLST (20, 21), whereas 560
cgSTs are uniquely present in this group based on cgMLST (Table S1). As the El Tor
lineage is responsible for most cholera outbreaks around the world since the beginning
of the 7th pandemic (59), this superior ability to resolve between closely related strains
in the 7th pandemic El Tor lineage makes cgMLST more suitable in outbreak surveil-
lance than traditional MLST.

Backwards compatibility with previous subspecies classification methods.
Much as cgSTs are important in studying closely related strains typical in outbreaks,
they are also important in establishing a standardized nomenclature at a higher level
to answer broader ecological questions. As the term “lineage” is commonly used to
refer to the PG lineage or the major pandemic-causing clades, such as the El Tor and
classical clades in V. cholerae, we propose the term “sublineage” to define subspecies
of V. cholerae using cgMLST.

Pairwise allelic differences calculated between all isolates show three major peaks
(Fig. 1A). The first peak ends at 40 allelic differences, and the second peak ends at 133
allelic differences (Fig. 1B). The last peak begins at 2,200 allelic differences (Fig. 1A),
which is expected due to mutational saturation (i.e., every single allele in the scheme
is different between the two distantly related strains being compared). Both breaks (i.e.,
40 and 133 allelic differences) could represent a sublineage delineation. To choose
between the two thresholds, the clustering efficiency is measured by calculating the
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Dunn index (DI) (60) (see Materials and Methods). Since cluster distances are measured
by allelic differences, the network with the best clustering efficiency (i.e., the highest DI)
will also produce clusters that best represent biological relationships, as isolates are
more closely related to themselves than to isolates from other clusters. A DI was
calculated for each clustering threshold in the range of 1 to 1,000 allelic differences
with 100 bootstrap replicates (Fig. 2). As the clustering threshold defines the maximum
number of allelic differences within a cluster, the smaller the threshold, the more
closely related the isolates are within a cluster. It is clear that DIs in the range of 0 to
50 allelic differences are significantly lower than the DIs in the range of 100 to 350
allelic differences, with 133 being a clear local maximum. Since 133 allelic differences
have the best clustering efficiency and also represents a natural break where most
isolate pairs have either a lower or much greater number of allelic differences (Fig. 1B),
it was chosen as the sublineage threshold.

Because cgMLST includes all housekeeping genes, information from the two MLST
schemes previously developed for V. cholerae (20, 21) can now be consolidated with the
cgMLST scheme by creating a 1:1 cgMLST to MLST map. To evaluate the similarities
between the sublineage threshold and the MLST schemes, we created a minimum
spanning tree (MST) for all Bangladesh isolates (n � 255), showing only edges with 133
allelic differences or fewer (Fig. 3A and Fig. S2). Therefore, each cluster represents a
single sublineage. Bangladesh was chosen to compare cgMLST and MLST, as it is the
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most extensively sampled country in terms of both clinical and environmental isolates
in our data set. Using this data set, the chosen sublineage threshold produces clusters
that closely resemble ST clustering from traditional MLST. Based on the 2013 MLST
scheme (20), each sublineage corresponds to exactly one ST (Fig. S2), whereas there is
only one sublineage that contains two STs based on the 2016 MLST scheme (21) (Fig.
3A). All but two isolates belong to ST1; N16961 and A19 belong to ST290, which differs
from ST1 at only one of seven MLST loci (Table S2). The reason these two isolates are
of a different MLST ST could only be partly explained; they were isolated at an earlier
time point (1970s, near the start of the 7th pandemic [61]) than most of the remaining
isolates, which were isolated from 1991 onwards (Table S1).

It is impossible to visually evaluate similarities between two MSTs with over 1,200
nodes each simply due to the sheer volume of data. Therefore, the adjusted Rand index
(ARI) was used as a metric to determine network similarities (62) (see Materials and
Methods). To determine whether the sublineage threshold (i.e., 133 allelic differences)
is indeed the best match to traditional MLST schemes, we chose 11 clustering thresh-
olds distributed across the range of 1 to 1,000 allelic differences (Fig. 2) to compare with
the MLST schemes. These additional thresholds are chosen because they have a
relatively high DI compared to their immediate neighbors. More data points were
chosen in the range of 105 to 330 allelic differences, as it was expected that thresholds
in this range will best match the traditional MLST schemes. Interestingly, all thresholds
in that range had ARIs comparable to those of both the 2016 (21) and the 2013 MLST
schemes (20) (Fig. 3B and Fig. S3), indicating that all of them, including the sublineage
threshold, produce clusters similar to the MLST scheme. This suggests that there can be
a large range of diversity within a single MLST ST, where isolates can have anywhere
from 0 (i.e., have the same cgST) to 330 allelic differences. Although clustering thresh-
olds between 105 to 330 allelic differences produce clusters similar to those of a
traditional MLST scheme, the sublineage threshold of 133 allelic differences was
chosen, as it has the best clustering efficiency (Fig. 2) and represents a natural
breakpoint in the currently sampled population (Fig. 1B).

A phylogenetic tree of 1,146 isolates was used to assess the phylogenetic support
of the sublineage threshold across different V. cholerae strains (Fig. 4). This tree includes
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thresholds, respectively. The dotted lines represent other clustering thresholds used in the adjusted Rand
index calculations (Fig. 3B and Fig. S3).
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all V. cholerae isolates within our data set, with the exception of the recently published
116 clinical isolates from the Yemen cholera outbreak (9), which all belong to the 7th
pandemic El Tor lineage. The strains within the PG lineage are closely related with little
genetic variation. These lineages are, therefore, collapsed in the phylogenetic tree, as
the relationships between them are not well resolved. All sublineages formed mono-
phyletic clades, although in some cases the most basal branch is of a different
sublineage (e.g., V. cholerae strain T5 or 506315), creating paraphyletic clades. Ideally,
each sublineage would correspond to exactly one full monophyletic clade. The reason
this is not seen is likely the lack of sampling, leading to the grouping of relatively
distantly related isolates together in the same clade. Further sampling will likely resolve
these cases into two separate monophyletic clades. Out of 1,262 isolates, we identified
291 sublineages, 19 of which belong exclusively to the PG lineage and 223 are
singletons. Much like cgSTs, the rarefaction curve indicates that the total sublineage
diversity of V. cholerae is far from being sampled (Fig. S1).

The sublineage concepts have been applied to numerous pathogens and, as such,
were defined differently depending on the pathogen in question. Some have defined
sublineages based on natural breaks in genetic similarities (49), while others may use
sublineage to refer specifically to traditional MLST STs (63) or an even finer level of
resolution, below the MLST ST level, based on whole-genome analyses (64). There is,
however, one unifying feature of all sublineage definitions, i.e., they all refer to
monophyletic clades. Sublineages are defined in this study based on natural breaks in
allelic differences calculated from cgMLST profiles and were put into context by
comparison with two traditional MLST schemes. We have shown that our definition of
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sublineage results in monophyletic clades but also corresponds to any traditional MLST
ST designation (Fig. 4). As MLST is one of the primary tools for studying V. cholerae and
specific MLST STs were previously used to define specific cholera outbreaks (65), the
ability to put MLST STs in the context of cgMLST through the use of sublineages will
allow for an easier transition and will play a crucial role in consolidating information
from all previous MLST analyses.

A universal South Asian origin for modern cholera outbreaks. With the continual
improvement of next-generation sequencing techniques, whole-genome sequencing is
expected to become a standard practice or even the first identification tool used in
clinical and epidemiological studies. Therefore, it is critical to develop a rapid typing
scheme for genome sequence data that has the power to inform us about the
relationship of a novel isolate with known strains. This is done here by defining what
we term an “outbreak threshold” based on cgMLST, which can identify outbreak-related
strains and potential sources of introduction. The outbreak threshold is expected to be
less than 40 allelic differences, as isolates from the same outbreak are very closely
related (9, 14). There is a minor discontinuity at seven allelic differences, where most
isolate pairs have either less or more than this number of allelic differences (Fig. 1B).
Looking at the DI, the local maximum in the range of 0 to 50 occurs at seven allelic
differences as well (Fig. 2), making this cutoff a likely candidate for an outbreak
threshold. When applying the outbreak threshold to the full data set, containing all
sequenced V. cholerae genomes meeting the minimum quality threshold, major clusters
were examined to evaluate the ability of cgMLST to identify strains that are part of the
same outbreak.

One of the major outbreak clusters identified, with no prior information required,
contains the Haiti and the Yemen outbreaks, which are the two best-documented
cholera outbreaks in modern history (8, 9, 14, 16, 66). Isolates collected from these
outbreaks form a single cluster with the Dominican Republic, Eurasian (India, Russia,
Nepal, and Ukraine), and African (Tanzania, Kenya, and Somalia) isolates (Fig. 5A). The
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Dominican Republic isolates are closely related to the Haiti outbreak strains. Given the
close proximity of the two countries, colocated on the island of Hispaniola, it was
expected that isolates from Haiti would eventually spread to the Dominican Republic
(14). The 7th pandemic El Tor lineage spread across the world from South Asia in three
separate waves (61). The third wave, being the most recent distribution event, has been
claimed to be responsible for the outbreaks in Haiti and Yemen (9). Therefore, it is not
surprising to see Haiti and Yemen form a single cluster with India (i.e., South Asia) at its
center. Nepal is the known source of introduction for the Haiti outbreak in 2010 (16),
and comparison with over 1,200 V. cholerae isolates from all over the world still shows
the Nepalese isolates as the closest relatives to the Haitian isolates (Fig. 5A).

Cholera is still endemic to Africa (10) and caused several major reported outbreaks
in different countries over the last few decades (67), including Mozambique (23, 68) and
Zimbabwe (69). Another major outbreak cluster groups most of the Mozambique
isolates together with two Zimbabwe isolates [strains CP1038(11) and 2011EL-1137]
and one U.S. isolate (2009V-1116) (Fig. 5B). Based on cgMLST, it is evident that the two
Zimbabwe isolates are closely related to the Mozambique isolates, differing at only four
or fewer alleles. The close proximity of the two countries suggests that these are
travel-associated cases. Although outbreaks involving the Mozambique isolates (23)
and the Zimbabwe isolates (58, 70) have been independently studied, the links be-
tween these isolates have not been shown before. Global cgMLST analysis is an
invaluable tool, as it allows for the identification of links between independent studies.
However, with only two Zimbabwe isolates in the data set, additional sampling in this
region is required to understand the epidemiology of this outbreak. According to the
NCBI BioSample database, strain 2009V-1116 was collected by the Centers for Disease
Control and Prevention in 2009 and is associated with travel to Pakistan. Since the 7th
pandemic El Tor lineage has been circulating in Asian and Middle Eastern countries for
a long time (71), it is possible that, at least within our data set, the Mozambique isolates
are the closest relative to this specific Pakistan strain.
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Confirmation of an African connection for the Yemen outbreak. The Yemen
cholera outbreak began in October 2016 with eleven confirmed cases (http://www
.emro.who.int/pandemic-epidemic-diseases/cholera/cholera-cases-in-yemen.html). By
January 2017, there were already over 10,000 cholera cases with 99 associated deaths
(http://www.emro.who.int/pandemic-epidemic-diseases/cholera/weekly-update
-cholera-cases-in-yemen-15-jan-2017.html). By the end of that year, there were over
900,000 cholera cases (http://www.emro.who.int/pandemic-epidemic-diseases/cholera/
outbreak-update-cholera-in-yemen-19-december-2017.html). The outbreak continues
today as the largest cholera outbreak in modern history. As isolates from this outbreak
were only recently made available (9), they were not part of the initial data set for
cgMLST scheme development. These isolates were added and analyzed on PubMLST
after the scheme had been established. This set of isolates serves as an independent
test of the universality and applicability of the cgMLST scheme. To determine the
potential origin of the Yemen outbreak and its phylogenetic relationships with existing
V. cholerae strains, the Yemen isolates were compared with other 7th pandemic El Tor
isolates from Asian and African countries (Table S3). All allele designations and cgST
assignments were done automatically on PubMLST. MST was built using these isolates,
and all connections with seven and fewer allelic differences are represented as solid
lines (Fig. 6). Isolates connected by solid lines belong in the same outbreak cluster, as
defined by the outbreak threshold of seven allelic differences. Isolates from Yemen,
Kenya, and Haiti all cluster with the central Indian isolates, with seven or fewer allelic
differences; however, the closest relatives to the Yemen isolates are those from Kenya,
with four or fewer allelic differences (Fig. 6). The Indian isolates are the next closest
connection, but there is no direct link between these and the Yemen isolate. This
pattern is consistent with the work of Weill and colleagues (9), where they suggested
that the Yemen outbreak strains came from East Africa, which themselves came from
South Asia, based on SNP-based phylogenetic analysis and Bayesian evolutionary
analysis.

Unlike the limited samples available from African cholera outbreaks, the Haiti and
Yemen outbreaks are significant cases for epidemiological investigations, because V.
cholerae has been heavily sampled from these countries as well as surrounding regions.
Two major limitations in genomic epidemiology have been the lack of a universal
classification scheme and a comprehensive database; however, this is no longer the
case in the genomic era, as sequencing technology is becoming increasingly more
accessible (8). A genomic approach, as shown here, is able to produce accurate
predictions of potential origins of outbreaks and provides us with sufficient resolution
to accurately track the spread of the disease. Therefore, genomic analysis should be the
first step in any epidemiological study, as it will help guide subsequent analyses and
investigations. Consistently sequencing new genomes will also help expand and refine
the current global V. cholerae genome database.

Increased resolution for the history of cholera in Mozambique: comparing
cgMLST to MLVA. The 7th pandemic reached Africa in 1970, and cholera appeared in
Mozambique at roughly the same time (57). Since its introduction, cholera has been
endemic to that country and has continued to cause multiple outbreaks (23). A popular
tool for outbreak investigation is MLVA (32, 38), which was recently used to study V.
cholerae strains collected in Mozambique over multiple years (23). MLVA is a subspecies
typing method similar to MLST in concept; however, it utilizes VNTRs instead of using
gene sequences. As a VNTR mutates at a higher rate than conserved genes, it has been
shown that MLVA provides greater resolution than MLST for some species (32, 33). To
establish a direct comparison between our cgMLST scheme and this MLVA scheme, we
examined the MSTs created by both methods, focusing only on shared isolates (Fig. 7A
and B). The MLVA identified 26 profiles forming two clonal complexes (CCs) and four
singletons (Fig. 7A) (23). A similar population structure is seen with the cgMLST analysis
(Fig. 7B), including the four singletons identified in the MLVA. The central node in the
cgMLST MST consists mostly of isolates with MLVA profile 8, 4, 6, 18, 21, similar to the
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central node in the MLVA MST (23). The two CCs identified in the MLVA MST are also
identified in the cgMLST MST, with the smaller CC2 being at least four allelic differences
away from the larger CC1.

Although there are a few MLVA types that were grouped into a single cgST, such as
cgST1 and cgST114, indicating that cgMLST was unable to resolve the differences in
these MLVA types, there are many MLVA types, such as profile 2, 4, 6, 18, 21, profile 7,
4, 6, 16, 22, profile 9, 4, 6, 18, 24, and profile 8, 4, 6, 18, 22, that were split into multiple
cgSTs. Overall, there are 48 cgSTs as opposed to only 26 MLVA types, showing that
cgMLST provides better resolution than MLVA. The cgMLST analysis overlaid with
isolation dates shows that the Mozambique V. cholerae strains are highly clonal, and
strains from the same cgST can cause outbreaks over multiple years (e.g., cgST114 and
cgST94) (Fig. 7C), which corroborates the claim made in the initial MLVA study that
the same MLVA type can be seen over multiple years (23). In addition to increased
resolution, cgMLST also produces more reliable and reproducible results than MLVA, as
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it eliminates errors associated with the detection of VNTR regions using PCR- or
sequencing-based methods. For the same reason that MLST is less affected by conver-
gent evolution than MLVA (35), cgMLST is also less affected by convergent evolution.

Standardizing the genotypes responsible for the Haiti 2010 cholera outbreak:
comparing cgMLST and SNP-based analyses. One of the largest cholera outbreaks in
modern history occurred in Haiti following the devastating earthquake in 2010 (8, 72).
Prior to this outbreak, there were no documented cholera cases in Haiti (14, 18). Since
the initial introduction, V. cholerae now remains endemic in Haiti and is responsible for
thousands of cholera cases annually (72). Multiple studies have strongly suggested that
the Haitian strains were in fact imported from Nepal (by the United Nations [UN]
Nepalese troops), and the outbreak occurred as a result of both inappropriate sanitary
practice and the lack of screening of the UN troops upon their arrival in Haiti (8, 15,
16, 72).

A SNP-based approach was used to study the evolutionary dynamics of V. cholerae
in Haiti (14). This technique relies on the identification of SNPs in draft or closed
genomes. The primary benefit of this method is that assembly and annotation are not
required. It is also capable of resolving closely related strains using whole-genome data.
However, SNP-based methods are highly influenced by recombination events (73),
which occur regularly among V. cholerae isolates (43, 44), and quality filter parameters
chosen (74).

To establish a direct comparison between the cgMLST scheme and SNP-based
analysis, we focused on MSTs of only the Haitian outbreak isolates (Fig. 8). All Haitian
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isolates are closely related according to the cgMLST scheme, sharing at most four allelic
differences with each other (Fig. 8A). The Haitian and Nepalese isolates, therefore, also
belong to the same sublineage (SL6), which is consistent with the fact that these
isolates belong to the same MLST ST (either ST1 or ST69 based on the 2016 or 2013
MLST scheme, respectively [20, 21]) (Table S1). The overall population structure is
similar between the two methods (Fig. 8), where we have SNP ST1 as the center of the
MST with ST2 and ST3 extending from that likely ancestral genotype. SNP ST1, ST2, and
ST3 can be split into 14, 2, and 3 different cgSTs, respectively (Fig. 8A). There is only one
case, that of cgST66, where it contains isolates from both SNP ST1 and ST3. Overall,
cgMLST was able to differentiate 39% of the isolates, while the SNP-based analysis
differentiated 35%, showing comparable levels of resolution. As expected, both the
cgMLST and the SNP-based analyses showed that the Haiti outbreak is highly clonal,
where most isolates belong to the same cgST or SNP ST (14). However, cgMLST is easily
standardized across various sequencing tools through the use of a predefined set of
core genes. In addition, unlike SNP-based analyses, a systematic nomenclature system
based on these standardized genes can be established. Furthermore, cgMLST analyses
are also less affected by recombination events (30). Analyses of various cgMLST clusters,
cgSTs, and the construction of MST based on the cgMLST scheme is also automated on
PubMLST (75). This makes cgMLST more suitable than the SNP-based method as a
universally applicable classification system for epidemiological studies and research
worldwide.

Environmental isolates differ from clinical strains by their diversity and their
associations with specific geographical locations. To look at the geographic signal
of V. cholerae, we eliminated all clinical isolates and those that belong to the PG lineage
(18, 19). This is because the geographic signal of clinical strains can be skewed, as
pathogenic strains can travel long distances in a short period of time through associ-
ation with human hosts. Therefore, the geographical analysis was performed only with
environmental isolates.

Along with all of the publicly available environmental strains that are not part of the
PG lineage, there are a total of 195 isolates spanning 9 countries. By using a larger
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clustering threshold that groups together more distantly related isolates, it is possible
to examine broader ecological patterns that otherwise would have been hidden if all
analyses were done at the highest level of resolution (i.e., using cgSTs). Therefore, we
chose to group isolates at the sublineage (i.e., each cluster has at most 133 allelic
differences) rather than the cgST level. It could be noted that all isolates from the same
sublineage also shared a country of origin, with the exception of strains 692-79 and 857
(Fig. 9), which are from the United States and Bangladesh, respectively. Phylogenetic
analysis shows these isolates to be closely related to strain A215, a clinical isolate from
the United States (Fig. 4). All three strains contain the toxR gene, a toxin transcriptional
regulator common in pathogenic V. cholerae (76), as well as genes encoding the
mannose-sensitive hemagglutinin pilus, the RTX toxin, and hemolysin (hlyA), all of
which are putative virulence factors for this species. In addition, strains A215 and 857
also harbor the zona occludens toxin gene. Similar toxin gene contents among these
three isolates and close phylogenetic relationships suggest that strains 692-79 and 857
also are pathogenic and capable of surviving inside a human host. This provides
evidence that although clinical isolates can spread across the world rapidly and closely
related isolates can be from very different parts of the world, environmental isolates
from the same geographic origin share an affinity to each other, at least at the
sublineage level. It is important to note that our current data set contains a relatively
small number of environmental isolates that are not part of the PG lineage. Therefore,
this distinct distribution pattern based on geographic origin may be a result of currently
insufficient sampling of environmental V. cholerae worldwide. Consistent with our
finding, however, a broader study that examined the metagenomes from 79 sewage
sites from around the world also observed a more pronounced geographic clustering
between environmental species and less clustering for pathogens (77). Nonetheless,
large-scale environmental sampling of V. cholerae will make it possible to determine
with greater accuracy the evolutionary rate and distribution pattern of the species in
the environment using cgMLST. In addition, this method will become an invaluable tool
in dealing with these large data sets, as it provides an efficient and standardized
method of classification.

Conclusions. With an extensive collection of over 1,200 V. cholerae isolates, we
developed a cgMLST scheme based on 2,443 core genes. We established a sublineage-
level definition based on 133 allelic differences as part of our standardized classification
scheme. It was determined by comparisons with previous MLST schemes that the
cgMLST sublineage classification can be used as a proxy for traditional MLST. Addition-
ally, the universality and applicability of the scheme have been tested by looking at
various cholera outbreak cases. We determined an outbreak threshold based on seven
allelic differences that groups isolates from the same outbreak together with strains
from the potential source of introduction. This threshold creates clusters that are
consistent with known epidemiological data when applied to the Haiti and Yemen
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cholera outbreaks, two of the best-documented cholera outbreaks in modern history.
We were also able to confirm the South Asian origin of modern cholera outbreaks.
Furthermore, although current sampling is limited, a geographic signal at the sublin-
eage level not seen in clinical strains could be identified among environmental isolates
that are not part of the PG lineage (18, 19). Lastly, this scheme is fully implemented on
PubMLST (https://pubmlst.org/vcholerae/) for public access. All newly available ge-
nomes uploaded to PubMLST will be annotated automatically, and a cgST designation
will be assigned to isolates with fewer than 100 missing loci. Relevant epidemiological
data and a variety of analytical and visualization tools are all integrated on PubMLST
(75), allowing for a quick analysis of any newly sequenced genome in a global context.
This scheme will be an important tool for future large-scale epidemiological and
biogeographical research.

MATERIALS AND METHODS
Data set description. On 6 November 2018, 1,172 V. cholerae genomes consisting of 800 draft and

complete genomes and 372 sequence read archives (SRAs), available from both a publicly available
database and a private collection, were selected as our data set. Sixty-five of these genomes were
sequenced in this study using the PacBio or Illumina sequencing platform, as previously described (78,
79). To confirm that the genomes indeed belong to the V. cholerae species, we calculated average
nucleotide identity values against the V. cholerae N16961 reference genome (80) using JSpecies (81). All
of the genomes exhibited at least 95% average nucleotide identity against N16961, which is the currently
accepted standard for species delineation (82) and correctly verifying the identity of the genomes. One
hundred sixteen SRAs from a recent study on the Yemen cholera outbreak (9) were subsequently added
as an independent evaluation of the cgMLST scheme (see Table S3 in the supplemental material). The
488 SRAs were assembled using skesa (83) or CLC Genomics Workbench 7 (Qiagen) using default
parameters. This total data set of 1,288 included twenty-six genomes with less than 90% of the core
genes, which were identified using USearch (84) based on RAST annotations (85). These 26 genomes
were removed from subsequent analyses, resulting in a final data set of 1,262 genomes collected from
52 countries and spanning 82 years, from 1937 to 2018 (Table S1). These include a historical collection
from the 6th cholera pandemic, clinical isolates from outbreaks in various countries (e.g., Bangladesh,
India, Haiti, Yemen, the Democratic Republic of Congo, Russia, etc.), and environmental isolates from
different parts of the world (e.g., Bangladesh, Haiti, the United States, Mexico, Brazil, etc.).

Gene identification and allele assignments. Instead of using the full data set of 1,288 genomes, we
selected a subset of high-quality genomes, because core gene identification is highly dependent on the
initial data set, and the inclusion of poorly assembled and/or sequenced data will reduce the number of
core genes identified (49). First, 800 already assembled draft or complete genomes were selected for core
gene identification. Low-quality assemblies were then eliminated by removing genomes with less than
40� coverage and/or N50 values less than 40 kb. From a previously established cgMLST scheme for L.
monocytogenes, 40� coverage and a 20-kb N50 value were used as cutoff thresholds, as genomes that
do not meet these criteria resulted in a low proportion of loci being called (49). The 40� coverage cutoff
was adopted for this study; however, because the average V. cholerae genome size (�4 Mb) is larger than
the average L. monocytogenes genome (�3 Mb), 40 kb was instead selected as the N50 cutoff. The use of
these cutoffs resulted in the removal of 82 genomes.

The remaining 718 genomes were annotated using RAST (85) and USearch (84), and a tentative set
of core genes that were present in 99% of the genomes, on average, were selected. An additional 13
genomes were subsequently removed, as they lacked more than 90% of the core genes, leaving us with
a data set of 705 high-quality genomes (Table S4). However, 26 genomes were further removed for the
core gene analysis, as it was previously suggested that they form a highly divergent lineage within V.
cholerae (78, 79, 86), ensuring that the data set used for core gene identification consists only of
unambiguously V. cholerae isolates. The completeness and potential contamination of the remaining 679
genomes were also independently evaluated by checkM, which estimates these values based on the
presence and number of copies of a set of predefined single-copy marker genes (87) (Table S5). All
genomes were, according to the criteria established by checkM, nearly complete (�97%), with medium
to low levels of contamination (�7%) (87).

Each orthologous gene was compared against the V. cholerae N16961 reference genome using
BLASTN (88) to determine gene function. Any gene family with no homolog in N16961 or classified as
pseudogenes in the NCBI GenBank database were removed, meaning N16961 was 100% complete for
the cgMLST scheme. Any genes that were present in more than one copy in any of the initial 679
genomes were also removed, as they were considered paralogous. Thus, in this context, core genes are
defined as being present in at least 90% of the 679 high-quality assembled genomes in a single copy.
By choosing a relaxed cutoff of 90% completeness, we accounted for missing genes due to sequencing,
annotation, or assembly errors while ensuring there is sufficient resolution to differentiate between
closely related strains, with at least 2,199 loci remaining for classification purposes. The final cgMLST
scheme utilizes a set of 2,443 single-copy core gene loci, which is 2,425,296 bp in size and covers
approximately 61% of the genome. The list of core genes is available on PubMLST (https://pubmlst.org/
vcholerae/).
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Automated scripts in BIGSdb (89) were used to perform allele calls and assignments for all 1,262
isolates (Table S1). Allele calls were made only for complete coding sequences with a minimum of 70%
similarity and 70% length coverage at the nucleotide level, as previously described (49). Default settings
were used for all other parameters.

cgST assignment. cgST, which was defined as a unique combination of alleles of all loci included in
the scheme, was assigned for all isolates, excluding those from the Yemen outbreak study (9), with an
in-house script, as previously described (90). Briefly, missing loci were replaced with the most common
allele when assigning cgSTs, allowing for a conservative estimate of diversity (90). The 116 isolates from
the Yemen cholera outbreak study (9) were annotated automatically by uploading them to PubMLST.
PubMLST treated missing alleles as “N.” cgSTs were assigned to each allele profile, treating N as a regular
allele designation. However, different from typical allele designations, Ns can represent any allelic
sequence; therefore, some isolates may contain multiple cgST designations, all of which are possibly true
cgSTs. For isolates with more than one cgST suggested by PubMLST, postprocessing was done using an
in-house script to identify the most likely cgST, which was determined by assuming missing loci
contained the most common allele (Table S2). It is expected that as genome sequencing becomes more
reliable, higher-quality genomes will be available and any missing data can be updated as needed.

MLST scheme and ST assignments. Two MLST schemes developed for V. cholerae were mapped to
this cgMLST scheme. The first MLST scheme, developed in 2013 by Octavia and colleagues (20), was used
to study the global population structure of non-O1/non-O139 V. cholerae and is currently hosted on
PubMLST. All isolates uploaded to PubMLST were automatically annotated with this scheme. Any missing
data in this scheme were ignored and no ST designation was assigned. The second MLST scheme,
developed in 2016 by Kirchberger and colleagues (21), was used to study the population structure of
environmental V. cholerae in a region on the U.S. East Coast. The second MLST scheme is not currently
hosted on PubMLST, but because the housekeeping genes in this scheme are also found in the cgMLST
scheme, a similar in-house script used in cgST assignments was used to assign ST designations.
Therefore, all isolates in this study were assigned three designations when possible, two ST designations
based on the two previously established MLST schemes (20, 21) and one cgST designation based on the
cgMLST scheme from this study.

Outbreak and sublineage clustering thresholds. A clustering threshold was defined as the
maximum number of allelic differences found within a cluster. All clusters were produced based on the
single-linkage clustering method, which meant an isolate belonged to a cluster if it linked with any
isolate within that cluster. Two metrics were used as general guidelines for determining clustering
thresholds. The first metric used was the Dunn index (DI), which measured clustering efficiencies (60).
Briefly, the DI was highest for a network (i.e., the network has the best clustering efficiency) when the
intracluster distances were minimized and the intercluster distances were maximized. Since isolate
distances were measured based on allelic differences, a high DI resulted in clusters where isolates were
more closely related to those found within the same cluster than those found in a different cluster. The
DI was calculated using the R packages clvalid and boot, with 100 bootstrap replicates for each threshold,
and graphed using the R package ggplot2 (91–94).

The second metric used was the adjusted Rand index (ARI), which measured the level of similarity
between two networks when clustering the same set of isolates by measuring the amount of agreement
(i.e., the number of pairs that were grouped either as being in the same cluster or different clusters in
both networks) and disagreements (i.e., the number of pairs that were grouped together in one network
but grouped separately in another) (62). The values ranged from �1 (i.e., two networks are exactly
opposite) to 1 (i.e., two networks are identical). ARI was used to determine the level of similarity between
various clustering thresholds and the MLST schemes. ARI was calculated using the R package clues and
graphed using ggplot2 (92, 94, 95).

MST. All MSTs, unless otherwise specified, were constructed using GrapeTree MSTv2 (96). Loci with
missing data were included in the profile as dashes. GrapeTree provided a novel algorithm that
accounted for missing data when constructing an MST, an important feature, since missing data are
common in whole- and core genome-based analyses. GrapeTree is currently integrated within PubMLST
(75), which allows for quick visualization of the data set with any provenance data.

Phylogenetic analysis. Parsnp v1.2 (97) was used to reconstruct the phylogenetic tree using V.
cholerae N16961 as the reference genome. The -x flag was used to enable filtering of SNPs in recombi-
nogenic regions as identified by PhiPack (98). Default settings were used for all other parameters. The
phylogenetic tree included 1,146 genomes (all genomes except for the 116 isolates from the recent
Yemen cholera outbreak study [9]). Since all isolates sequenced for the latter study belonged to the 7th
pandemic El Tor lineage, it would have had limited impact on the overall structure of the tree. The
phylogeny was visualized and annotated using iTOL (99).

Biogeographical analysis of environmental isolates. All environmental isolates that were not part
of the PG lineage (18, 19) were first clustered based on the sublineage threshold using the python
package networkX (100). Missing alleles were replaced with the most common allelic designation when
calculating pairwise differences to establish a more conservative estimate of diversity. The network was
then visualized using Cytoscape (101).

Data availability. All previously sequenced V. cholerae genomes and the additional 65 genomes
sequenced in this study are available from the NCBI GenBank and the PubMLST databases. Table S6 lists
all the accession numbers and PubMLST IDs for all the genomes used in this study. In addition, all
genome sequences, allelic profiles, cgST designations, ST designations, and relevant epidemiological
data are publicly available on PubMLST (https://pubmlst.org/vcholerae/).
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