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Objective. Endometrial cancer (EC) is one of the most common malignant gynaecological tumours worldwide. This study was
aimed at identifying EC prognostic genes and investigating the molecular mechanisms of these genes in EC. Methods. Two
mRNA datasets of EC were downloaded from the Gene Expression Omnibus (GEO). The GEO2R tool and Draw Venn
Diagram were used to identify differentially expressed genes (DEGs) between normal endometrial tissues and EC tissues. Then,
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the
Database for Annotation, Visualization and Integrated Discovery (DAVID). Next, the protein-protein interactions (PPIs) of
these DEGs were determined by the Search Tool for the Retrieval of Interacting Genes (STRING) tool and Cytoscape with
Molecular Complex Detection (MCODE). Furthermore, Kaplan-Meier survival analysis was performed by UALCAN to verify
genes associated with significantly poor prognosis. Next, Gene Expression Profiling Interactive Analysis (GEPIA) was used to
verify the expression levels of these selected genes. Additionally, a reanalysis of the KEGG pathways was performed to
understand the potential biological functions of selected genes. Finally, the associations between these genes and clinical features
were analysed based on TCGA cancer genomic datasets for EC. Results. In EC tissues, compared with normal endometrial
tissues, 147 of 249 DEGs were upregulated and 102 were downregulated. A total of 64 upregulated genes were assembled into a
PPI network. Next, 14 genes were found to be both associated with significantly poor prognosis and highly expressed in EC
tissues. Reanalysis of the KEGG pathways found that three of these genes were enriched in the cell cycle pathway. TTK,
CDC25A, and ESPL1 showed higher expression in cancers with late stage and higher tumour grade. Conclusion. In summary,
through integrated bioinformatics approaches, we found three significant prognostic genes of EC, which might be potential
therapeutic targets for EC patients.

1. Introduction

Endometrial cancer (EC) is the most common gynaecological
malignancy, with an increasing incidence in North America,
Europe, and more than 20 developed countries elsewhere [1,
2]. There were 61 880 new cases and 12 160 deaths from EC
in the United States in 2019 [3], up from 60 050 new cases
and 10 470 deaths in 2016 [4]. Two histological classifications
have been described among endometrioid adenocarcinoma,
type I and type II, and seventy to eighty percent of new cases
are type I. Type I tumours, which are mostly of lower grade,
are mediated by oestrogen and have endometrioid histology.
Type II tumours are composed of higher-grade tumours

(generally clear cell or serous) and are more common in thin-
ner and older women [5, 6]. The prognosis of EC patients is
related to the stage and grade of the disease. EC patients with
stage III or IV endometrial cancer typically have a worse
prognosis, and patients with stages I and II have a better sur-
vival [7]. Thus, finding more credible prognostic biomarkers
is important for improving the therapies for EC, and investi-
gating their role development is important for further eluci-
dation of the underlying mechanisms of EC.

The Gene Expression Omnibus (GEO) database gathers
next-generation sequencing data and high-throughput
microarrays submitted by the research community con-
structed and kept by the National Center for Biotechnology
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Information (NCBI). Screening for differentially expressed
genes (DEGs), analysis of gene regulatory networks, and
exploration of molecular signals and interrelationships can
be performed via the GEO database. Thousands of DEGs that
may be involved in EC development have been screened from
a large number of studies of gene expression profiles of EC in
GEO. However, the identification of DEGs in multiple stud-
ies has been limited as a result of the different technology
platforms used, the different treatment of data across studies,
and the heterogeneity of tissues or samples in different inde-
pendent experiments. We comprehensively analysed micro-
array data from two gene expression profiling experiments
with consideration of the false positive probability of micro-
array results.

Two initial gene expression profiles (GSE17025 and
GSE63678) were downloaded from the GEO database. To
identify common DEGs, the GEO2R tool was applied to inte-
grate the expression profiles. Next, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analyses were performed using the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID). The
Search Tool for the Retrieval of Interacting Genes (STRING)
database was then applied to create a protein-protein interac-
tion (PPI) network. Later, the core genes among the DEGs
were identified by Cytotype Molecular Complex Detection
(MCODE). Additionally, these core DEGs were explored by
UALCAN to obtain information on patient prognosis
(P < 0:05). Moreover, the expression of DEGs between nor-
mal endometrial samples and EC samples was validated by
Gene Expression Profiling Interactive Analysis (GEPIA)
(P < 0:01). Then, KEGG pathway enrichment of these desig-
nated DEGs was reanalysed by DAVID. TTK, CDC25A, and
ESPL1were found to be significantly enriched in the cell cycle
pathway. Last, TTK, CDC25A, and ESPL1 showed higher
expression in the late cancer stage and higher tumour grade.
In conclusion, TTK, CDC25A, and ESPL1 are associated with
poor prognosis in EC and could be potential therapeutic
biomarkers that might be beneficial for EC patients.

2. Materials and Methods

2.1. Microarray Data Information. GEO (http://www.ncbi
.nlm.nih.gov/geo) is an open database of microarray/gene
profiles [8]. Two mRNA expression datasets containing
microarray data from normal endometrial tissues and EC tis-
sue, GSE63678 [9] and GSE17025 [10], were selected. The
GSE63678 microarray data included 5 normal endometrial
tissues and 7 EC tissues and were generated using the
GPL571 platform Affymetrix Human Genome U133A 2.0
Array. The GSE17025 microarray data included 12 normal
endometrial tissues and 91 EC tissues and were generated
using the GPL570 platform Affymetrix Human Genome
U133 Plus 2.0 Array.

2.2. Identification of DEGs.GEO2R is an interactive web tool
that allows users to compare two or more groups of sam-
ples in a GEO series to identify genes that are differentially
expressed across experimental conditions. The GEO2R
online tool (http://www.ncbi.nlm.nih.gov/geo/geo2r/) was

applied to recognize DEGs between normal endometrial
tissues and EC tissues with an adjusted P value < 0.05
and ∣log2FC ∣ >1. The Draw Venn Diagram (http://
bioinformatics.psb.ugent.be/webtools/Venn/) can be used
to calculate the intersections of the list of elements. There-
fore, we used this tool to analyse the raw data in TXT for-
mat and obtain the DEGs in the two datasets. Upregulated
genes were DEGs with log2FC > 1, while downregulated
genes were DEGs with log2FC < ‐1.

2.3. Analysis of GO and KEGG Pathway Enrichment. GO is a
general annotation method for genes and their RNA or pro-
tein products that is used to characterize the biological char-
acteristics of high-throughput genomic data [11]. KEGG is a
compendium of databases with information on genomes,
chemical materials, biological pathways, diseases, and drugs
[12]. As an online bioinformatics tool, DAVID (http://
david.ncifcrf.gov/) is aimed at recognizing the functions of
genes or proteins [13]. The DEG enrichment of GO terms
(biological process (BP), cell component (CC), and molecu-
lar function (MF)) and KEGG pathways was visualized by
DAVID (P < 0:05) [14].

2.4. Analysis of PPI Network and Module. As an online tool,
STRING (http://string-db.org/) is designed to visualize PPI
information [15]. The potential relationships among DEGs
were identified by the STRING app in Cytoscape
(confidence score ≥ 0:4 and maximum number of
interactors = 0). Furthermore, modules of the PPI network
were validated via the MCODE app in Cytoscape
(max:depth = 100, node score cut − off = 0:2, degree cut −
off = 2, and k‐score = 2) [16].

2.5. Survival Analysis and mRNA Expression of Core Genes.
The expression level of various genes has an impact on
patient survival, which can be shown by Kaplan-Meier plots.
As a friendly, comprehensive, and interactive web resource
for data analysis of cancer omics, UALCAN (http://ualcan
.path.uab.edu/index.html) was applied to obtain Kaplan-
Meier plots and gene expression profiles based on TCGA
data [17]. The significance of survival impact is measured
by the log rank test (P < 0:05). In addition, based on the
TCGA and GTEx projects, the level of gene expression in
normal endometrial samples and EC samples was validated
via GEPIA (|log2FC ∣ cut‐off = 1, P value cut‐off = 0:01)
[18]. Finally, the University of California Santa Cruz (UCSC)
Xena website (http://xena.ucsc.edu/), an analytics, visualiza-
tion, and universal integration tool for analysing and viewing
public datasets was used to assess TCGA cancer genomic
datasets for EC. We analysed the associations between prog-
nostic genes and clinical features (cancer stage and tumour
grade) by t test (P < 0:05). The cBio Cancer Genomics Portal
(cBioPortal) is a publicly accessible resource (http://www
.cbioportal.org/) [19, 20]. We downloaded clinical datasets
and cancer genomic datasets for EC [21] from the cBioPortal
website and analysed the correlations between prognostic
gene expression and survival in EC, and the significance of
survival impact is measured by the log rank test (P < 0:05).
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3. Results

3.1. Identification of DEGs in EC. Our study included 17 nor-
mal endometrial tissues and 98 EC tissues. A total of 4 057
and 479 DEGs were extracted from GSE17025 and
GSE63678 using the GEO2R online tool. Then, the DEGs
common to the two datasets were identified via the Draw
Venn Diagram. Compared with normal endometrial tissues,
249 common DEGs were discovered, of which 147 were
upregulated (adjusted P value < 0.05, log2FC > 1) and 102
were downregulated (adjusted P value < 0.05, log2FC < ‐1)
in EC tissues (Figure 1 and Table 1).

3.2. GO and KEGG Pathway Analysis of DEGs in EC. The GO
and KEGG pathway analysis of 249 DEGs was performed via
DAVID. The top six GO terms in the BP, CC, and MF cate-

gories are shown in Figure 2. The upregulated DEGs were
mainly enriched in cell division among the BP categories,
the nucleus among the CC categories, and protein binding
among the MF categories. The downregulated DEGs were
mainly associated with transcription, DNA-templated
among the BP categories, nucleus among the CC categories,
and metal ion binding among the MF categories. The KEGG
pathway analysis revealed that the upregulated DEGs were
significantly enriched in the cell cycle, while the downregu-
lated DEGs were mainly enriched in pathways in cancer
(Figure 3).

3.3. Analysis of PPI and Module. Among 249 DEGs, 197
DEGs were assembled into a DEG PPI network complex
comprising 2 551 edges and 197 nodes, of which 65 were
downregulated and 132 were upregulated (Figure 4(a)). The
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Figure 1: Validation of 249 DEGs in the two datasets (GSE63678 and GSE17025) via Draw Venn Diagram. (a) 147 upregulated DEGs in the
two datasets (log2FC > 1). (b) 102 downregulated DEGs in two datasets (log2FC < −1).

Table 1: All 249 DEGs were detected from two mRNA expression datasets, of which there are 147 upregulated genes and 102 downregulated
genes in the EC.

DEGs Gene names

Upregulated

ESPL1, E2F8, DHCR24, VAMP8, TSTA3, ANXA1, TPX2, CCNB1, GOT1, ANP32E, LMNB2, KPNA2, PDIA3, BIRC5,
TAGLN2, FOXM1, F2RL1, CDK1, CHEK1, CARMIL1, MUC1, KIF11, GPI, MRPS12, PDXK, EZR, CDC6, HSPA4,
CENPU, PCCB, SMC4, APOBEC3B, AURKA, CLDN7, KIF14, ANXA2P2, MAD2L1, ATP1A1, TJP3, FANCA, BLM,
KIF4A, KRT8, LDHA, SCD, MAP7, MPZL1, UCK2, KIF2C, EIF5A, ANP32A, ACLY, TYMS, MELK, SFN, VDAC1,

CDC20, CENPN, HN1, ZWINT, MPDU1, SAR1A, CCNA2, GTSE1, PBK, TRIP13, S100A11, STAT1, PTTG1, MMP12,
CDC7, CKS2, ISG15, ECT2, KIF23, ANXA2, GSR, TK1, CENPE, ASPM, UBE2S, LMNB1, SPAG5, CDCA3, CKMT1B,
PTBP3, TACC3, UBE2C, CCNB2, PRC1, LRP8, CKAP2, CEP55, PLEKHB2, RRM2, MGST2, CENPA, TOP2A, SYNCRIP,
FEN1, RBM47, MOB1A, KIF18A, KIF15, ST14, SSR1, BUB1B, S100A10, DLGAP5, HJURP, RAD51AP1, ESRP1, ENO1,
MKI67, DTL, GDE1, SULF1, NCALD, ACP1, RAD51, HMMR, TUBB4B, CDCP1, ARF3, KIF20A, MIF, GMDS, SDF2L1,
IDE, CTSZ, DLAT, GAPDH, KIAA0101, MTCH2, TTK, PGD, CDKN3, NME1, NCAPG, MYCBP, BAX, CIT, NEK2,

CENPF, NUSAP1, PGK1, CDC25A

Downregulated

H3F3B, HYMAI, NAALAD2, GNAL, MITF, HOXD11, ERG, EVC, HNMT, CA11, GHR, ROR2, KLF3-AS1, BCHE,
SRSF11, WT1-AS, POU6F1, LEFTY2, PHF1, RBPMS, ZNF667, GABBR1, VSTM4, SPAG9, RUNX1T1, PER1, KIAA0368,

PPIEL, TRPC4, SNCA, TSPYL5, ENPP2, UNKL, SOX15, CTSF, NR2F2, ZDHHC17, PNISR, TCEAL2, FOXN3,
KIAA1644, PKD1P1, FBXO9, WNT2, MCOLN3, STAT5B, ENPEP, CBX7, ARMCX1, TBX3, FAM184A, ZFP2, CACNB2,
PEG3, HAND2-AS1, C2orf68, TGFBR3, ZNF37BP, MAF, ZNF135, PGM5, ATRNL1, ST3GAL5, BNC2, AKT3, CYP1B1,
EFS, CDIP1, ZSCAN18, KLF11, ZNF506, MXRA8, UBE2I, TRO, C1orf21, PLAGL1, BHMT2, ST8SIA1, GATAD1, PAK3,
PDS5B, NMT2, CMAHP, MAGEH1, H3F3A, EZH1, CDO1, NUDT11, GSPT2, HNRNPDL, FGF2, CXCL12, IGF1R,

CRBN, GPRASP1, MAGEL2, CHRD, ME3, CIRBP, NUMA1, SNED1, TNS2
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Figure 2: The GO term analysis of the 249 DEGs: (a) upregulated gene enrichment in GO; (b) downregulated gene enrichment in GO. GO:
Gene Ontology; DEGs: differentially expressed genes.
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Figure 3: The KEGG pathway analysis of the 249 DEGs. (a) Upregulated genes enrichment in KEGG pathway. (b) Downregulated genes
enrichment in KEGG pathway. KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.
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Figure 4: STRING andmodule analysis-built DEG PPI network. (a) The DEG PPI network complex had a total of 197 DEGs. The edges mean
the interaction between proteins, the nodes mean proteins, and upregulated DEGs are represented by yellow rectangles and downregulated
DEGs are represented by green rectangles. (b) Module analysis through the Cytoscape app (k‐core = 2, max:depth = 100, node score cut‐
off = 0:2, and degree cut‐off = 2).
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Figure 5: The Kaplan-Meier plots of the 64 core genes. Using the UALCAN online tool to verify the survival curves of the 64 core genes, and
the survival rate of 14 of 64 genes was significantly poor (P < 0:05).
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DEG PPI network excluded a total of 52 DEGs (Figure 4(a)).
Next, further analysis using Cytotype MCODE revealed that
64 central nodes of the 197 nodes were all upregulated genes
(Figure 4(b)).

3.4. Analysis of Core Genes via UALCAN and GEPIA. UAL-
CAN was applied to analyse the survival data for 64 core
genes. The results showed that 14 genes (TRIP13, MKI67,
UBE2C, RAD51AP1, DLGAP5, TTK, KIF23, TPX2, ESPL1,
FOXM1, HJURP, KIF2C, CDC25A, and ASPM) were associ-
ated with significantly poorer survival, whereas 50 genes
showed no significant correlations (P < 0:05, Figure 5). Next,
we used GEPIA to examine the gene expression level of the
14 genes between normal endometrial specimens and EC

specimens. The results indicated that all 14 genes were over-
expressed in EC samples compared with normal endometrial
samples (P < 0:01, Figure 6).

3.5. KEGG Reanalysis of 14 Designated Genes by DAVID.
Reanalysis of the KEGG pathway data was performed using
DAVID to understand the potential biological functions of
these 14 designated DEGs (P < 0:05). We found that three
genes (TTK, CDC25A, and ESPL1) were meaningfully
enriched in the cell cycle pathway (P = 0:0019, Figure 7).

3.6. Correlation Analysis between TTK, CDC25A, and ESPL1
Expression and Clinical Features. We analysed cancer geno-
mic datasets from the UCSC Xena website and found that
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TTK, CDC25A, and ESPL1 were highly expressed in EC
tissues compared with normal tissues. In addition, TTK,
CDC25A, and ESPL1 showed higher expression in cancers
with late stage and higher tumour grade, compared with early
stage and lower tumour grade (P < 0:05, Figures 8(a) and
8(b)). Clinical datasets and cancer genomic datasets from
the cBioPortal website were analysed, and the results showed
that in cases with TTK, CDC25A, and ESPL1 amplification,
EC patients had worse survival outcomes (Figure 8(c)).

4. Discussion

The present research performed bioinformatics analysis of
two profile datasets (GSE17025 and GSE63678) to identify
more useful prognostic biomarkers in EC. This study
included 17 normal endometrial tissues and 98 EC tissues.
A total of 249 common DEGs (adjusted P value < 0.05 and
∣log2FC ∣ >1), of which 102 were downregulated
(log2FC < ‐1) and 147 were upregulated (log2FC > 1), were
found through GEO2R and the Draw Venn Diagram. Next,
DAVID was applied to analyse GO and KEGG pathway
enrichment. The results showed that (1) among the BP terms,
upregulated DEGs were mainly enriched in cell division,
mitotic nuclear division, G2/M transition of mitotic cell
cycle, sister chromatid cohesion, mitotic sister chromatid

segregation, and anaphase-promoting complex-dependent
catabolic process and downregulated DEGs were enriched
in the regulation of transcription from RNA polymerase II
promoter, transcription, DNA-templated, response to gluco-
corticoid, positive regulation of cardiac muscle cell prolifera-
tion, negative regulation of transcription from RNA
polymerase II promoter, and mast cell migration; (2) among
the CC terms, upregulated DEGs were markedly enriched in
cytosol, midbody, nucleus, spindle pole, condensed chromo-
some kinetochore, and spindle and downregulated DEGs
were enriched in the nucleus and cytoplasm; (3) among the
MF terms, upregulated DEGs were enriched in protein bind-
ing, ATP binding, microtubule binding, microtubule motor
activity, protein kinase binding, ATP-dependent microtubule
motor activity, and plus-end-directed and downregulated
DEGs were enriched in transcription factor activity,
sequence-specific DNA binding, nucleic acid binding, RNA
polymerase II transcription factor activity, sequence-specific
DNA binding, metal ion binding, sequence-specific DNA
binding, and chromatin binding. In the KEGG pathway anal-
ysis, upregulated DEGs were significantly enriched in cell
cycle, p53 signalling pathway, biosynthesis of antibiotics,
oocyte meiosis, carbon metabolism, and glycolysis/gluconeo-
genesis, while downregulated DEGs were enriched in path-
ways in cancer, signalling pathways regulating pluripotency
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of stem cells, melanoma, acute myeloid leukaemia, transcrip-
tional misregulation in cancer, and proteoglycans in cancer
(P < 0:05). Then, we constructed a DEG PPI network com-
plex of 2551 edges and 197 nodes by using STRING and
the Cytoscape app. Next, through Cytotype MCODE analy-
sis, 64 crucial upregulated DEGs were selected from the PPI
network complex. Furthermore, 14 of 64 genes exhibited
associations with significantly worse survival via UALCAN
analysis. GEPIA analysis, which was used to validate these
14 genes, showed that all of these genes were more highly
expressed in EC samples compared with normal endometrial

samples (P < 0:01). DAVID was applied to reanalyse the
KEGG pathway enrichment of these 14 genes. The enrich-
ment of three genes (TTK, CDC25A, and ESPL1) in the cell
cycle pathway was significant (P < 0:05). Lastly, TTK,
CDC25A, and ESPL1 showed higher expression in cancers
with late stage and higher tumour grade, which indicates that
they may be potential targets for improving EC patient
prognosis.

TTK, also known as monopolar spindle1 (Mps1), was dis-
covered during a screening of spindle pole body replication
genes in 1991 and is a kinetochore-localized protein kinase
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with dual specificity [22, 23]. TTK is essential for mitotic
checkpoints and participates in cell survival and the repair
of oxidative DNA lesions. High TTK expression may help
tumours overcome the challenges of an oxidative microenvi-
ronment [24, 25]. Many studies have shown that TTK is over-
expressed in several human malignant tumours, including
malignant melanoma (MM), non-small cell lung carcinoma
(NSCLC), prostate cancer, breast cancer, and colon cancer.
Its expression is associated with the poor patient outcome.
Knockdown of TTK or treatment with a TTK inhibitor could
suppress tumour growth by inhibiting cell proliferation,
migration, and tumorigenesis. Thus, TTK may be a potential
therapeutic target for cancers [26–30].

Cell division cycle 25 (CDC25) is a bispecific phosphatase
that removes phosphate groups from phosphorylated serine
(Ser, S), threonine (Thr, T), and tyrosine (Tyr, Y) residues
of its substrate proteins [31]. As a member of the CDC25
phosphatase family, CDC25A is essential for the progression
of the cell cycle from G1 to S phase. CDC25A is involved in a
variety of biological processes, such as G1/S transition, cell
division, regulation of cyclin-dependent protein serine/-
threonine kinase activity, cell proliferation, regulation of cell
cycle, DNA replication, and cellular response to UV [32, 33].
Considered an oncogene, CDC25A is highly expressed in
many types of human malignancies, such as breast cancer,
ovarian cancer, head and neck cancer, colon cancer, and
cutaneous squamous cell carcinoma [34–38]. Moreover,
CDC25A expression was significantly associated with tumour
invasion and poor tumour differentiation [39].

ESPL1 (extra spindle pole-like 1) is an endopeptidase and
cysteine protease. ESPL1 is activated and cleaves the cohesin
subunit RAD21 to release a sister chromatid cohesion
required for chromosomal disjunction at the onset of ana-
phase [40–42]. ESPL1 is introduced to mitotic chromosomes
to dissolve the cohesion of the sister chromatid in a DNA-
dependent manner, playing an important part in the progres-
sion of the cell cycle, ensuring faithful genetic inheritance
[43, 44]. Several studies have shown that ESPL1, as a candi-
date oncogene, is overexpressed in several types of breast
cancers [45–47]. It is also a marker for mitotic activity and
prognosis in breast cancers [48].

As discussed above, several studies have suggested that
these three genes are associated with the progression of many
types of cancer. However, our search of the PubMed database
reveals that very few studies have investigated the roles of
these three genes in EC. Thus, this study can provide helpful
information and direction for future studies of EC.

5. Conclusions

In summary, we identified three DEGs (TTK, CDC25A, and
ESPL1) between normal endometrial tissues and EC tissues
in our bioinformatics analysis based on two mRNA expres-
sion datasets. These three genes might play important roles
in the development of EC. A series of future experiments will
be needed to validate these predictions. Nevertheless, these
data can provide helpful information and direction for the
elucidation of potential biomarkers and the biological
mechanisms of EC.
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