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ABSTRACT Domestic arthropod-borne viruses (arboviruses) are single-stranded RNA
viruses, the most common of which include the mosquito-borne West Nile virus, St.
Louis encephalitis virus, La Crosse virus, Jamestown Canyon virus, and eastern
equine encephalitis virus, as well as the tick-borne Powassan virus. Previously con-
sidered rare infections, they have been detected with increasing frequency over the
past 2 decades. Here, we present an overview of the domestic arboviruses listed
above and describe the modalities employed to diagnose infection. Global arbovi-
ruses, including dengue virus, Zika virus, and chikungunya virus, have also been in-
creasingly detected in the United States within the last 5 years but are not a focus
of this minireview. Typical manifestations of arbovirus infection range from no symp-
toms, to meningitis or encephalitis, to death. Serologies are the standard means of
diagnosis in the laboratory, since most viruses have a short period of replication,
limiting the utility of molecular tests. The interpretation of serologies is confounded
by antibody cross-reactivity with viruses belonging to the same serogroup and by
long-lasting antibodies from prior infections. Next-generation assays have improved
performance by increasing antigen purity, selecting optimal epitopes, and improving
interpretive algorithms, but challenges remain. Due to cross-reactivity, a positive
first-line serology test requires confirmation by either a plaque reduction neutraliza-
tion test or detection of seroconversion or a 4-fold rise in virus-specific IgM or IgG
antibody titers from acute- and convalescent-phase sera. The use of molecular diag-
nostics, such as reverse transcription PCR or unbiased metagenomic sequencing, is
limited to the minority of patients who present with ongoing viremia or central ner-
vous system replication. With the continued expansion of vector range, the diagno-
sis of domestic arboviruses will become an increasingly important task for general-
ists and specialists alike.
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Arthropod-borne viruses (arboviruses) are increasingly frequent causes of disease in
the United States. The most common domestic arboviruses, which will be reviewed

here, include the mosquito-borne viruses West Nile virus (WNV), St. Louis encephalitis
virus (SLEV), La Crosse virus (LACV), Jamestown Canyon virus (JCV), and eastern equine
encephalitis virus (EEE) as well as the tick-borne Powassan virus (POWV). Many arbo-
viruses are nationally notifiable and are tracked by the Centers for Disease Control and
Prevention (CDC) through ArboNET, a passive surveillance system established in 2000
(1). In 2018, a total of 2,813 arboviral infections were reported in the United States, 64%
of which were neuroinvasive and 6% of which were fatal (2). However, these figures
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likely underestimate incidence and overestimate severity, because clinical testing is
more commonly performed for patients with severe or neuroinvasive disease. Arbovi-
ruses can be challenging to diagnose, because patients usually present with nonspe-
cific symptoms and because diagnostic assays require the expertise of centralized
laboratories. Therefore, it is important for clinicians to be aware of the arboviruses
circulating in their region and understand how to order and interpret diagnostic tests
for them.

Natural history. Arboviruses that are endemic to the United States generally exist
in enzootic cycles in which birds and small mammals serve as reservoirs, and there is
occasional spillover into humans as incidental “dead end” hosts after transmission by a
mosquito or tick. In contrast, the most common arboviruses worldwide, such as dengue
and chikungunya, are vectored by anthropophilic Aedes species mosquitoes, and
humans serve as amplification hosts that are essential for infecting new vectors and
furthering the spread of disease.

Vector activity drives seasonal patterns of arbovirus infections; more than 90% of
cases are reported between April and September, and there is a negligible number
between January and March (2). However, the specific seasonality differs slightly
between viruses. For example, in 2018, similar to prior years, 92% of symptomatic WNV
cases reported to ArboNET occurred between July and September, while POWV was
frequently detected in the spring (April-June) and SLEV in the fall (October-December)
(2). Some arboviruses have characteristic geographic distribution (Fig. 1), although
overlapping distributions and patient travel may limit the usefulness of this informa-
tion. Interestingly, many arbovirus infections show a male predominance; in 2018, 62%
of WNV cases, 85% of JCV cases, and 67% of POWV cases were in men (2).

Clinical manifestations. Domestic arboviruses share several common clinical fea-
tures. Following exposure to a mosquito or tick, patients experience an incubation
period ranging from a few days to 2 weeks. Initial symptoms can include fever,
gastrointestinal symptoms, and sometimes rash. Notably, unlike prevalent arboviruses
worldwide (dengue virus and yellow fever virus), the arboviruses endemic to the United
States do not cause hemorrhagic disease. However, a proportion of patients develop
neurological disease, such as meningitis or encephalitis. In these patients, cerebrospinal
fluid (CSF) parameters are generally similar to those of other viral infections of the
central nervous system, with lymphocytic pleocytosis (generally less than 1,000 white
blood cells/�l) and elevated protein (generally less than 200 mg/dl) (3, 4). Interestingly,
patients with JCV may have normal CSF parameters, as described in 2 out of 6 patients
in one case series (5) and 3 out of 9 in another (6).

Although the mortality rate is low for many arboviruses, patients with neuroinvasive
disease can have persistent and debilitating symptoms for years (3–5). There are no
human vaccines in use and no specific treatments for arboviral infections. Case reports
have described improvement in a patient with JCV treated with ribavirin (7) and mixed
results for patients with EEE treated with intravenous immunoglobulin (8, 9). High-dose
steroids may be considered for patients with WNV, especially for treatment of postin-
fectious proinflammatory symptoms (10). Despite the lack of specific treatments,
making a timely diagnosis of arboviral infection is critical to avoid unnecessary empir-
ical treatments, provide diagnostic and prognostic information to patients and families,
and encourage practices to minimize future vector exposure.

SPECIFIC ARBOVIRUSES ENDEMIC TO THE UNITED STATES

Arboviruses cross a wide range of virus families, the most common of which are
flaviviruses (WNV, SLEV, and POWV) and bunyaviruses (LACV and JCV). Understanding
which family a virus belongs to is important in interpreting serologic cross-reactivity,
especially for viruses with overlapping geographic ranges.

Flaviviruses. Flaviviruses are enveloped, positive-strand RNA viruses with approxi-
mately 10-kb genomes; they include the most common arboviruses worldwide, such as
dengue virus, Zika virus, yellow fever virus, and Japanese encephalitis virus. Within the
United States, West Nile virus (WNV) is responsible for the vast majority of arbovirus
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infections each year. WNV is transmitted primarily by Culex species mosquitoes from
bird reservoirs. It was first detected in the United States in New York in 1999, led to a
large number of cases, including spread to the Midwest in 2002 to 2003 (11), and is now
responsible for approximately 2,000 reported infections per year. In addition to
mosquito-borne transmission, WNV can also be transmitted by organ transplantation
and blood transfusion (although donated blood now undergoes screening), and trans-
placental and laboratory-acquired infections have been reported (1).

WNV is distributed throughout the continental United States, with the largest
number of cases reported in California (Fig. 1). It is estimated that 80% of WNV
infections are asymptomatic (1, 12). When symptoms do arise, following an incubation
period of up to 1 week, individuals can develop fever and, sometimes, rash. There is
progression to neurological disease in 40 to 60% of symptomatic patients, and the
incidence of neuroinvasive disease increases with age (1). Neurological syndromes
include meningitis, encephalitis, and acute flaccid paralysis; notable features can in-

FIG 1 Geographic distribution of the most common domestic arboviruses: WNV (A), other flaviviruses POWV and SLEV (B), bunyaviruses LACV and JCV (C), and
alphavirus EEE (D). Maps reflect the total number of neuroinvasive cases reported from 2014 to 2018 (2, 89–92). (The maps were created with mapchart.net.)
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clude parkinsonism, tremors, and myoclonus, with compatible magnetic resonance
imaging (MRI) findings of bilateral lesions in basal ganglia, thalamus, and pons (3).

St. Louis encephalitis virus (SLEV) is another flavivirus that is also transmitted by
Culex species mosquitoes and is primarily found in the southern United States. Pow-
assan virus (POWV) is a flavivirus that is primarily transmitted by Ixodes scapularis ticks
in the northeast and north-central United States from small-mammal reservoirs, such as
the white-footed mouse. In patients with POWV, MRI can show the involvement of the
cerebellum, basal ganglia/thalami, and brainstem (4). Both SLEV and POWV have higher
reported fatality rates than WNV (Table 1), but this is likely at least in part due to
underdetection of less severe cases. SLEV seroprevalence has been reported between
1 and 13% in regions with known disease activity (13, 14). Estimates of POWV sero-
prevalence among patients with tick exposure range from 0.4% in Maine (15) to 9% in
Wisconsin (16).

Orthobunyaviruses. Orthobunyaviruses are enveloped viruses with segmented,
negative-sense RNA genomes approximately 12 kb in length. Most orthobunyaviruses
transmitted in the United States belong to the California serogroup, and serologic
diagnosis can be complicated by antibody cross-reactivity. La Crosse virus (LACV)
stands out among domestic arboviruses because it primarily infects children; in 2018,
94% of LACV cases occurred in individuals under the age of 18 (2). LACV, which is
commonly found in the Appalachian region, is transmitted by the aggressive daytime
biting mosquito Aedes (Ochlerotatus) triseriatus from chipmunk and squirrel reservoir
species. Clinical features that may point toward LACV include hyponatremia and
periodic lateralizing discharges on electroencephalogram, similar to those found with
herpes simplex virus (17).

Jamestown Canyon virus (JCV) is another California serogroup orthobunyavirus that
is primarily found in adults. JCV can be transmitted by multiple mosquito species and
has a widespread geographic distribution, with most cases in recent years occurring in
the northeast and north-central United States. Both JCV and LACV have high rates of
neuroinvasive disease but very low fatality rates (Table 1). As for other arboviruses,
many infections are likely unrecognized: JCV seroprevalence has been reported be-
tween 15 and 30% (18, 19) and LACV seroprevalence up to 18%, with higher rates in
populations with greater outdoor exposure (20).

Other California encephalitis serogroup viruses (e.g., California encephalitis virus and
Snowshoe Hare virus) are rarely reported, with a total of 4 cases in 2018 (2). Keystone
virus has been identified in Aedes species mosquitoes and in human serological surveys
in the southeast, but the first acute case was not reported until 2019 in a patient with
fever and papular rash (21). Cache Valley virus is a rarely detected bunyavirus that is not
part of the California serogroup. A total of 5 cases were reported in the eastern United
States between 1995 and 2018 (22); all reported cases were neuroinvasive, and 60%
were fatal.

Alphaviruses. Alphaviruses are enveloped, positive-sense RNA viruses that include
multiple globally important arboviruses, such as chikungunya and Ross River virus, as
well as eastern equine encephalitis virus (EEE) in the United States. EEE is generally
maintained in an enzootic cycle between Culiseta melanura mosquitoes and birds and
causes spillover infection in humans (and horses) when vectored by large-mammal-
biting mosquito genera, such as Aedes and Culex. Although there are generally only a

TABLE 1 Epidemiological characteristics of specific arboviruses in the United States

Virus Family Vector No. of cases per yra % Neuroinvasivea % Fatala

WNV Flaviviridae Culex species mosquitoes 2,175 63 6
SLEV Flaviviridae Culex species mosquitoes 10 62 9
POWV Flaviviridae Ixodes species ticks 21 95 14
JCV Bunyaviridae Multiple mosquito species 15 55 0
LACV Bunyaviridae Aedes/Ochlerotatus triseriatus 63 95 0
EEE Togaviridae Multiple mosquito species 6 100 40
aMedian values from 2014 to 2018 (2, 89–92).
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few cases of EEE reported each year, larger outbreaks periodically occur, likely due to
environmental perturbations. As a recent example, there were a total of 36 cases and
14 deaths in 2019 (23). This outbreak was most prominent in the northeast and in
Michigan; however, EEE is believed to circulate primarily in Florida and the southeastern
United States, which serve as a reservoir for distribution to other locations (24). EEE
transmission has also been reported from organ transplantation (25). Nearly all re-
ported cases of EEE are neuroinvasive, and its mortality rate is generally 15 to 30%.
However, as for other arboviruses, a large number of unrecognized infections of lower
severity likely occur. EEE can be associated with elevated opening pressure on lumbar
puncture (22), and MRI may show the involvement of the midbrain, thalamus, and basal
ganglia (26), although these imaging findings can also be seen in WNV and POWV.

Other viruses, all tick-borne. Colorado tick fever virus is a coltivirus that is
transmitted by Dermacentor andersoni ticks, predominantly in the western United
States at high elevations. There were 75 cases reported between 2002 and 2012, with
one fatality (27). Clinically, Colorado tick fever virus causes nonspecific febrile symp-
toms that may include rash and often includes a biphasic fever. Heartland virus is a
phlebovirus that is transmitted by Amblyomma americanum ticks in the midwestern
and southern United States, with 40 reported cases (28). In addition to nonspecific
febrile symptoms, patients can have leukopenia, thrombocytopenia, and liver function
test elevation. Bourbon virus is a thogotovirus that has been detected in Amblyomma
americanum ticks and a few human cases (28). It is found in the midwestern and
southern United States, and symptoms can include maculopapular rash as well as
thrombocytopenia and leukopenia.

Global arboviruses. Dengue virus, Zika virus, and chikungunya virus are transmit-
ted by Aedes species mosquitoes and are most frequently detected in returning
travelers, but endemic cases do occur. Dengue virus is a flavivirus that causes periodic
outbreaks in Hawaii (29) but has also been reported in the continental United States,
with 16, 2, and 1 case in Florida, Texas, and North Carolina, respectively, in 2019 (30).
Zika virus is another flavivirus that caused a reported �230 endemic cases in 2016 to
2017 (mostly in Florida) (31). Chikungunya is an alphavirus that was associated with 12
endemic cases in 2014 (in Florida) and 1 in 2015 (in Texas) (32). Recent reviews have
focused on diagnostic approaches to dengue (33), Zika (34), and chikungunya (35).

DIAGNOSTIC APPROACHES

Due to nonspecific symptoms and overlapping geographic distributions, arbovirus
infections must be diagnosed by laboratory studies. Multiple modalities are available,
summarized below and in Table 2.

General approach. The CDC laboratory criteria for arboviral infection require direct
detection of virus by culture, antigen, or nucleic acid; a 4-fold rise in antibody titers
between acute- and convalescent-phase sera; or virus-specific IgM coupled with the
presence of neutralizing antibodies (36). Neuroinvasive disease can also be diagnosed
by the presence of IgM in CSF and the absence of IgM specific to other endemic viruses
(Fig. 2). Testing should only be performed in patients with a compatible clinical
presentation and is typically performed at commercial or governmental reference
laboratories. The choice of test should be informed by the time from symptom onset.
Direct detection is feasible in the minority of patients who present early enough to
have ongoing viremia, but in most cases the diagnosis is made with serologies, as
patients usually present outside this period. Positive IgM establishes a probable diag-
nosis and is often sufficient to stop diagnostic testing for other etiologies in a patient
with compatible presentation and no history of arboviral infection. However, confir-
mation of infection for clinical diagnosis or reporting purposes requires identifying
virus-specific neutralizing antibodies or testing convalescent-phase sera.

Below, we focus on tests for WNV, as it has the most developed set of diagnostic
tools among the domestic arboviruses. Additional insights from other viruses are
provided when substantially different from WNV. The following discussion does not
apply to molecular tests that have been optimized for the screening of blood bank
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products and organ donors, as these are not meant for use in patients with high clinical
suspicion of acute infection.

Serologic testing: first line. The presence of IgM in serum or CSF is the primary
laboratory criteria by which clinicians diagnose acute or recent arboviral infection. IgM
for WNV appears a median of 4 to 10 days after the onset of symptoms (37) and
typically lasts for 1 to 3 months. Thus, a negative IgM in a patient with high suspicion
should be followed by a second sample obtained after day 5 and before day 15
postonset of illness. The presence of seroconversion confirms infection. For other
arboviruses, such as EEE, SLE, and LACV, IgM is almost always present on the day of the
onset of illness (38). For neuroinvasive disease, IgM in CSF can appear even earlier than
in the serum (39) and indicates intrathecal synthesis, but a definitive diagnosis requires
negative IgM to other viruses endemic to the geographic region where infection was
thought to occur (36).

The most common first-line assay is the IgM antibody capture enzyme-linked
immunosorbent assay (MAC ELISA), which uses an anti-IgM antibody to specifically
isolate IgM-class antibodies from the other isotypes and has been used for diagnosis
since the 1990s. Compared to standard ELISAs, the MAC ELISA reduces competition
from IgG and also reduces the risk of nonspecific antibody binding, improving both
sensitivity and specificity (40). The CDC-developed MAC ELISA has an estimated sensi-
tivity of 84% relative to WNV clinical case definitions (39) and a specificity of 94% when
assessed against Japanese encephalitis complex viruses (41). Commercial MAC ELISAs
have a sensitivity of �95% relative to the CDC assay (42, 43).

TABLE 2 Characteristics of laboratory tests used to diagnose arbovirus infections

Modality Strength(s) Weakness(es) Sensitivity (%) Specificity (%) Reference(s)

Serology
ELISA

IgM capture Decreased rates of false positivity
from nonspecific antibody
binding

Decreased rates of false
negativity from competition
with preexisting IgG

Cross-reactivity with other members
of the same family

Persistence of IgM for �1 yr in some
cases

CDC, 84 94 39, 62
Commercial assays,

98–100a

92–97 24

Indirect IgG Fourfold rise in titer identifies
recent infection in the
presence of preexisting IgM

Cross-reactivity with other members
of the same family

Long-lasting IgG from prior
infections

CDC, 84 39
LDT,c 40 94 58
Commercial, 100a 83 42

IgG avidity assay Allows for differentiation of
recent from past infection

No commercially available tests

PRNT Quantifies neutralizing antibodies Requires highly trained staff
Highly specific Requires biosafety level 3 conditions
Unaffected by history of prior

infections
Slow turnaround time

IFA As sensitive as MAC ELISA Subjective interpretation IgM, 96–100b 66–100 50, 66
IgG, 92–100b 42–90 42, 57

MIA Can be highly multiplexed Not commercially available 98 96 42, 57
IHC Useful for confirmatory diagnosis

when tissue is available
Limited data on sensitivity and

specificity

Molecular
diagnostics

qRT-PCR High analytic sensitivity and
specificity

Rapid turnaround time
High throughput

Limited by short time period of viral
replication

Serum, 14 100 70
Whole blood, 87b 100 71
CSF, 57 100 70
Urine, 44 100 72

mNGS No prior hypothesis on the target
pathogen necessary

Low throughput
Limited by short time period of viral

replication
aRelative to the CDC ELISA.
bRelative to commercial or laboratory-developed ELISA.
cLDT, laboratory-developed test.
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A newer generation of serologic tests using microsphere immunoassays (MIAs)
coated with recombinant viral antigens provides accurate results with a short turn-
around time while also being well suited for multiplexing (44–46). The latter is a
significant benefit, given that overlapping clinical presentations and geography neces-
sitates testing of multiple arboviruses in parallel. A large validation study of a 13-
antigen multiplexed IgM and IgG MIA platform using 647 serum and CSF samples found
an error rate of �5% relative to gold standard neutralization assays (46).

One challenge in the diagnosis of acute arbovirus infection is the persistence of IgM,
which can last for up to 500 days in some patients with WNV (47). Thus, it is critical to
simultaneously check IgG, which is expected to be negative in acute infection. The
standard test for IgG is the indirect ELISA, which uses secondary antibodies to the
patient’s own virus-specific antibodies. In some cases, IgG avidity assays may help in
determining the timeline of infection by differentiating lower-affinity IgG generated in
response to a recent infection from higher-affinity IgG targeting strains from an older
infection (48), although this is not routinely performed in clinical practice.

Serologic testing: confirmation. Another primary challenge with interpreting
serologic tests for acute arbovirus infection is a high rate of false positivity due to
cross-reactivity (49–53). Historically, the source of antigen in the assay represented a
source of false positivity. First-generation ELISAs utilized antigens derived from virus-
inoculated suckling mouse brain preparations or supernatants from infected cell cul-
tures (54). These preparations contained a mixture of multiple viral antigens, making
them highly sensitive but prone to cross-reaction. Later generation assays improved on
this by using bacterial or eukaryotic expression vectors to produce large quantities of

FIG 2 Pathways to diagnose probable and confirmed arbovirus infection. For patients with suspected active viral replication, the direct
detection of pathogen nucleic acid in serum or affected tissue or growth of virus in culture confirms diagnosis. Most patients present
after the period of viremia, thereby requiring the use of serologies. A positive IgM ELISA from serum or CSF establishes a probable
diagnosis. Confirmation of disease requires detection of serum-neutralizing antibodies, seroconversion, or a 4-fold increase in either
IgM or IgG titers from paired sera. Neuroinvasive disease can be confirmed by the same methods or by negative CSF IgM ELISA testing
against other endemic arboviruses that circulate in the same geographic area.
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pure recombinant envelope (E) protein domains (55–58) or noninfectious virus-like
particles containing the premembrane/membrane and E proteins (58–60). These strat-
egies allowed for better standardization of assays, safer laboratory handling, reduced
costs, and improved test specificity while still maintaining an analytic sensitivity com-
parable to that of earlier versions of tests. Further modifications to protocols and
analytic methods for normalizing against the background rate of cross-reactivity led to
additional improvements in specificity (40, 61, 62); however, cross-reactivity with
related viruses remains a challenge, necessitating confirmatory testing.

The gold standard confirmatory assay is the plaque reduction neutralization test
(PRNT). This method quantifies the degree to which cellular infection is inhibited by
neutralizing antibodies present in serum or CSF. Results provide a direct estimate of the
quantity of functional antibodies and are valuable not only for confirming recent
infection but also for vaccine development. Different thresholds for positivity are used
depending on the intended purpose. When used to diagnose active infection, the
threshold is usually set at 90% plaque reduction (PRNT90) to optimize test specificity.
Conversely, for vaccine studies where the intent is to detect low-level neutralizing titers
from attenuated vaccine strains, the threshold is set at a reduction in plaque formation
by 50% (PRNT50), which optimizes analytic sensitivity. The use of PRNT is restricted to
reference laboratories, because it is a complex test that requires skilled staff who have
experience handling live virus under biosafety level 3 conditions. It also has a slow
turnaround time, ranging from 4 to 10 days to observe a cytopathic effect. Despite
these drawbacks, PRNT remains the gold standard for diagnosis, because it is able to
resolve ambiguity in settings where cross-reactivity and persistence of antibodies from
prior infections are suspected or when it is not possible to obtain a convalescent-phase
specimen (46). For example, PRNT is essential to confirm infection for JCV and LACV,
which are both bunyaviruses with up to 20% serological cross-reactivity (63) and
overlapping geographic regions (Fig. 1); in fact, it is estimated that much of the
historically reported LACV infection may instead have been due to JCV (64). In addition,
PRNT is needed to distinguish between patients with flaviviruses WNV, POWV, and
dengue and patients with prior vaccination against yellow fever or Japanese enceph-
alitis virus (65).

Alternatives to the PRNT include direct detection (described below) or the use of
convalescent-phase samples, in which a 4-fold rise in virus-specific IgM or IgG titers
above baseline is necessary to diagnose new infection (54).

Serologic testing: alternatives. Immunofluorescence assays (IFAs) are an alterna-
tive approach that use fixed cells infected with a panel of arboviruses spotted onto a
slide. Patient serum is added to wells, followed by fluorescently labeled anti-IgM or
anti-IgG. The presence of bright spots against the counterstained background indicates
the presence of virus-specific antibodies. IFAs are not widely used due to the subjec-
tivity in interpreting fluorescence, but laboratory-developed and commercial assays for
IgM have been shown to have performance that matches or exceeds that of MAC ELISA
(66). A commercial two-tiered (ELISA and IFA) assay for POWV has recently been
described (67).

Direct detection: PCR. In some cases, serologic analyses may be negative due to
blunted antibody responses in patients with intrinsic or acquired immunosuppres-
sion (68). Nucleic acid amplification assays may be useful in this setting as well as
in patients suspected of having ongoing viral replication. Quantitative real-time
reverse transcriptase PCR (qRT-PCR) assays have high analytic sensitivity and spec-
ificity and a broad dynamic range. When coupled with automated RNA extraction
kits, they can be converted into high-throughput assays with rapid turnaround (69).
qRT-PCR assays have been designed to identify the common lineages of WNV (I and
II), with most targeting the nonstructural, envelope, and capsid genes or the 5=
untranslated region (UTR). Despite these benefits, the use of qRT-PCR in practice is
limited because viremia is low-level and transient. Only 57% of CSF and 14% of
serum samples from patients with neuroinvasive WNV in New York City during the
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1999 epidemic had nucleic acid detected by qRT-PCR (70). WNV nucleic acid
detection may be higher using whole blood (71) or urine (72); however, neither is
routinely used in clinical practice. qRT-PCR tests for POWV (73, 74), EEE (75), LACV
(76), JCV (77, 78), and SLE (79) have been described in the literature and primarily
applied to vector samples or human brain tissue; there is insufficient data to
estimate their clinical performance.

Direct detection: other. There is substantial interest in the development of
point-of-care molecular tests for some arboviral infections, such as a recently
described CRISPR-Cas13 assay coupled with a simple heat and chemical inactivation step,
which allowed for sensitive and specific detection for Zika and dengue viruses in �2 h
using minimal equipment (80). The utility of such assays is debatable for WNV and the other
domestic arboviruses due to the shorter period of viremia. Nevertheless, they show promise
in overcoming some of the analytic and logistical barriers for global arbovirus diagnosis.

Unbiased metagenomic next-generation sequencing (mNGS) represents the last
line of molecular testing for arbovirus infection and is typically reserved for
instances in which all attempts using targeted diagnostics have failed to identify a
pathogen. Examples of the successful use of mNGS include the diagnosis of
neuroinvasive WNV (81), SLEV (82), and POWV (83) infections. In most of these cases,
serologies were falsely negative due to blunted humoral responses in the setting of
iatrogenic immunosuppression. In addition, mNGS can be crucial for identifying unex-
pected arboviruses; the first case of acute infection with Keystone virus in the United States
was diagnosed by mNGS from a urine sample (21). Recently, attempts have been made to
enhance the sensitivity of mNGS through use of enrichment methods such as hybrid
capture (84) and spiked primer enrichment (85) for predefined pathogen subsets, including
arboviruses. While labor-intensive and expensive, these methods offer a lifeline to patients,
families, and clinicians seeking a microbiologic diagnosis where traditional methods have
fallen short.

Viral cultures are an alternative to molecular methods for direct detection and
are generally performed in mammalian and mosquito cell lines, such as Vero E6,
BHK, and C6/36 cells (86). Similarly to PRNT, all procedures must be performed
under biosafety level 3 conditions, and it takes approximately 2 days to observe a
cytopathic effect for EEE, 3 days for WNV, and 5 days for SLEV. Antigen tests for
WNV, such as the VecTest (87) or RAMP assay (88), generally are reserved for
surveillance of avian or mosquito populations. Although less sensitive than molec-
ular methods, immunohistochemistry (IHC) can play an adjunct role in neuroinva-
sive disease when other testing modalities are negative but suspicion remains high.
However, it is rarely used, as it requires a brain biopsy for tissue or is performed
postmortem. Relative to serologic or molecular assays, the role of viral culture and
tissue-based diagnostics for arbovirus infection is limited.

CONCLUSIONS

Infections with mosquito- and tick-borne viruses represent an increasingly recog-
nized source of morbidity in the United States, and new arboviruses are being identified
on a regular basis. Clinical presentations are nonspecific, often including fever and
neurological symptoms that can be difficult to distinguish from other infectious and
inflammatory processes. Thus, the understanding and appropriate use of laboratory
diagnostic tests are essential to identify infection in individual patients and to evaluate
nationwide patterns of disease. In most cases, arboviruses have limited duration of
replication in blood and CSF, making serologies the mainstay of laboratory diagnosis.
However, molecular testing should be considered for immunocompromised patients,
especially those with impaired B-cell responses who may have falsely negative serol-
ogy. Given the complexities in diagnosing these infections and the fact that many
patients likely have unrecognized infection, patients should be reminded about the
importance of preventative measures for tick and mosquito avoidance, primarily wear-
ing long-sleeved clothing and using Environmental Protection Agency-registered mos-
quito repellents.
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