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Abstract

Accurately quantifying dietary intake is essential to understanding the effect of diet on health and 

evaluating the efficacy of dietary interventions. Self-report methods (e.g., food records) are 

frequently utilized despite evident inaccuracy of these methods at assessing energy and nutrient 

intake. Methods that assess food intake via images of foods have overcome many of the limitations 

of traditional self-report. In cafeteria settings, digital photography has proven to be unobtrusive 

and accurate and is the method of choice for assessing food provision, plate waste, and food 

intake. In free-living conditions, image capture of food selection and plate waste via the user’s 

smartphone, is promising and can produce accurate energy intake estimates, though accuracy is 

not guaranteed. These methods foster (near) real-time transfer of data and eliminate the need for 

portion size estimation by the user since the food images are analyzed by trained raters. A 

limitation that remains, similar to self-report methods where participants must truthfully record all 

consumed foods, is intentional and/or unintentional under-reporting of foods due to social 

desirability or forgetfulness. Methods that rely on passive image capture via wearable cameras are 

promising and aim to reduce user burden; however, only pilot data with limited validity are 

currently available and these methods remain obtrusive and cumbersome. To reduce analysis-

related staff burden and to allow real-time feedback to the user, recent approaches have aimed to 

automate the analysis of food images. The technology to support automatic food recognition and 

portion size estimation is, however, still in its infancy and fully-automated food intake assessment 

with acceptable precision not yet a reality. This review further evaluates the benefits and 

challenges of current image-assisted methods of food intake assessment and concludes that less 

burdensome methods are less accurate and that no current method is adequate in all settings.

INTRODUCTION

Accurately quantifying food intake (FI) is crucial for investigating the relationship between 

diet and health in observational studies, understanding the effects of dietary changes on the 

treatment and management of obesity and obesity-related diseases, and informing public 

health policies based on empirical data [1]. To date, self-report methods such as food 
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records, food recalls, and food frequency questionnaires are the mainstay of nutritional 

epidemiology research [2] and commonly used to assess FI in clinical and research settings 

[3,4]. While self-report methods have helped to identify associations between consumption 

of different foods or diet quality and eating behaviors and diseases [1], evidence indicates 

that these methods frequently inaccurately assess energy and nutrient consumption [5], and 

their continued use in scientific settings has consequently been questioned and criticized 

[5,6]. Limitations of self-report methods and sources of their error include: (a) unintentional 

under-reporting of foods (forgetfulness), (b) intentional under-reporting of foods with 

negative health images (high-fat/high-sugar foods), (c) intentional over-reporting of foods 

that are perceived as healthy (fruits, vegetables), and (d) portion size estimation errors [7,8]. 

Further, reactivity due to awareness of being measured can cause changes in eating behavior, 

resulting in inaccurate reporting and the failure to capture habitual FI data [9]. People also 

have been found to undereat and lose weight when recording their FI [10]. The last 

limitation, however, highlights a strength of using self-report methods, as people become 

more aware of their FI and eating patterns when attempting to manage their body weight, 

even though the FI data are not necessarily accurate. Thus, self-reported FI remains a 

frequently-used tool in the clinical delivery of weight management services, with problems 

primarily occurring when these data are used to quantify intake.

Image-assisted methods, which rely on images of foods to estimate FI, are a promising 

approach to quantify FI that can overcome many of the limitations of self-report. For 

example, these methods can reduce user burden and eliminate the need for the user to 

estimate portion size. Additionally, many of these methods transmit food image data to 

researchers or clinicians in real time or near real time, providing a platform to adapt 

Ecological Momentary Assessment (EMA) [11] and other methods to detect and minimize 

missing data [12]. Over the past two decades, several image-assisted methods have been 

developed that include active or passive image capture and automated or semi-automated 

analysis of food images. As a result, some methods are better suited for certain conditions or 

populations vs. other methods. This review presents the strengths and weaknesses of 

currently available image-assisted methodologies for FI assessment and evaluates their 

validity in different settings and populations.

METHODS

We conducted a literature search through the PubMed electronic database for human studies 

from inception to February 2020. We included articles published in English, reporting 

image-assisted methods for FI assessment, assessing their feasibility, and validating them 

against weighed intake and doubly labeled water (DLW). The following search terms were 

used individually and in combination: diet*/food/energy intake, digital photography, valid*, 

reliab*, food record, image-assisted, image-based, portion size, wearable, food recognition. 

The references of articles were also screened for potentially relevant studies. For this review, 

methods were categorized as either primarily relying on human raters to estimate FI based 

on food images vs. methods that claim to be automated or semi-automated. As detailed 

herein, the term automated or semi-automated is somewhat of a misnomer, however, and 

those methods still require considerable effort from a human. Further, the reader should be 
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cognizant that the methods used to capture food images can be distinct from the methods 

used to analyze the images.

RESULTS

The literature search identified 278 articles. Forty-seven articles, reporting 12 distinct 

methods of image-assisted FI assessment met the inclusion criteria. Table 1 provides an 

overview of the included methods and their validation in various settings. Figure 1 illustrates 

the strengths and limitations of the different methodologies regarding their accuracy, 

feasibility, and ability to detect food waste.

Analysis of Food Images by Human Raters

The Digital Photography of Foods Method (DPFM)—The Digital Photography of 

Foods Method (DPFM) was developed to allow unobtrusive estimation of FI in cafeteria or 

similar settings [13,14], and this method or very similar methods have been developed and 

utilized by many groups [13–23]. These methods use digital video cameras or other devices 

(e.g., smartphones) to quickly capture images of participants’ food selection and plate waste 

and of precisely weighed standard portions of the foods served on the day of data collection. 

The images of the weighed standard portions serve as reference images during the analysis 

of participants’ food images, which can occur after data/image collection. The foods in the 

reference images are linked to foods in the United States Department of Agriculture’s 

(USDA) Food and Nutrient Database for Dietary Studies (FNDDS) [24], an alternative 

nutrition database, manufacturer’s information, or a custom recipe. This allows estimation of 

energy and nutrient intake. Trained raters analyze the images via computer software that 

simultaneously displays images of (a) the participant’s food selection, (b) plate waste, and 

(c) the weighed standard portion for each food consumed. The rater then estimates the 

number of portions of the standard portion of food that was selected and discarded. The 

software then calculates the amount of food selected, plate waste, and FI, which is the 

difference between food selection and plate waste.

Portion size estimates from this method have been shown to strongly correlate with weighed 

portion sizes (r=0.92) [13] and mean overestimation of image-based estimates compared to 

weighed foods is small, i.e., 5.2 g (standard error [SE] 0.95) or 4.7% of the weighed value. 

The mean deviation of individual food items such as entrées (17.5 g [SE 4.3]; 6.9%), 

starches (−1.2 g [SE 1.1]; −1.7%), fruits/vegetables (4.8 g [SE 1.8]; 5.9%), desserts (4.2 g 

[SE 2.6]; 5.4%), and beverages (7.6 g [SE 3.1]; 4.3%) were likewise small for image-based 

estimates of total intake compared to weighed estimates; however, condiment intake tended 

to be overestimated by 4.9 g (SE 4.6; 17%) [13]. This limitation is not unique to this 

method, and condiments typically do not account for a large proportion of daily FI. In school 

children (N=239), the mean difference between image-based and weighed estimates of total 

intake (g) was likewise very small, i.e., 3 g (standard deviation [SD] 20) or 1% [23] and in 

preschool children (N=22) digital diet estimates were 4% lower than the actual weights [18]. 

Importantly, agreement among raters has been shown to be high (intraclass correlation 

coefficients of 0.84 [14] and even 0.92 [16] and 0.93 [25], and Cohen’s κ of 0.78 [23]).
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The DPFM and similar methods have proven to be adaptable and provide a comprehensive 

assessment of FI related behaviors, and the accurate quantification of plate waste is a unique 

strength of this and other image-assisted methods, particularly considering the goal of 

cutting food waste by 50% in the United States by 2030 [26]. Further, food selection/

provision and waste data can be used to determine if efforts to improve diet quality result in 

higher plate waste due to people not eating the healthier foods, or if food provision and 

waste systematically differ such that dietary intake is more or less healthy [27]. Examples of 

the feasibility and utility of digital photography include its ability to estimate FI of large and 

diverse populations in various settings, including soldiers (N=139) during basic combat 

training [15], elementary school children (N=670) during school lunches over 2 years [15], 

and >2000 children from 38 schools over a 3-year period where intake was quantified for 3 

days at 3 different time points [17]. Further, digital photography methods have been used to 

(a) characterize lunch meals served to preschoolers (N=796) enrolled in Head Start centers 

[20], (b) estimate FI at family dinners of 231 minority preschool children [19], (c) compare 

elementary school students’ food selection in the school cafeteria to the Institute of 

Medicine’s recommendations across 33 elementary schools, and (d) evaluate the 

effectiveness of a 28-month school-based obesity prevention intervention (LA Health) at 

reducing children’s selection and consumption of added sugars and sodium during school 

lunches [22,27]. Finally, digital photography has been used to assess changes in energy and 

macronutrient intake during a 16-month exercise trial (Midwest Exercise Trial-2 [21]) in 91 

participants over four 7-day periods of ad libitum eating in a university cafeteria.

In summary, the validity and utility of the DPFM and similar methods indicate that they have 

become the method of choice for quantifying food selection, waste, and intake in cafeteria 

settings.

Digital Photography + Recall (DP+R)—The Digital Photography + Recall (DP+R) 

method estimates total daily energy intake (EI) by combining digital photography (pre-post 

meal images of food) for assessing EI in a cafeteria setting with dietary recall to record 

foods consumed outside of the cafeteria setting [28]. The DP+R method includes placing 

notes on the cafeteria tray to describe any difficult-to-identify food/drink items. 

Additionally, typical measuring cups and spoons are included in the images to facilitate the 

estimation of portion size. Multiple-pass dietary recalls are performed at each cafeteria meal 

to document any foods or drinks consumed outside of the cafeteria setting that day [28]. The 

DP+R method is valid in estimating total EI (required minimum of two cafeteria meals per 

day) in 91 young adults with overweight or obesity over 7 days. The mean overestimation of 

EI was 264 kJ (SD 3138; 63 kcal [SD 750]) per day or 6.8% (SD 28) compared to DLW 

whereby 28.8% of the total estimated daily EI occurred from foods consumed outside of the 

cafeteria [28]. The implementation of smartphone-captured images of foods consumed 

outside of the cafeteria may further improve the accuracy of the DP+R method and at the 

same time reduce participant burden.

Remote Food Photography Method © (RFPM)—The Remote Food Photography 

Method © (RFPM) resulted from the adaptation of DPFM methods for free-living conditions 

[12,25,29]. When using the RFPM, participants place a reference card next to their food and 
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capture an image of their food selection and plate waste using the SmartIntake® app on a 

smartphone or other camera-enabled device. For foods that cannot be identified by wrappers 

or containers, participants briefly annotate the images (e.g., “chicken nuggets”). The 

annotated images are sent wirelessly to the laboratory via the app. Image information data 

(date, time, geolocation) are recorded and stored for all food images. In the laboratory, the 

images are analyzed to estimate FI using methods similar to the DPFM [13,14]: the foods in 

the images are linked to a nutrient database via computer software and compared to images 

of foods with known portion size. The result is detailed data on food selection, plate waste, 

and FI by difference.

A weakness of the RFPM is that it depends on participants’ ability to remember or not 

neglect to capture images of all consumed foods and calorie-containing beverages. To help 

address these concerns and ultimately improve data quality and completeness, EMA 

methods [11] have been incorporated. EMA methods prompt participants to capture images 

by sending reminders (text messages, push notifications) around participants’ typical meal 

times [25,29]. A web-based computer system tracks the delivery of prompts as well as 

participants responses to the prompts, allowing study personnel to more easily detect 

missing data in near real time. To capture FI data in the case of missing images or phone/app 

malfunction, participants are asked to additionally use a back-up method.

The reliability and validity of the RFPM have been tested in several different settings and 

populations [12,25,30–35]. First, the RFPM was validated against weighed lunch and dinner 

meals over three days, which participants (N=52) consumed either in the laboratory or in 

free-living conditions [25]. The RFPM underestimated daily EI by only 151 kJ (SE 81; 36 

kcal [SE 19]; 5.5%) in the laboratory and by 406 kJ (SE 159; 97 kcal [SE 38]; 6.6%) in free-

living conditions [25]. Further, the mean difference in estimating EI was stable over different 

levels of EI and did not differ by body weight or age [25]. Second, the RFPM was validated 

in adults (N=50) over six days in free-living conditions against DLW [12], which is 

considered accurate for quantifying EI over time in free-living individuals [36]. Total daily 

EI estimates from the RFPM did not differ significantly from DLW with a mean daily 

underestimation of 636 kJ (SD 2904; 152 kcal [SD 694]) (p=0.16) or 3.7% (SD 28.7) and a 

consistent error over different levels of EI [12]. Further, the RFPM’s accuracy in estimating 

nutrient intake was confirmed in two laboratory-based test meals, in which intake of 

macronutrients and most micronutrients (Calcium, Sodium, Iron, Fiber, Vitamin C) was not 

significantly different from weighed values [12]. Assessing FI with the RFPM also was not 

associated with reactivity or changes in EI [12], and, similar to the DPFM, the RFPM has 

proven feasible and effective at quantifying the plate waste of adults in free-living conditions 

[37].

The RFPM and SmartIntake® app have proven accurate at measuring infant formula in baby 

bottles at different stages of preparation (dry powdered formula, prepared formula, liquid 

waste). The RFPM was equivalent to all weighed servings of formula within 7.5% 

equivalence bounds and it underestimated EI by ~3% compared to direct weighing [32,33]. 

With preschool children who eat solid foods, the RFPM’s validity is less consistent, 

however. Specifically, in preschool children (N=54) who lived in a research unit for one day, 

the RFPM overestimated total intake in grams and kJ by 2.9% (SD 6.6) and 7.5% (SD 10.0), 
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respectively, compared to weighed intake, and bias increased with higher levels of intake 

[30]. In free-living conditions over seven days, however, the method underestimated total 

daily EI by 929 kJ (SD 1146; 222 kcal [SD 274]; 15.6%) when compared to DLW [31]. 

Although this level of error is in the adequate reporting range identified by Burrows et al. in 

their review of FI assessment methods in children [38], the results demonstrated that, when 

the RFPM and SmartIntake® app are used by children’s caregivers, the method and app 

require refinement to obtain the desired level of validity in young children. The authors 

noted that the biggest challenge in this target group was providing sufficient training to all 

caregivers (some were not disclosed by the families) and ensuring that images of all meals, 

snacks, and beverages were captured and sent to the laboratory [30,31]. In pregnant women 

with obesity, the RFPM similarly was not able to accurately estimate EI, capturing only 

around 64% (SE 2.3) of DLW-measured total daily EI [39], which appeared to be due, at 

least in part, to participants failing to capture images of snacks [39].

The lackluster validity data from the pediatric and pregnancy studies highlighted challenges 

with the EMA prompts that were used in the older version of SmartIntake®. Specifically, the 

prompts were previously sent via email, while subsequent versions of the app utilize both 

push notifications (pop-up messages that are received on one’s smartphone, even if the app 

is not currently in use) and text messages to deliver EMA reminders, improving their 

effectiveness. Nonetheless, the data indicate that when images are captured, an accurate 

estimate is typically obtained. The RFPM and SmartIntake® app also have proven feasible 

and to produce clinically relevant data in demanding conditions, including assessing meal 

timing, location, level of preparation, and quality of dinner meals among rural, low-income 

families (N=31) over one week (153 dinner meals) [34,35]. Finally, the RFPM was a feasible 

and acceptable method for parents of young children (N=9) with type 1 diabetes mellitus to 

assess breakfast nutrition over three days [40].

In summary, the RFPM and SmartIntake® app have many of the same benefits as the DPFM 

and similar methods, including adaptability to various populations and settings. 

Additionally, the reference card that is used with the RFPM can facilitate portion size 

estimates but is not entirely necessary. It does, however, provide a platform for computer 

imaging algorithms to (a) standardize the images for distance, angle, and color, and (b) 

attempt to identify and estimate the portion sizes of the foods [41,42].

Food Record App (FRapp)—The Food Record App (FRapp) uses a methodology similar 

to the RFPM asking participants to capture and annotate images of all foods and beverages 

before and after consumption in free-living conditions and to include a fiducial marker 

(reference card) in each image [43]. FRapp integrates text entry, prompts predefined for 

eating occasions, and real-time communication between the user and clinician/researcher. 

The app also allows dietary intake recording via methods other than food images, including 

speech-to-text conversions with food item extraction, capturing food label/nutrition facts/

barcode photos, and selecting from recently consumed food sets [43]. FRapp was an 

accepted method for dietary intake assessment in community-dwelling adolescents (N=18) 

in a free-living environment over three days; however, only 60% of all eating events with 

images included the fiducial marker and only 40% included both a pre- and post-meal 

image, indicating the need for further refinement of the method to improve data 

Höchsmann and Martin Page 6

Int J Obes (Lond). Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



completeness in this population [43]. The FRapp has not yet been validated regarding its 

accuracy in estimating EI in either a laboratory or free-living setting. Validation of the 

FRapp will be important to evaluate whether the various options for dietary input, which 

could affect rater/analysis and user burden, yield any additional benefit to the accuracy of 

the method compared to methods that rely solely on food images.

The Nutricam Dietary Assessment Method (NuDAM)—The NuDAM combines a 

phone-captured image of food selection (with reference card) with a voice memo describing 

the food selection and waste as well as location and type of meal. In addition, on the 

following day, a brief follow-up phone call is used to probe for commonly underreported 

foods, and adjustments to the voice memos are made accordingly [44]. The image and 

accompanying voice recording are analyzed by trained professionals. In a pilot study (N=10) 

NuDAM was compared to DLW regarding its accuracy in assessing total daily EI over 3 

days. NuDAM (8.8 MJ [SD 2.0]; 2102 kcal [SD 478]) underestimated total daily EI 

compared to DLW (11.8 MJ [SD 2.3]; 2819 kcal [SD 549]) by around 24%, likely due to 

under- or non-reporting of consumed foods or sugary beverages [44]. The accuracy of 

NuDAM has only been assessed in a pilot study and further studies with larger sample sizes 

are needed. However, it is noteworthy that the average underestimation of 24% compared to 

DLW is rather large compared to that of similar methods that are less burdensome and do 

not require a follow-up phone call (e.g., the RFPM).

24h Multiple-pass Dietary Recall + SenseCam (MP24+SC)—The MP24+SC 

method combines multiple-pass 24h dietary recall with SenseCam images taken throughout 

the day on the day before the recall [45]. SenseCam is a wearable camera with a wide-angle 

lens and built-in accelerometer, heat sensor, and light sensor. It is worn around the neck on a 

lanyard and captures images approximately every 20 seconds, as triggered by the sensors 

[46]. Participants wear the SenseCam continuously; however, they have the option to remove 

it whenever they are in a location or situation in which they deem photography 

inappropriate. On the following day, after completion of the dietary recall by trained 

dietitians, participants may review all SenseCam images in private and delete any images 

they prefer not to share. Following this, the researcher reviews the SenseCam images with 

the participant, asking the participant to confirm or modify the self-reported foods without 

giving any suggestions. Gemming et al. [45] assessed EI with the MP24+SC method over 

three non-consecutive 24h periods in free-living conditions (N=40) and found that on 

average, total daily EI as assessed by MP24+SC (13196 kJ [SD 2529]; 3154 kcal [SD 604]) 

was underestimated by 9% compared to DLW (14485 kJ [SD 2632]; 3462 kcal [SD 2632]) 

in men (n=20) and by 7% (10091 kJ [SD 1672]; 2412 kcal [SD 400] vs 10841 kJ [SD 1639]; 

2591 kcal [SD 392]) in women (n=20). Compared to MP24 alone, which underestimated 

average daily EI by 17% (men) and 13% (women) compared to DLW, the addition of the 

SenseCam reduced the error in daily EI estimation by almost 50%, as previously unreported 

foods (often snacks) were identified [45]. These data are impressive, though the method has 

considerable participant and staff burden related to the participant identifying situations/

locations in which photography is inappropriate and turning off the SenseCam, the need for 

the participant to screen all images, and the participant reviewing the images with a staff 

member.
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Micro-camera—This method combines a lightweight, wearable micro-camera, worn on 

the ear similar to a wireless earpiece for cell phones, with a food diary [47]. The micro-

camera has a wide-angle lens (170°) and a microphone for audio recordings during meal 

times. In a pilot study (N=6), total daily EI estimates from food diary entries over 2 days 

were analyzed with and without the additional audio-visual micro-camera recordings and 

compared to EI measured via DLW [47]. The addition of the micro-camera improved the 

accuracy in estimating total daily EI only slightly from a 34% underestimation (−3912 kJ 

[SE 1996]; 935 kcal [SE 477]) to a 30% underestimation (−3507 kJ [SE 2170]; 838 kcal [SE 

519]) compared to DLW. Much of the underestimation was likely due to underreported 

foods/snacks and the fact that participants forgot or chose not to turn on the camera during 

meal times. Interpretation error in estimating intake by the assessors likely further 

contributed to the large underestimation [47]. Substantial refinement of the method and 

studies with larger sample sizes are necessary to justify the additional burden of wearing the 

micro-camera, which in its current state, did not lead to clinically meaningful improvements 

in EI estimation compared to the food diaries alone.

Automated and Semi-automated Analysis of Food Images

Mobile Food Record (mFR)—The Mobile Food Record (mFR) method has been 

extensively studied and consists of a smartphone app-based food record and a backend 

secure cloud-like image analysis system [48,49]. When using mFR, the user captures an 

image of the food (including a fiducial marker in the image), which is then transmitted to a 

server for automatic analysis. The analysis process is based on statistical pattern recognition 

techniques, identifying food and drink items in the image by comparing the image with 

those in the database. Next, the labeled image is returned to the participant for review, who 

then confirms or corrects the automatic labels before sending the image back to the server 

for final identification and automatic volume estimation via 3D reconstruction of the food 

items from the images [50]. Finally, identified foods are matched to the USDA FNDDS for 

nutrient analysis [48,49].

In a first validation study in adolescents (N=15), the mean error in mFR-estimated weights 

of individual food items compared to known weights ranged from a 38% underestimation to 

a 26% overestimation, with 75% of all analyzed foods being within 7% of the true value 

[50,51]. In 45 community-dwelling adults, mFR-reported daily EI over 7.5 days correlated 

significantly (r=0.58) with DLW-measured daily EI and underestimation of total EI was only 

12% (SD 11) for men and 10% (SD 10) for women with no systematic bias with increasing 

EI [52]. Most participants rated the usability of mFR as easy and indicated willingness to 

use the method for an extended period [52]. Further, the general feasibility and acceptability 

of the mFR method have been confirmed in 62 young children (3–10 years) [53] and 41 

adolescents (11–15 years) [54]; however, variations according to sex and eating occasions in 

adolescents (higher underreporting in boys and frequently unreported snacks) highlight the 

need for increased training in the target group to ensure complete data [54]. The mFR 

method has further been used to characterize adolescents’ (N=93) plate waste over three 

days [55] and to assess if 6-month tailored dietary feedback was effective in improving 

dietary intake of young adults (N=143) [56]. Recently, the automatic portion size estimation 

of the mFR method was further refined, being now able to estimate portion size and food 
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energy without the need to fit geometric models onto the food but rather by using a complex 

algorithm that relies on learned energy distribution images [57]. This method’s accuracy 

needs improvement, however, as mean error in estimated EI was 874 kJ (209 kcal; 38%) 

compared to pre-weighed foods for the 347 analyzed eating occasions. Although further 

refinement is needed to improve accuracy and include various eating styles and patterns, this 

development may broaden the applicability of the mFR method to diverse foods and 

populations.

GoCARB—GoCARB is a smartphone-based food recognition system designed to support 

patients with type 1 diabetes mellitus in carbohydrate counting [58]. When using GoCARB, 

the user places a reference card next to their food and uses a smartphone to capture two 

images of the food from two different angles. The plate is detected via a series of computer 

vision operations, which automatically segment and recognize the different food items and 

reconstruct their 3D shape. After food recognition, the carbohydrate content is calculated by 

linking each food item’s volume to the nutritional information provided by the USDA 

FNDDS [24]. In a pilot study with 19 adults with type 1 diabetes and 114 test meals (one 

extreme outlier was removed), the mean absolute estimation error of GoCARB compared to 

precisely weighed carbohydrate content was 26.9% (SD 18.9) [58]. This was a significantly 

smaller error (−22%; p=0.01) compared to self-report, which had a mean absolute estimation 

error of 34.3% (SD 24.3) relative to the precisely weighed carbohydrate content. Food 

recognition was correct for 85.1% or all food items and 90% of participants found GoCARB 

easy to use and would like to continue to use it in their daily life. GoCARB has to date not 

been validated in free-living conditions.

FoodCam—FoodCam is a semi-automatic mobile food recognition system. When using 

FoodCam, the user points a smartphone camera at the food plate and draws bounding boxes 

around the plates on the smartphone screen to start the food recognition and portion size 

estimation process. Next, the system’s database populates a list of possible food items for 

the highlighted foods by comparing the captured food items with images stored in the 

database via a complex algorithm, and the participant selects the best fit. The system does 

not automatically recognize food volumes and it requires the user to estimated food volumes 

by touching a slider on the phone screen to adjust the bounding boxes around the food. 

Finally, calorie and nutrition estimates of each of the recognized food items are calculated 

based on the image and the food selection from the database [59]. To date, the validity of the 

FoodCam system has not been tested in laboratory or free-living conditions.

Snap-n-Eat—Snap-n-Eat is designed to recognize foods and estimate the energy and 

nutrient content of foods automatically [60]. The analytical system recognizes the salient 

region (food item) in the food image taken by the user and uses hierarchical segmentation to 

segment the image into regions. Next, the system classifies these regions into different food 

categories using a linear support vector machine classifier. To estimate portion sizes of the 

foods, the system counts the number of pixels in each food segment, which then allows the 

estimation of the energy and nutritional values of the foods. In a feasibility study, the system 

achieved over 85% accuracy when classifying 2000 images of food items of 15 different 

categories [60]. To be a feasible tool for dietary assessment, however, the system needs to be 
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significantly up-scaled to include far more than the 15 different food categories and validity 

in free-living conditions needs to be established. Additionally, it is unclear if a user can 

correctly identify misclassified foods, as incorrectly identified foods necessarily result in 

inaccurate FI estimates.

eButton—The eButton is a small, chest-worn camera, which automatically captures images 

of consumed foods every 2–4 seconds. The recorded images are analyzed by computer 

software to estimate the food’s portion size semi-automatically. Specifically, during analysis, 

food items are identified by the rater and a particular 3D shape model is selected from the 

software’s library and adjusted in location and size to cover the food item in the image as 

closely as possible. The volume of the food item is then estimated by the software using the 

volume of the fitted model [61]. In a small pilot study (N=7), eButton was used to capture 

images of 100 food samples of Asian and Western foods (no liquids) and the software was 

then used to estimate portion size [61]. The mean relative error across all food samples was 

−2.8 % (SD 20.4) and the error for 85 out of 100 foods was between −30% and 30% 

compared to the reference method of seed displacement, which is a commonly-used method 

to objectively quantify food volume [62]. The eButton has to date not been validated in free-

living conditions.

DISCUSSION

The studies included in this review present image-assisted methodologies to improve the 

assessment of FI in different settings and populations. Many methods can reduce under-

reporting observed with traditional self-report methods, though some methods, particularly 

those relying on automated image analysis, inaccurately estimate FI. In cafeteria settings, the 

DPFM and similar methods have proven feasible, effective, and highly accurate at estimating 

FI in large samples of diverse participants [13–23] and can today be considered the method 

of choice. In free-living conditions, smartphone apps can be used to capture food images and 

to transfer the images and associated data to a reading center in real time. These methods 

can produce accurate estimates of energy and nutrient intake [12,25,30–33], though accuracy 

relies on sound methods, such as EMAs, to facilitate data quality and completeness.

A noted weakness of many of the reviewed methods is their limited reliability and validity. 

For example, many have only been tested in proof-of-concept and pilot studies and 

laboratory settings and are lacking validation against DLW in free-living conditions. Further, 

larger sample sizes are needed to make results more generalizable and identify the best 

method for specific settings and target groups. In general, more accurate methods tend to be 

less burdensome for the participant but can be more burdensome for the image-analyzing 

staff. This limits the deployability of these methods on a large scale.

Many of the reviewed methods, particularly those used in free-living conditions, rely on 

smartphone-captured images. These images are then sent to a reading center for analysis by 

human raters (RFPM [12,25,30–33,39], FRapp [43], NuDAM [44]) or analyzed semi-

automatically via software and additional input by the user (mFR [48,49], GoCARB [58], 

FoodCam [59], or Snap-n-Eat [60]). Smartphones are a logical choice for image-assisted 

dietary assessment since ~3.2 billion people use smartphones daily [63] and most 
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smartphone users carry their phones with them throughout the day [64]. Smartphone apps 

can reduce missing or incomplete data in free-living conditions by incorporating EMAs and 

thereby accurately estimate the EI of adults [11]. Failure to capture images of foods 

consumed due to forgetfulness and/or due to intentional misreporting (e.g., social 

desirability bias) is a limitation of image-based methods that remains a challenge. Although 

this limitation applies to any FI assessment method requiring participants to truthfully record 

all consumed foods, it is still an important limitation that should be considered when using 

methods with active image capture by the participant. For this reason, passive/automated 

image capture via wearable devices such as the eButton [61], SenseCam [45], or Micro-

camera [47] offer significant advantages since missing food images should occur less 

frequently and additional contextual information about the eating event can be recorded and 

annotated at a later date. Currently, however, passive image capture also has limitations 

which might limit the ability to disseminate these methods widely in the immediate term. 

For example, the battery life and data storage capacity of the wearable device needs to be 

sufficient to capture high-quality images throughout the day. The large amount of passively 

captured images throughout the day further requires a time-consuming review by the 

participant before images are transmitted to the laboratory for analysis as some pictures may 

include other people and objects in the participant’s environment that the participant does 

not wish to share due to privacy concerns. While this review process is inevitable and 

participants would likely have reasonable concerns using systems without the option to 

censor images, the censorship of certain (food) images could affect the accuracy of these 

methods. Technological advances promise to dramatically improve these methods in the 

future.

Many of the more accurate methods rely on the participant or researcher to manage images, 

verify which images to send, identify foods or verify automatic food identification, and/or 

estimate or verify portion size. Thus, while some approaches of automated analysis have 

promise for the future, to date, completely automated food image analysis, including 

identification of foods, matching of foods to a nutrient database, and estimation of portion 

size and food waste with sufficient accuracy is not yet a reality. Even with much more 

advanced recognition technology in the future, the automatic image-based identification and 

distinction between very similar looking foods will likely remain a significant challenge and 

may never be possible without at least some degree of user verification. Additionally, the 

technology to support automatic portion size estimation is still in its infancy and not possible 

with acceptable precision without at least some form of user feedback.

Because of the limitations of automated food image recognition, many systems and studies 

in free-living conditions (RFPM [12,25,30–33,39], SenseCam [45], NuDAM [44]) continue 

to rely on analysis by trained raters who estimate portion sizes and calculate energy and 

macro-/ micronutrient content by matching the foods in the images to a nutrient database. 

Currently, analysis by human raters is more accurate and less variable than semi-automated 

image analysis. Importantly, rater-based analysis can rely on existing nutrient databases 

(USDA, etc.), whereas having to create comprehensive databases for automated food 

recognition systems can be burdensome and limits feasibility, at least without further 

technological advances.
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Regardless of the method by which portion size is estimated, it is important to recognize the 

limits of the estimation. For example, portion size estimation of foods with amorphous 

shapes or higher energy densities tends to be challenging [65]. Further, the correct 

identification of certain ambiguous foods (e.g., diet soda vs. regular soda), preparation 

method (e.g., fried vs. baked), and the type and amount of hidden ingredients in a dish (e.g., 

butter in mashed potatoes) frequently require some form of image annotation by the 

participant. The precise annotation of images by the participant, of course, relies on self-

report with its known flaws, and participants will not always know enough about the 

ingredients and preparation methods of their food to precisely account for added fat, etc. 

This problem is not unique to image-based methods, however, and even when directly 

weighing FI, the recipe and precise amount of ingredients used need to be carefully 

quantified and recorded. Nevertheless, despite these issues that are likely random [66], 

image-based methods that use trained raters for image analysis are still far less problematic 

than the systematic bias observed when food type and portion size are entirely self-reported 

[1,67,68].

In conclusion, image-assisted methods to assess FI will likely remain a provocative force in 

the literature. Despite technological advances, the more accurate methods still rely on human 

raters to estimate FI from food images, though significant advances in passive image capture 

and automated/semi-automated image analysis have opened a new frontier of development. 

As technology advances, the field can move forward, but only with thorough and critical 

evaluation of the strengths and weaknesses of the methods. It is unlikely that a single 

method will be a panacea and applicable to all data collection scenarios, populations, and 

sample sizes. While the less accurate methods are not suitable to measure FI as an outcome 

variable, they may still serve as important monitoring tools in behavioral interventions as 

they may mediate behavior change. In the future, pairing image-based methods with other 

sensors such as continuous glucose monitoring and using mathematical modeling to 

integrate the multi-sensor data may increase accuracy of the single methods and improve FI 

assessment.
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Figure 1. 
Overview of different dietary assessment methods concerning accuracy, unobtrusiveness, 

analysis time, participant burden, staff burden, and food waste detection. Panels A-D 

illustrate methods that rely on human rater-based analysis where images are captured in 

cafeteria settings (Panel A), actively captured by users in free-living conditions (Panel B), 

passively captured in free-living conditions (Panel C), and passively or actively captured and 

combined with self-report methods (Panel D). Panel E illustrates systems that automatically 

or semi-automatically analyze images that are captured actively or passively. It is recognized 

that these methods differ widely and that many of these systems have not been validated, 

limiting the information available to perform the ratings displayed in the figure. It is noted, 

however, that the mFR is among the most studied and validated methods in this category. 

Each category was rated based on a 4-point scale with ✖✖= poor; ✖= fair; ✔= good; ✔✔= 

excellent.

Höchsmann and Martin Page 17

Int J Obes (Lond). Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Höchsmann and Martin Page 18

Table 1.

Overview of image-assisted methods to measure food intake and studies validating these methods.

Method Methodology Review / 
Analysis

Study 
Setting Sample Size Outcome Reference 

Method
Reliability / 

Validity

Digital 
Photography 

of Foods 
Method 
(DPFM) 

[13,16,18,23]

Images of food 
selection and 

plate waste are 
captured with 
digital (video) 

cameras.

Human raters 
compare food 

images to 
images of 
weighed 
standard 
portions

Laboratory 
[13]

60 test meals 
of 10 different 
portion sizes

Portion size Weighed 
foods

Significant 
correlation with 

weighed foods of 
0.92. Mean error 

in portion size was 
+5.2 g (SE 0.95) 

or 4.7% relative to 
weighed foods.

School 
cafeteria; 5 
consecutive 

days of 
school 

lunches [16]

43 school 
children EI Weighed 

foods

ICC for total EI 
was 0.93. 

Convergent 
validity was 
supported by 
significant 
correlation 

between food 
intake and 

adiposity (r=0.45) 
and discriminant 

validity was 
supported by non-

significant 
correlation 

between food 
intake and 

depressed mood 
(r=0.1).

One 
laboratory-
based test 
meal [18]

22 preschool 
children EI Weighed 

foods

Significant 
correlation of 
DPFM with 

weighed foods of 
0.96 and mean 
error in total 

intake of −4% 
compared to 

weighed foods.

School 
cafeteria; 7 

days of 
school 

lunches and 
dinners [23]

239 school 
children EI Weighed 

foods

Mean error in total 
intake of DPFM 
of 3 g (SD 20) or 
1% compared to 
weighed foods.

Digital 
Photography 
+ Recall (DP

+R) [28]

Images of food 
selection and 
plate waste of 
cafeteria meals 
including notes 

to identify 
ambiguous 
foods and 
measuring 

cups/spoons to 
guide portion 

size estimation. 
Dietary recall 
to document 
any foods or 

beverages 
consumed 
outside the 
cafeteria.

Human raters 
compare food 

images to 
images of 
weighed 
standard 

portions and 
perform multi-

pass dietary 
recall

Cafeteria 
and free-

living 
conditions 
over 7 days

91 adults with 
overweight/ 

obesity
EI DLW

The mean EI 
estimated by DP + 

R was not 
significantly 

different from 
DLW, 

overestimating 
DLW by 264 kJ 

(SD 3138; 63 kcal 
[SD 750]) or 6.8% 
(SD 28) per day. 
No proportional 

bias variation as a 
function of the 
level of EI (r=

−0.13, p=0.21).

Remote Food 
Photography 

Images of food 
selection and 

Human raters 
compare food 

Free-living 
conditions 50 adults EI DLW (free-

living) and 
In free-living 

conditions, RFPM 
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Method Methodology Review / 
Analysis

Study 
Setting Sample Size Outcome Reference 

Method
Reliability / 

Validity

Method 
(RFPM) 

[12,25,30–
33,39]

plate waste 
(including a 

reference card) 
are captured via 
smartphone app 

and sent to 
laboratory for 

analysis.

images to 
images of 
weighed 
standard 
portions

(6 days) and 
2 

laboratory-
based buffet 
meals [12]

weighed 
foods 

(laboratory)

underestimated 
total EI by 636 kJ 

(SD 2904; 152 
kcal [SD 694]) or 
3.7% (SD 28.7) 

per day (p=0.16); 
ICC for daily EI 

was 0.74.

In the laboratory, 
underestimation 

for total EI was 17 
kJ (SD 305; 4 kcal 
[SD 73]) or 1.2% 

(SD 62.8) and 
error for 

macronutrients 
was not 

significantly 
different from 
weighed foods.

Pre-packed 
lunch 

(consumed 
in 

laboratory) 
and dinner 

meals 
(consumed 

in 
laboratory 
or at home) 
over 3 days 

[25]

52 adults EI Weighed 
foods

RFPM 
underestimated EI 

by 4.7%−5.5% 
(laboratory) and 
by 6.6% in free-
living conditions. 
ICCs for EI were 

significant for 
laboratory 

(r=0.62; p<0.01) 
and free-living 

conditions 
(r=0.68, p<0.01).

Laboratory; 
12-hour 

period [30]

54 preschool 
children EI Weighed 

foods

RFPM 
significantly 

overestimated 
total EI by 314 kJ 
(SD 452; 75 kcal 

[SD 108]) or 7.5% 
(SD 10.0). The 

MPE for the 
macronutrient 
intakes ranged 

from 2.9% (fat) to 
11.7% (protein), 

with high 
variability around 

the mean.

Free-living 
conditions 
over 7 days 

[31]

39 preschool 
children EI DLW

RFPM 
underestimated 

total daily EI by a 
mean 929 kJ (SD 
1146; 222 kcal 
[SD 274]) or 

15.6%.

Laboratory; 
2 visits 5–

10 days 
apart [32]

53 adults EI Weighed 
foods

RFPM 
underestimated EI 
of 2, 4, and 6 fl oz 
servings of infant 
formula by 6.7 kJ 
(SD 1.7; 1.6 kcal 
[SD 0.4]), 20.1 kJ 
(SD 2.5; 4.8 kcal 

[SD 0.6]), and 
25.9 kJ (SD 4.2; 

6.2 kcal [SD 1.0]), 
and overestimated 
intake by 0.4 kJ 
(SD 5.0; 0.1 kcal 
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Method Methodology Review / 
Analysis

Study 
Setting Sample Size Outcome Reference 

Method
Reliability / 

Validity

[SD 1.2]) kcals in 
8 fl oz servings, 

but was equivalent 
to weighed intake 
within 7.5% for 

all servings.

Laboratory 
[33]

7 bottles for 
each serving 
size (1, 2, 3, 
and 4-scoop) 
containing 5, 
10, and 15% 
more and less 
formula than 

recommended

Serving size Weighed 
foods

RFPM 
underestimated 
servings (1–4 

scoops) of 
powdered instant 

formula by a mean 
0.05 g (90% CI 

−0.49, 0.40) 
compared to 

directly weighed 
servings, with the 

MPE ranging 
from 0.32% to 

1.58%. Estimates 
for all serving 

sizes were within 
5% equivalence 

bounds.

Free-living 
conditions 
over 6 days 

at 2 time 
points 

(early vs 
late 

pregnancy) 
[39]

23 pregnant 
women with 

obesity
EI DLW

RFPM captured 
64.4% (early 

pregnancy) and 
62.2% (late 

pregnancy) of 
DLW-measured 

total daily EI and 
was not equivalent 

to DLW within 
20% equivalence 

bounds. The 
underestimation 
was significantly 
associated with 
low reporting of 
snacks (R2=0.4).

Food Record 
App (FRapp) 

[43]

Images of food 
selection and 
plate waste 
including 

fiducial marker, 
captured with 
smartphone 

app. Additional 
options to 

capture food 
intake are 

speech-to-text 
conversions, 

capturing food 
label/nutrition 
facts images, 

selecting from 
recently 

recorded foods.

Human raters 
analyze 

recordings 
(images of 

food, labels or 
text 

recordings) of 
eating events

Free-living 
conditions 
over 3 days

18 
adolescents N/A

1
N/A

1
N/A

1

Nutricam 
Dietary 

Assessment 
Method 

(NuDAM) 
[44]

Images of food 
selection (with 

fiducial marker) 
combined with 

a voice 
recording 

describing the 
foods, leftovers, 

location, and 
meal occasion, 

Trained 
professionals 
analyze food 
images, voice 
recording, and 

phone calls

Free-living 
conditions 
over 3 days

10 adults, 
diagnosed 

with T2DM
EI DLW

NuDAM 
underestimated 
total daily EI by 

24% compared to 
DLW.
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Method Methodology Review / 
Analysis

Study 
Setting Sample Size Outcome Reference 

Method
Reliability / 

Validity

and a brief 
follow-up 

phone call the 
next day.

Multiple-pass 
24-hour 

dietary recall 
+ SenseCam 
(MP24+SC) 

[45]

SC (worn 
around the neck 

on a lanyard) 
captures images 
of eating events 

every 20 
seconds, 

triggered to 
turn on by its 

sensors. Images 
of eating events 
are combined 
with MP24.

Review of 
food images 
and MP24 

with 
participant to 

allow 
modification 
of self-report; 
estimation of 
EI by trained 

dietitian

Free-living 
conditions 
over 3 non-
consecutive 

days

40 adults (20 
men, 20 
women)

EI DLW

MP24 + SC 
underestimated EI 
by 9% in men and 
by 7% in women 

compared to 
DLW. The 

addition of SC 
reduced the error 

in EI by 
approximately 

50% compared to 
MP24 alone.

Micro-
camera [47]

Micro-camera 
is worn on the 

ear and 
captures 

audiovisual 
recordings 

during meal 
times. 

Recordings are 
combined with 

food diary 
entries.

Human raters 
analyze food 
images and 
food diaries

Free-living 
conditions 
over 2 days

6 adults EI DLW

Compared to 
DLW, daily EI 

was 
underestimated by 
3912 kJ (SE 1996; 

935 kcal [SE 
477]) or 34% by 

food diaries alone 
and by 3507 kJ 
(SE 2170; 838 

kcal [SE 519]) or 
30% when 

combined with the 
micro-camera. 
The difference 

between the two 
methods was 
significant 
(p=0.02).

mobile Food 
Record 

(mFR) [50–
52]

Food images 
are captured 

with the mFR 
app and sent to 

a server for 
analysis. After 
review by the 
user, volume 
and nutrient 
content are 

estimated by 
the app.

Automatic 
portion size 
estimation 
based on 
statistical 

pattern 
recognition 

techniques of 
the image

Free-living 
conditions 
over a 24-

hour period 
[50,51]

15 
adolescents Portion size Weighed 

foods

Mean error in 
automated weight 
estimates using 

mFR compared to 
known weights 
ranged from a 

38% 
underestimation to 

a 26% 
overestimation, 
with 75% of all 
analyzed food 

being within 7% 
of the true value.

Free-living 
conditions 
over 7.5 

days [52]

45 adults EI DLW

mFR EI correlated 
significantly 
(r=0.58) with 

DLW-measured 
daily EI and 

underestimated EI 
by 12% (SD 11) 
for men and 10% 

(SD 10) for 
women compared 
to DLW, with no 
systematic bias 
with increasing 

EI.

GoCARB 
[58]

Food images 
are captured 

with a 
smartphone 
from two 

Automatic 
segmetation 

and 
recognition of 
food items and 

Cafeteria 19 adults, 114 
test meals

Carbohydrate 
content, food 
recognition

Weighed 
foods

The mean 
absolute 

estimation error of 
GoCARB 

compared to 
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Method Methodology Review / 
Analysis

Study 
Setting Sample Size Outcome Reference 

Method
Reliability / 

Validity

different angles 
including a 

reference card.

reconstruction 
of their 3D 

shape

precisely weighed 
carbohydrate 
content was 

26.9% (SD 18.9). 
Automatic food 
recognition was 

correct for 85.1% 
or all food items.

FoodCam 
[59]

The user 
captures a 

picture of the 
food and draws 
boxes around it 
to initiate the 

analysis 
process. The 

system 
populates 

possible food 
items and the 

user selects the 
best fit.

Automatic 
food 

recognition 
and portion 

size estimation

Laboratory N/A
2

N/A
2

N/A
2

N/A
2

Snap-n-Eat 
[60]

The user 
captures a 

picture of the 
food and the 

system 
automatically 

estimates 
energy and 

nutrient 
content.

Automatic 
portion size 

estimation by 
image 

segmentation

Laboratory

2,000 food 
images for 15 

food 
categories

Food 
classification N/A

85% accuracy 
when classifying 
2000 images of 
food items of 15 

different 
categories.

eButton [61]

Food images 
are captured 

automatically 
by a chest-worn 

camera every 
2–4 seconds. 
Human rater 
selects 3D 

models from 
software’s 

library, 
overlaying the 

food, and 
volume of food 

is then 
estimated by 
the software.

Semi-
automatic 
analysis of 

food images

Laboratory

7 adults 
capturing 100 

pictures of 
foods

Portion size
Seed 

displacement 
method

The mean relative 
error across all 

food samples was 
−2.8% (SD 20.4) 
and the error for 

85 out of 100 
foods was 

between −30% 
and 30% 

compared to seed 
displacement.

1
Feasibility study only, to date no validation of the method.

2
Usability study only, to date no validation of the method.

Abbreviations: CI, confidence interval; DLW, doubly labeled water; EI, energy intake; ICC, intra-class correlation coefficient; kJ, kilojoule MPE, 
mean percent error; SD, standard deviation; SE, standard error; T2DM, type 2 diabetes mellitus.
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