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Abstract

Predicting protein-ligand binding affinities and the associated thermodynamics of biomolecular 

recognition is a primary objective of structure-based drug design. Alchemical free energy 

simulations offer a highly accurate and computationally efficient route to achieving this goal. 

While the AMBER molecular dynamics package has successfully been used for alchemical free 

energy simulations in academic research groups for decades, widespread impact in industrial drug 

discovery settings has been minimal due to previous limitations within the AMBER alchemical 

code, coupled with challenges in system setup and post-processing workflows. Through a close 

academia-industry collaboration we have addressed many of the previous limitations with an aim 

to improve accuracy, efficiency and robustness of alchemical binding free energy simulations in 

industrial drug discovery applications. Here, we highlight some of the recent advances in 

AMBER20 with a focus on alchemical binding free energy (BFE) calculations, which are less 

computationally intensive than alternative binding free energy methods where full binding/

unbinding paths are explored. In addition to scientific and technical advances in AMBER20, we 

also describe the essential practical aspects associated with running relative alchemical BFE 

calculations along with recommendations for best practices, highlighting the importance not only 

of the alchemical simulation code, but also the auxiliary functionalities and expertise required to 

obtain accurate and reliable results. This work is intended to provide a contemporary overview of 

the scientific, technical, and practical issues associated with running relative BFE simulations in 

AMBER20, with a focus on real-world drug discovery applications.
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1 Introduction

Accurate, robust prediction of the relative binding free energy (BFE) of ligands to a target 

protein is of tremendous value in drug discovery, serving as an in silico assay and a way to 

gain deeper insights into the origin of biomolecular recognition.1–4 Rigorous free energy 

simulations of ligand-protein binding yield both thermodynamic and kinetic information, but 

can be extremely computationally intensive to converge to high precision due to the need to 

explore and sufficiently sample the minimum free energy pathway that connect bound and 

unbound states (including often starkly different entropic differences). Alchemical BFE 

simulations, on the other hand, can be engineered to be much more tractable owing to the 

property that the free energy is a state function from which thermodynamic end states 

(bound and unbound) can be connected by any pathway. In practice, thermodynamic cycles 

can be constructed that utilize ”alchemical” pathways between end states that can be 

optimally computed. Whereas alchemical BFE simulations do not provide a complete 

mechanistic and kinetic characterization of the binding process, they provide a highly 

efficient and practical approach to predict the binding affinities of lead compounds important 

in drug discovery.

While alchemical free energy simulation capability has been in AMBER since the 1980s, a 

number of technical and scientific challenges have impeded progress toward the broader 

adoption and higher impact of AMBER in drug discovery projects. This work provides a 

modern update of advances in BFE simulations in AMBER20 and a description of current 

guidelines and best practices in the context of real-world drug discovery applications. The 

manuscript is organized as follows. The remainder of this section describes the history and 

origin of free energy simulations in AMBER leading up to the latest developments in 

AMBER20 that enable large-scale application in drug discovery projects. Section 2 that 

follows provides an overview of the background formalism for alchemical free energy 
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simulations, with extended discussion of transformation pathways and protocols using so-

called ”softcore potentials”. Sections 3 and 4 discuss performance and feature advances, 

respectively, in AMBER20 for drug discovery. Section 5 reviews practical considerations 

and provides guidance to achieving robust and reliable BFE results, including system 

preparation, docking, atom mapping and λ scheduling, use of restraints and estimation of 

confidence and errors. Section 6 presents our perspective about important forthcoming and 

future work to advance the state-of-the-art. The final section provides brief concluding 

remarks that emphasize the purpose and main points of the manuscript.

1.1 Historical Overview of Alchemical Binding Free Energy Simulations

Alchemical binding free energy simulations on computers have been performed since the 

1980s, although the theoretical foundation began decades earlier with studies of nonpolar 

gases by Zwanzig, where he derived the master equation for free energy perturbation (FEP) 

to compute thermodynamic differences between two states A and B.5 In complementary 

(and earlier) work, Kirkwood described a coupling parameter, typically called lambda (λ), 

that has since been used to improve the accuracy of FEP calculations for meaningful 

chemical transformations by making neighboring states much closer (and therefore having a 

smoother thermodynamic path) as one moves from state A to B.6 Later, Bennett introduced 

an alternative approach based on minimizing the expected squared error (known as Bennett 

Acceptance Ratio, BAR),7 which was further improved based on a statistically optimal 

analysis of samples (multistate BAR or MBAR).8–11 Thermodynamic integration (TI), an 

alternative approach to FEP/BAR based on Kirkwood’s work on the theory of liquids, 

requires the calculation of the Boltzmann averaged potential energy derivative at each 

intermediate state λ.12 AMBER20 now has functionality for these multiple approaches of 

FEP (BAR, MBAR, and TI), which can be used in tandem with minimal computational 

overhead in order to gain confidence in free energy estimations.

The first published free energy methods applied to chemical systems came from Postma, 

Berendsen, and Haak in 1982, where the authors reported the free energy cost associated 

with the formation of a cavity in water13 followed by Jorgensen’s seminal work in 1985 

computing the hydration free energy difference of ethane to methanol, demarking the first 

true alchemical transformation.14 Alchemical free energy simulations were made more 

efficient by Tembe and McCammon, who noted the concept of the thermodynamic cycle and 

designed a model system to compute the ΔΔG between atoms.15 This approach was applied 

to compute the free energies for model systems, such as ligand binding in a host-guest 

system16,17 and hydration of noble gases.17 While these early works showed the promise of 

alchemical free energy simulations in drug discovery, it took years for the first prospective 

applications to appear in the literature18 and over a decade for the first published industry 

application to appear,19 yet these studies involved only single heavy atom changes. 

Eventually, larger and more pharmaceutically relevant chemical transformations were shown 

to be tractable with alchemical free energy simulations.20 Details about the history, theory, 

methods, and applications of alchemical simulations can be found in a number of excellent 

reviews.3,4,21–27
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1.2 The Origin of Free Energy Simulations in AMBER

The first implementation of free energy calculations within the AMBER suite came in 1986. 

Singh implemented and tested the software, which he built upon the previously developed 

AMBER molecular dynamics (MD) code base that had been published a year earlier as 

AMBER 2.0.28 The newly christened “Gibbs” module of AMBER was subsequently applied 

to several systems in a collaboration between Singh and Kollman with Bash of the 

Langridge Laboratory at UCSF. Together, they published the first papers describing the 

application of AMBER for free energy calculations, and the first computational free energy 

paper to appear in Science Magazine.29–31 While this was not the first application of such 

free energy calculations to be published (see section 1.1), in many ways it exploded interest 

in the field, owing to the broad journal readership, the pharmaceutically relevant test systems 

(nucleic acid bases, amino acid side chains, organic small molecules, and protein-ligand 

interactions), and the asserted high quality of the results.

Upon release, this first implementation of free energy calculations within AMBER 

supported three free energy protocols: Free Energy Perturbation (FEP), Thermodynamic 

Integration (TI), and “Slow Growth,” which represented the limiting case of TI where (it was 

asserted) if you used a very large number of λ windows, you could evaluate each window 

with exactly one sample point. It was later demonstrated that the slow growth approximation 

was unreliable in practice due to a “Hamiltonian lag”32 and therefore this approach was not 

pursued for long (although there has been a recent resurgence due to foundational work by 

Jarzynski,33 as demonstrated by Gapsys et al.34 and others). Free energy-specific options in 

this first release were limited to setting the number of λ windows, the durations of 

equilibration, the amount of data collection at each window, and the ability to “decouple” the 

vdW and electrostatic contributions. At this time, calculations were limited to the single 

topology approach (wherein only a single geometry for the molecule exists at any time, and 

changes with lambda are reflected by modifications to the target values of the internal 

coordinates and modifications of atom types)35 and the integration required for TI was 

performed using the trapezoidal rule.

At this early stage in the development and application of free energy methods, Gibbs in 

AMBER was one of only a few software packages broadly available. The primary molecular 

simulation packages at this time were research software packages from the academic groups 

of Kollman (AMBER),36 Jorgensen (MCPRO),14 Karplus (CHARMM),37 and van 

Gunsteren (GROMOS).38 Shortly after their initial publications, both Singh and Bash left 

UCSF for other positions. A second generation of development of the Gibbs free energy 

module was carried out primarily by Pearlman and Kollman, where they focused on 1) 

addressing shortfalls in the first implementation (e.g. the contribution from bond 

constraints),39,40 2) dynamically changing the λ schedule to reflect the evolution of the 

system as it progressed,41 3) validating/improving the intermediate mixing rules for non-

physical λ states,42 4) developing, characterizing and implementing best practices,35 and 5) 

integrating error propagation.43 During this period, the Gibbs module was also updated to 

reflect improvements to the base molecular dynamics methods, including the development 

of the particle mesh Ewald (PME) method44,45 for efficient treatment of long-range 

electrostatic interactions in simulations of proteins46 and nucleic acids,47,48 and their 
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parallel implementation to accommodate the supercomputing platforms of the era. In the 

early 2000s, reflecting a desire to lower the maintenance overhead in light of a rapidly 

increasing number of modifications to the base AMBER molecular dynamics platform, the 

fundamental Gibbs functionality was reimplemented into the Sander module of AMBER, 

which also serves as the (non-free energy) molecular dynamics platform, and the Gibbs 

module was retired. More recently, the free energy methods have been implemented in the 

AMBER PMEMD program, which generally replicates the functionality of Sander but 

provides appreciably better efficiency for highly parallel CPU platforms.

Free energy-specific improvements since integration into Sander (and then PMEMD) have 

included methods that can improve the efficiency of sampling (e.g. Replica exchange), more 

control over the λ scheduling, improved methods for integrating the TI curve, and tools to 

support absolute binding free energy calculations. Broadly, changes to free energy 

methodologies in AMBER since the first implementations have been evolutionary. The 

fundamental advancement that has had the greatest effect on the ability to obtain reliable 

results from free energy calculations has been an increase by more than 6 orders of 

magnitude in compute power since the first AMBER free energy simulations, coupled with 

better force fields and auxiliary tools for facilitating control over advanced simulation 

options.

A major performance enhancement introduced in AMBER11 was the ability to use graphical 

processing units (GPUs) to massively accelerate PMEMD for both explicit solvent PME and 

implicit solvent/Generalized Born (GB) simulations.49,50 The performance envelope was 

pushed even further with AMBER14 and AMBER16. Those releases represented leaps in 

both performance and functionality through the full utilization of the single-precision 

floating-point format (SPFP), which significantly boosted performance on GPUs without 

sacrificing numerical accuracy.51 Although, the GPU accelerated version of PMEMD, 

namely PMEMD.cuda, has been designed to support as many of the standard PMEMD 

features as possible, there were some limitations, such as the inability to perform alchemical 

free energy simulations on GPUs. Giese and York52 recognized that certain types of 

alchemical transformations that involved only the interpolation of force field parameters 

representing the two end states (rather than mixing of their Hamiltonians) could be achieved 

without modification of the PMEMD.cuda engine. By bringing the Gibbs functionality in 

Sander out of retirement and making minor extensions to work with PME, some alchemical 

transformations could be achieved with a post-processing tool. Around the same time, the 

GPU-accelerated alchemical free energy module was first implemented as a patch of 

AMBER1653 and later incorporated into the official AMBER18 release.54 Since then, the 

free energy methods in AMBER have been carefully validated55 and applied,56,57 and many 

advances for alchemical free energy calculations have been actively developed, such as a 

novel soft-core potential,58 various types of restraints,59 and robust analysis methods.52,60

1.3 AMBER20 for Drug Discovery Applications

Despite the advances and applications described above, the impact of alchemical binding 

free energy simulations has been limited in drug discovery for a number of reasons, most 

commonly noted as inaccurate force fields, insufficient sampling, and ease of use. However, 
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with the many force field advances in the past decades (discussed below in sections 5.1, 5.9, 

and 6.5) and increased computational throughput via GPUs (discussed in section 3, many of 

the remaining issues involve the balance between more advanced controls for optimal 

performance and simplified interfaces to improve usability. Much work has been done to 

expose BFE calculations to a broader audience through graphical user interfaces,61,62 

workflow tools,63,64 and integration with powerful molecular operating environments.65–68 

While ease of use has expanded the user base for BFE methods, it has also reduced the 

degree of expertise that can be inserted by the user to optimize performance and reliability. 

Indeed, performing BFE simulations is still an expert process where experience plays an 

important role, especially for challenging targets where the timescales of important degrees 

of freedom and conformational flexibility might be unknown. As such, in this work we also 

highlight the practical considerations for reliable predictions in real-world applications. In 

some cases robust automated programs are available, but as will be described, there are 

many subtle details that require close attention by expert users to obtain optimal results.

Through an academia-industry collaboration, we have addressed some of the primary issues 

that have in the past limited AMBER utilization in drug discovery efforts. Most recently, we 

have improved the softcore potential to ensure more reliable simulations across a broad set 

of diverse alchemical transformations. We have also implemented restraints for absolute 

binding free energy (ABFE) simulations and finer control of the bonded terms in relative 

binding free energy (RBFE) simulations. These advances, coupled with the high 

performance of AMBER on GPUs and the practical considerations outlined herein, should 

facilitate the broader adoption of alchemical free energy simulations in drug discovery. We 

hope that these advances, coupled with the great work by others in the field, will aid 

researchers in drug discovery to more efficiently design medicines to treat diseases with 

unmet medical needs.

2 Background Formalism for Alchemical Free Energy Simulations

The change in free energy between two thermodynamic states can be computed from 

equilibrium simulations using a free energy perturbation (FEP)5 (sometimes referred to as 

“thermodynamic perturbation”) or thermodynamic integration (TI)6,69 formulations, or 

through non-equilibrium ensemble simulations using the Jarzynski equality and its equation 

variations.33,70–74 For the purposes of the current work, we will focus on the calculation of 

relative binding free energies from equilibrium simulations using TI and FEP formulations 

with Bennett Acceptance Ratio7,75 (BAR) and its multistate generalization (MBAR).9,76 For 

additional discussion of factors that influence accuracy and robustness of free energy 

simulations, we refer the reader to several excellent examples.2,3,71,77–85

Consider the transformation of a system of N particles in an initial state “0” characterized by 

potential energy function U0(rN), where rN = r1,r2 ⋯rN represents the Cartesian positions of 

each particle, to a final state “1” characterized by potential energy function U1(rN) having 

the same degrees of freedom. The potential energy functions can, for example, represent 

different molecular species or environments. In general we will refer to this type of 

transformation as an “alchemical transformation” from which differences in thermodynamic 

end states can be determined, to distinguish it from a physical or chemical transformation 
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that involves a real mechanistic pathway that contains both thermodynamic and kinetic 

information. The change in free energy of the alchemical transformation between states 0 

and 1 can be computed from the ratio of configurational integrals Z0 and Z1 as

ΔA0 1 = A1 − A0 = − β−1 ln Z1/Z0 (1)

where β−1 = kBT, kB is the Boltzmann constant and T the absolute temperature, and

Zs = ∫
V

e−βUs rN drN
(2)

where s is the state of the system (0 or 1) and V is the volume of the configurational space. 

Here we use the Helmholtz free energy, ΔA, in the N,V,T ensemble to motivate discussion, 

whereas extension to the Gibbs free energy and the N,P,T ensemble is straight forward.

In the FEP formulation, substitution of Eqn. 2 into Eqn. 1 leads to the so-called Zwanzig, or 

“exponential average” relationship:

ΔA0 1 = − β−1 ln e−βΔU
0 (3)

where ΔU = U1 −U0 and the average 〈⋯〉0 involves integration over the configurational 

space of the Boltzmann probability for state 0, P0 rN = e−βU0 rN /Z0, or equivalently, 

Boltzmann sampling from this ensemble from a molecular simulation using the forces 

derived from the potential energy U0(rN). This expression allows the free energy of the 

transformation to be computed while requiring sampling only at one thermodynamic end 

state. The above relation has many useful variants that consider the other or both end states:

ΔA0 1 = − β−1 ln e−βΔU
0

= − β−1 ln eβΔU
1
−1

= − β−1 ln
f(β(ΔU − C)) 0
f(β(C − ΔU)) 1

+ C
(4)

where f(x) = 1/[1 + exp(x)] is the Fermi function, and C is a constant with units of energy. If 

C is set to zero, one can recover the original formula of Eqn 3, or if one solves for C such 

that the numerator and denominator of the logarithmic term are equal (making this term 

vanish), then one obtains an optimal statistical estimate using the BAR method.7,75 One can 

further generalize this expression to consider non-Boltzmann sampling.86

In principle, the above FEP equations only require sampling at the thermodynamic end 

states. However, the statistical precision requires that there is sufficient phase space overlap,
60,87,88 which typically necessitates stratifying the transformation into smaller steps along a 

pathway. In theory, the free energy is a state function, and thus the free energy difference 

between states is independent of the path that connects them. In practice, the choice of this 

pathway is of immense importance, as it can be extremely challenging to converge sampling 

along the pathway itself. Let us then define a thermodynamic parameter λ that smoothly 

connects states 0 and 1 through a λ-dependent potential U(rN;λ) such that U(rN;0) = U0(rN) 
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and U(rN;1) = U1(rN). Within the FEP formulation, the transformation can be broken down 

into a series of M steps corresponding to a set of λ values λ1,λ2 ⋯ λM ranging from 0 to 1 

such that there is sufficient phase space overlap between neighboring intermediate λ states. 

This requires a separate simulation for each “λ window” that corresponds to a specific value 

of λ and using forces derived from the potential energy U(rN;λ). These simulations can then 

be analyzed using the BAR7,75 or MBAR9,76 methods.

Alternatively, with the introduction of a defined pathway between states, the change in free 

energy can be equated to the reversible work of conducting the transformation between 

states, and this gives rise to the TI formulation,6,69 which is characterized by the formula 

and numerical quadrature estimate

ΔA0 1 = ∫
0

1
dλ ∂U rN; λ

∂λ λ

≈ ∑
k = 1

M
wk

∂U rN; λ
∂λ λk

(5)

where the second sum indicates numerical integration over M quadrature points (λk, for k = 

1, ⋯ M) with associated weights wk.

2.1 Alchemical transformation pathways and softcore potentials

The simplest way in which the U(rN;λ) can be constructed is to use a linear interpolation 

between states, which we will designate as UL(rN;λ):

UL rN; λ = U0 rN + λΔU rN (6)

where the endpoint difference ΔU(rN) ≡ U1(rN) − U0(rN) is also, by coincidence, the 

thermodynamic derivative with respect to λ. Hence, the common energy components that 

are identical between U1(rN) and U0(rN) need not be explicitly considered as the 

corresponding difference is zero. As has been well established, the linear alchemical 

transformation pathway leads to practical problems that can be partially overcome by the use 

of so-called “softcore” potentials for non-bonded Lennard-Jones (LJ) and Coulombic 

electrostatic (Coul) interactions.89,90 A commonly used softcore potential transformation 

pathway90 originally implemented in AMBER is

U0
SC rN; λ + λΔUSC rN; λ (7)

where ΔUSC rN; λ ≡ U1
SC rN; 1 − λ − U0

SC rN; λ  as before.

There have been many different proposed softcore potential forms that modify, or “soften”, 

these interactions. In the following sections, to be more clear, we only show the softcore 

potential corresponding to one end state and the system total potential should be written as 

the properly weighted sum of the two end states. The LJ and Coul interactions for a set of 

interacting point particles i and j separated by a distance rij are given by
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ULJ rij = 4ϵij
σij
rij

12
− σij

rij

6
(8)

and

UCoul rij = qiqj
4πϵ0

1
rij

(9)

where σij and ϵij are the pairwise LJ contact distance and well depth, respectively, and qi and 

qj are the partial charges of particles i and j. In order to “soften” these pairwise interactions 

with particles contained within the selected softcore region, one can modify the effective 

interaction distance by introducing a parametric form for separation-shifted scaling with an 

adjustable parameter. A commonly used form of these modifications is89,90

rijLJ(λ; α) = rijn + λασijn
1/n

(10)

and

rijCoul(λ; β) = rijm + λβ 1/m
(11)

where n and m are positive integers and α and β are adjustable positive semidefinite 

parameters for the LJ and Coul softcore interactions, respectively, with values of zero 

corresponding to no softcore modification for any λ value. In several molecular simulation 

software suites, including the default in AMBER, the values of n = 6 and m = 2 are used, 

although other values have also been suggested,90 and as will be discussed below, combined 

with new smoothstep softcore potentials, considerable improvements can be made to 

stabilize sampling of the transformations.

The LJ and Coul softcore potentials are defined from these scaled effective interaction 

distances as

ULJ
SC rij; λ = ULJ rijLJ(λ; α) (12)

and

UCoul
SC rij; λ = UCoul rijCoul(λ; β) (13)

The thermodynamic derivatives with respect to λ can be obtained using the chain relation. 

Recently, we developed a new smoothstep softcore potential for nonbonded LJ and Coul 

interactions, implemented in AMBER20 and demonstrated below, that further improves the 

stability in practical calculations.58 We introduce a non-linear λ scaling function by 

replacing λ in Eqn. 7 with a so-called second-order smoothstep function, S2(λ), defined as

S2(λ) = 6λ5 − 15λ4 + 10λ3 (14)
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Note that S2(λ) varies smoothly from 0 to 1 and has vanishing derivatives at λ=0 and 1. 

Details of the implementation and testing of the second-order smoothstep softcore potential 

in AMBER20 can be found elsewhere.58 Similar in spirit, but slightly different in details, is 

closely related work first introduced by Hritz and Oostenbrink91 and described in further 

detail by Riniker and co-workers92 where the use of third-order polynomials enable different 

λ-dependency (referred to a “individual Lambdas”) for calculation of relative free energies. 

This form of the softcore potential also has been shown to have impact on the ability to 

predict λ derivatives at non-simulated points in extended TI methods.93

Further, as will be demonstrated below, a promising new form of the effective interaction 

distance with separation-shifted scaling is given as

rijX λ; αX = rijn + αXW rij S2(λ)σijn
1/n

(15)

where X generically represents either LJ or Coul, αX is the corresponding unitless 

parameter, and the weight function of the softcore potential W(rij) is designed to smoothly 

return to the normal rij value by the end of the cutoff:

W rij ≡ 1 − S2
rij − Rcut,i

Rcut,f − Rcut,i
(16)

where Rcut,i is the onset distance where the weight function becomes effective and Rcut,f is 

the final distance of the weight function where the softcore potential completely diminishes, 

and is set to the same as the non-bonded cutoff distance.

2.2 Common problems with softcore potentials and their solutions

We call specific attention to three problems that commonly occur in simulations of 

alchemical transformations, and in particular for “concerted transformations” that involve 

simultaneous changes in both non-bonded LJ and Coul terms. These are referred to as the 

“endpoint catastrophe”, the “particle collapse problem”, and the “large gradient-jump 

problem”.

The endpoint catastrophe is well-known, and arises from a sharp divergence of the 

contribution to the free energy at the thermodynamic endpoints (λ values near 0 and 1) due 

to poor phase space overlap, and can be avoided by the use of softcore potentials. The 

particle collapse problem involves the introduction of new spurious minima at intermediate 

λ states, frequently manifesting in the artificial superposition of particles that can lead to 

large amplitude fluctuations or phase transition behavior along the λ dimension.94 This 

problem results from an imbalance of Coulomb attraction and exchange repulsion, and can 

be overcome by ensuring that these terms are scaled in such a way that preserves overall 

repulsive behavior at short distances for all λ values (e.g., by insuring that the repulsive 

terms are sufficiently large to overcompensate for any attractive Coulomb interactions). 

Finally, the large gradient-jump problem involves sensitivity of the free energy to certain 

softcore parameter values that adjust the exchange repulsion and can lead to spurious jumps 

in the free energy near the thermodynamic endpoints. This problem can be solved through 
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use of a smoothstep softcore potential that has scaling weights with derivatives that vanish at 

the endpoints.

2.3 Stepwise versus concerted, and absolute versus relative protocols for alchemical 
transformations

Here we discuss strategies for alchemical free energy simulation protocols and parameters 

that will yield the best results for a given system of interest. One of the most pivotal 

technical issues is the choice of the alchemical path connecting the two real states (i.e., 

connecting the two thermodynamic endpoints). While, the free energy difference between 

two states is independent of the path that connects them in the regime of complete 

conformational sampling, in practical calculations of complex systems, the choice of the 

alchemical transformation path is critical to obtain stable, converged results with affordable 

sampling.

In the discussion that follows, we separate the atoms involved in the alchemical 

transformation into two regions: the softcore region, and the common core region. The 

common core atoms are those that transform from a “real atom” in the initial state to another 

real atom in the final state, and in intermediate λ states, interact with other (non-softcore) 

atoms via normal Lennard-Jones (LJ) and Coulombic electrostatic (Coul) interactions. The 

softcore atoms, on the other hand, are those selected to interact with other atoms (including 

the common core atoms) via a softcore potential90 in intermediate λ states. Often the atoms 

of the softcore region are transformed from “real atoms” in the initial state to “dummy 

atoms” in the final state. A discussion of the requirements that the dummy atoms reproduce 

the ensemble and potential of mean force of the real state has been discussed extensively by 

Boresch and Karplus95,96 and Roux and co-workers.84,97

The two most commonly applied procedures for alchemical transformations are referred to 

as “stepwise” and “concerted” protocols.83,98 For the stepwise protocol, also referred to 

as ”split”, “multi-step” or “decoupled” procedures,56 the transformation is carried out by 

scaling Coulombic and Lennard-Jones interactions separately, where the charges of the 

dummy atoms are scaled linearly and LJ interactions are scaled via the softcore potentials. In 

these procedures, all or parts of the Coulomb and LJ transformations are decoupled, and 

performed as separate steps. An example of a 3-step “decharge-LJ-recharge” protocol would 

be as follows: First, the atoms in the softcore region (those atoms that will transform into 

dummy atoms) are fully decharged. Next, these decharged atoms undergo a LJ 

transformation using softcore potentials, while at the same time the charges of the non-

softcore atoms are also transformed. Last, the atoms in the softcore region are recharged to 

the final state. This protocol is generally quite robust, since the softcore LJ transformations 

occur after the partial charges of the softcore atoms have been eliminated. One caveat of the 

conventional stepwise procedure is that, depending on the selection of atoms in the softcore 

region, a non-integer charge change can be introduced at intermediate λ states even for 

alchemical transformations between molecules having the same net charge. Care should be 

taken to include net charge corrections and appropriate sampling in these cases (see below).

Alternatively, one can use a concerted protocol (also referred to as “unified,” “single step” 

transformation). In this procedure, the softcore LJ and Coulomb terms are in some way 
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performed in concert. This procedure might have some advantages in terms of throughput 

performance and ease of use with advanced λ-schedule optimization and enhanced sampling 

schemes, such as λ dynamics,99–102 Hamiltonian replica exchange methods,103–107 adaptive 

biasing100,108,109 or self-adjusted mixture sampling110,111 methods. Concerted alchemical 

transformations, however, are more sensitive to the treatment of softcore atoms, and are 

more susceptible to the endpoint, particle collapse and large-gradient jump problems 

discussed earlier. Consequently, it is of tremendous practical interest to work toward more 

robust and efficient methods to enable stable concerted alchemical transformations.

Related to these issues is the choice of the atoms in the softcore region. There are a number 

of strategies, methods, and software tools that have been developed to assist in defining the 

optimal sets of transformations for a library of compounds. This is sometimes referred to as 

a “perturbation map”.3 One method of common core/softcore atom selection is based on 

maximizing the common substructure (i.e., minimizing the number of softcore atoms that 

are to be transformed).112 Alternatively, selection can be based on grouping softcore atoms 

into chemical functional groups.84,113,114 Additional detail can be found in 5.5.

Alchemical transformations are most reliable when the transformations involve a short 

thermodynamic path (i.e. minimal perturbation to the free energy landscape). This often 

translates into perturbing the smallest number of atoms, although the nature of the 

perturbation (size, polarity, conformational preferences, etc.) can have a significant impact 

on reliability. Consequently, most drug discovery applications focus on computation of 

relative binding free energies (RBFEs), where a common core is unperturbed. Still, even 

with a small number of perturbed atoms, the thermodynamic path between the states may be 

long due to the nature of the perturbation (e.g. a small ligand change that induces a large 

protein conformational change or alters the ligand conformational preference). While there 

are no procedures to our knowledge that can a priori determine when a given perturbation is 

too large, there are many reviews of free energy methods that provide guidance and best 

practices for dealing with such situations.20,22,25,115 In some cases where large perturbations 

lead to an exceedingly long thermodynamic path, it is recommended to insert intermediate 

molecules that bridge the two molecules of interest, as described in a recent application to 

BACE.116 Additionally, it is possible to compute absolute binding free energies (ABFEs), 

whereby an entire ligand is transformed to a dummy-state that is non-interacting with its 

environment. While this process typically involves a much larger “perturbation”, and 

consequently more sampling to achieve a fixed level of precision, in some cases it may be 

complementary or even preferable to the calculation of RBFEs alone. ABFE is particularly 

useful when exploring diverse ligands, such as in virtual screening, as described recently by 

Cournia et al.4

3 Performance

A critical aspect of BFE simulations is the amount of conformational sampling, which 

directly relates to the convergence and accuracy of the simulations. While longer simulations 

can be achieved with more wallclock time, there quickly comes a point where impact in drug 

discovery will be limited due to real-time throughput of guiding predictions in time-critical 

projects. Historically, compute power has been dominated by the speed of individual cores. 
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As single core performance stagnated in the past decade, parallel computing emerged to 

allow performance scaling to remain. Molecular dynamics (MD) is a problem that is 

inherently parallelizable, although challenging, as each atom has to compute its energy and 

forces relative to the current state of the system (i.e. all other atoms). This makes MD an 

ideal candidate for graphical processing units (GPUs),117 and since 2012,49,50 MD has been 

largely performed on GPUs. Current single GPU performance offers orders of magnitude 

increased performance relative to a conventional central processing unit (CPU) hardware for 

most common protein systems. While more sampling is generally preferred in free energy 

simulations, it is not always the case that more sampling affords better results. The 

disconnect between sampling and accuracy can broadly be attributed to: 1) poor force field 

(sampling cannot help), 2) local minima, where sampling in the local minimum of interest is 

sufficient to attain converged free energy results but additional sampling opens new regions 

of phase space, thereby resulting in poorer apparent convergence, and 3) poor system setup, 

where a longer simulation may result in propagation of errors that increasingly degrade the 

results over time, such as protein unfolding events.

With the AMBER18 release, a GPU-accelerated Thermodynamic Integration (GTI) method 

was implemented.53,54,118 The key technical challenge overcome in AMBER18 GTI 

involved cleverly enabling TI-based calculations without compromising the optimized 

AMBER energy kernels. This was accomplished by using a streaming kernel to filter and 

separately process alchemical atoms and their interactions. Thus, the GTI code has a slight 

performance dip in comparison to standard MD simulations in AMBER but still a 

tremendous speedup relative to CPU implementations and other GPU codes. For example, a 

TI calculation on cyclin-dependent kinase 2 (CDK2) with approximately 54,000 atoms takes 

approximately 4.5 GPU-hours using a GTX 1080Ti GPU with 24 λ windows split between a 

complex stage and a solvated stage (contains 4,500 atoms) using 2 ns simulation time per λ, 

with a 4 fs time step facilitated with hydrogen mass repartitioning (HMR).119 These 

simulations can also be run at a 2 fs time step without HMR with shake, and 1 fs time steps 

without shake. This same simulation takes 2.5 GPU-hours on the more recent RTX 2080Ti 

GPUs. As each λ window is independent, these calculations can be run in parallel across 

multiple GPUs with no hit to performance and can be done in less than 20 minutes on a 

GTX 1080Ti across 24 GPUs, or 12 minutes across 24 RTX 2080Ti GPUs. Figure 1 

summarizes the results of AMBER20 on three targets of different size with GeForce 1080Ti 

and 2080Ti graphics cards using standard MD and GTI.

4 Advances in AMBER20

A number of important improvements were introduced in AMBER20 to facilitate large-scale 

RBFE and ABFE simulations. Specifically, the softcore potential was improved using a 

smoothstep function,58 which significantly reduces a number of known issues in previous 

versions of AMBER (namely the end-point catastrophe, particle collapse, and large gradient 

jumps in the dU/dλ curve). Additionally, Boresch restraints59 have been implemented, 

which can be used in an automated fashion for ABFE simulations with many diverse 

ligands. Boresch bonded terms95,96,120 were also implemented, which can be used to control 

which energy terms are included in the softcore region. Below is a more detailed description 

of the advances in AMBER20.
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4.1 Smoothstep Softcore Potentials

With the newly developed class of smoothstep softcore potentials described in 2.1, we were 

able to demonstrate that, unlike the conventional softcore potential in previous versions of 

AMBER, there is a single set of α and β values that can be utilized for reliable and accurate 

simulations across a wide range of diverse molecular systems.58 The key characteristic of 

the smoothstep softcore function is that the weights used in the alchemical transformation 

have derivatives that vanish at the transformation endpoints (λ = 0 and 1) and enable smooth 

adjustment of the λ-dependent terms in the potential. The second-order smoothstep softcore 

potential, SSC(2), with α = 0.2 and β = 50 Å2 has been demonstrated to overcome all three 

problems for a broad set of alchemical transformations used in the calculation of hydration 

free energies and RBFEs. Results are examined for edge cases where the original AMBER 

softcore potential is observed to fail – the SSC(2) smoothstep softcore potential was 

demonstrated to remain accurate. The SSC(2) potential has been further tested against a 

broad set of hydration free energy and RBFEs for a commonly used FEP validation dataset 

containing 200 ligands and spanning 8 protein targets.121 The SSC(2) potential has the 

advantage that it can be used in concerted transformations and is better suited for enhanced 

sampling methods with more advanced, adaptive λ scheduling requirements, which is part 

of our ongoing research collaboration and intended to be in upcoming AMBER releases (see 

section 6.3.

In AMBER20, the λ-dependence of individual interactions (e.g., bonded, Coulombic and 

Lennard-Jones) now can be controlled by the user, including both linear and smoothstep 

functional forms, and advanced λ-scheduling within the λ interval [0,1]. This “λ-

scheduling” can be applied to individual interactions independently and gives the users a 

very flexible way to control the mixing scheme of the softcore potentials. For example, one 

can utilize a smoothstep function with boundaries at [0.0,0.5] for Coulombic (Coul) 

interaction and a smoothstep function with boundaries at [0.5,1.0] for Lennard-Jones (LJ) 

potential, which will execute a stepwise alchemical transformation with the Coulombic 

interactions being transformed in the λ interval [0.0,0.5] and the Lennard-Jones being 

transformed in the λ interval [0.5,1.0]. Similar λ-scheduling features have been reported and 

implemented in other simulation packages such as GROMOS92 and NAMD.84,122 

Application of these λ scheduling features in combination with the new smoothstep softcore 

potentials are discussed in more detail in Future Work (section 6) below.

4.2 Pose Restraints for ABFE

Accurate predictions of absolute binding free energies of small organic molecules from MD 

simulations offer significant value in drug discovery and design. In particular, ABFE (as 

opposed to RBFE) is not restricted to perturbations on a common core and is thus amenable 

for use in virtual screening,4 selectivity screening,123 and core hopping.124 However, this 

added flexibility also introduces new challenges and uncertainties, which may explain why 

ABFE has seen minimal use in actual drug discovery projects (in addition to the additional 

sampling requirements).

There are multiple ways to realize a valid thermodynamic cycle that is compatible with the 

aims of ABFE, but most schemes employ a set of restraints to restrict the ligand to remain 
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near the binding site.59,125–128 The necessary (or allowable) extent of this restriction is 

rather dependent on the system. For example, some strategies employ loose “flat-bottom” 

restraints that only restrict the ligand center of mass motion,128 while others accommodate 

more elaborate restraints on the ligand conformation, translation, and rotation,125 possibly in 

multiple unique poses.126,127

In our drug discovery efforts, we have worked under the assumption that the unrestrained 

ligand is fairly strongly bound and therefore can be assumed to occupy a single pose with 

high occupancy. This assumption is generally safe because we are primarily interested in the 

identification of tight binding species and we can tolerate bias or inaccuracy in weakly 

bound species – other use cases may have different needs, such as identifying weakly bound 

fragments129 or molecules that stabilize intrinsically disordered proteins.130 Working under 

the assumption of a single well-defined binding mode permits the rather simple restraint 

framework described by Boresch et al.,59 which only places harmonic translational and 

rotational restraints on the ligand in a local coordinate frame via one distance, two angles, 

and three dihedrals (see Section 5.7 for further details). The implementation in AMBER20 

also permits these restraints to be included in the overall alchemical transformation such that 

the component of the free energy arising from the restraints in the bound state can be 

computed in the same way as other force field terms. The absence of restraints when 

simulating the unbound state can be accounted for using a simple analytic formula in the 

limit that the harmonic restraints are relatively stiff.59,131 The implementation in AMBER20 

has been validated on virtual screens with thousands of diverse compounds run through 

ABFE. The results demonstrate the usefulness of the approach and confirm that the 

calculated binding free energy is independent of the details of the restraints, as determined 

by comparing results from multiple runs with randomized restraint combinations.4

4.3 Handling Interactions Involving Softcore Atoms for RBFE

In AMBER, the TI region is defined as the part of the system to undergo alchemical 

transformation from one end state to another one; hence there are two regions representing 

two end states. There are two parts for each TI region: the common region to both TI regions 

and the softcore region unique to each TI region. The softcore potential is utilized to treat 

the interactions between the softcore regions and other parts of the system. Atoms which are 

growing or disappearing during the alchemical transformation must be included in the 

softcore region. An atom included in a softcore region is defined as a softcore atom. 

Previous versions of AMBER have not allowed for detailed control over the interactions 

between the common and softcore regions. While most of the time treatment of these terms 

will not cause significant deviations of the calculated free energy differences, theoretically it 

should be treated more rigorously when applicable.

Bonded terms between the common and softcore regions—A key advantage of 

RBFE simulations is that the ligand scaffold (common core) is always present and interacts 

with the receptor binding site, thus obviating (or at least greatly reducing) the need for 

orientational restraints as with ABFE. However, a similar issue is encountered when 

chemical groups extending off of the common core are created or annihilated (transforming 

from, or into ”dummy atoms”) – similar to the ligand drift problem in ABFE, the chemical 
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group must be tethered to the common core. While this may seem readily accomplished by 

retaining bonded terms between the disappearing group (softcore region) and the common 

core, care should be taken that these retained bonded terms obey certain constraints and 

conditions. These conditions require the ensembles generated in the state with “dummy 

atoms” in the softcore region that have ”disappeared” to reproduce the same potential of 

mean force on the real atoms as the real system without the dummy atoms. Extensive 

discussion of these conditions, including ”rules” of how to select retained bonded terms 

between the softcore and common core regions, are provided by Boresch95,96,120 and Roux 

and co-workers.84,132

AMBER20 now includes a general facility for selectively retaining bonded interactions with 

non-interacting softcore atoms. The non-retained terms are then decoupled using the usual 

scheduling strategies for non-bonded interactions. Importantly, the simulation efficiency can 

be highly affected by which terms are selected for retention and which are not – poorly 

chosen terms can lead to high variability or even non-ergodicity. Unfortunately, there does 

not appear to be a general solution to this issue. Theoretically rigorous results can only be 

obtained by retaining terms that involve not more than three atoms in the common core. 

However, for efficiency, the retained terms must also keep the softcore atoms in or near a 

physically relevant geometry and not hinder rotameric transitions.

Non-bonded terms between the common and softcore regions—The non-bonded 

terms between the common region and the softcore regions should be always scaled with the 

alchemical variable λ. Nevertheless, the 1–4 non-bonded terms across the softcore boundary 

were not treated properly in some previous versions of AMBER.98 A fix has been 

implemented and verified in AMBER20, resulting in much improved relative hydration free 

energies of 9 benchmark molecules using the concerted transformation protocol.55

Interactions within the softcore region—In AMBER20, both bonded and non-bonded 

interaction terms within the softcore regions can be either scaled with λ or not. Either 

implementation is theoretically correct, provided that the conformational sampling of the 

softcore regions at the end point states are sufficient. Users can control how the interactions 

within the softcore regions are treated. For recommended guidelines, refer to recent 

validation studies of free energy methods in AMBER.55

4.4 RBFE Accuracy on Drug Targets

The GPU-accelerated free energy simulation methods in AMBER have been validated in an 

Application Note appearing in the current special issue.55 Although the methods discussed 

here are quite new, they have already seen a number of applications,56–58 particularly against 

a well-studied data set that includes 200 ligand mutations spanning 8 protein targets (Bace, 

CDK2, Jnk1, MCL1, p38, PTP1B, Thrombin and Tyk2).121 This data set serves as a 

tractable benchmark set for RBFE calculations because there are no known significant 

conformational changes or other challenging scenarios such as ambiguities in tautomer/

ionization states or buried waters. Results using the protocols described in this work with the 

GAFF2 force field133 and TIP3P14 water model are on par with other recent RBFE 
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publications on the same data set, as seen in Table 1, and stand to improve with the 

forthcoming release of new MM and QM force fields for ligand-binding predictions.

5 Practical Considerations

The aforementioned topics (force field, sampling, and alchemical parameters) are critical to 

achieving robust and reliable BFE results, yet many publications under-emphasize the 

importance of other considerations. Items such as system preparation, docking, and 

confidence estimates can be just as important as force field, sampling, and alchemical 

parameters for obtaining robust BFE predictions. In some cases, it is possible to define best 

practices and even automate the process to some extent. However, other instances may 

require expert decisions on a case by case basis. Below, we highlight practical considerations 

found to be most important in prospective applications of free energy simulations in 

AMBER. When possible, we provide guidance for best practices, yet in other cases we 

simply highlight the challenges and leave it to the reader to further explore these areas. More 

details about practical considerations in alchemical binding free energy simulations can be 

found in a Perspective by Cournia et al.3

5.1 Force Field

A force field is used to model the interactions between atoms in the molecular system of 

interest. The force field allows determination of potential energy as a function of 

configuration and is used along with the kinetic energy to calculate the Hamiltonian for 

molecular dynamics simulations and binding free energy calculations. The accuracy of the 

force field may limit that of the binding free energy predictions, but not all inaccuracies in 

the predictions should be blamed on force field problems: poor quality in the initial 

structure, erroneous protonation or tautomeric states, and inadequate sampling should first 

be inspected. One lesson that we learned from the past decade is that the force field accuracy 

can be substantially improved by simply avoiding the obvious mistakes in the 

parameterization of ligand molecules.

Generalized force field models such as GAFF,133,134 CGenFF,135,136 and OPLS137–140 

represent efforts to provide force field parameters for any molecule at a small computational 

cost, using look-up tables for parameters predetermined for different bond, angle, and 

torsion types. Such models and the associated software tools are good starting points for 

parameterizing molecules for binding free energy calculations. They provide reasonable 

parameters for molecules consisting of chemical structures similar to those in the training 

set. Yet in real-world applications, it is not uncommon to encounter molecules that these 

generalized force fields have not been tuned for and thus do not yield accurate results.

With advances in computational hardware and GPU-enabled quantum chemistry software 

such as TeraChem,141 it has become feasible to parameterize hundreds of small molecules–

as commonly required each week in drug discovery programs–individually based on detailed 

quantum chemistry calculations: a complete force field parameterization of a small molecule 

may be performed in approximately 1 GPU-hour. Such bespoke molecular force fields help 

to avoid gross parameterization errors, and often lead to improved free energy results.
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One common type of error in force field parameterization is in the torsional parameters that 

determine the potential energies at different torsional angles of a rotatable bond in the 

molecule. For example, a biphenyl system with substitutions at the ortho-, meta-, and para-

positions can substantially perturb the torsional energy profile around the bond connecting 

the phenyl rings, and the perturbation depends strongly on the position and the moiety of the 

substitution. As a demonstration of the benefit of refitting the torsional parameters to the 

quantum chemistry calculations of the torsional energy profile, Figure 2 shows the hydration 

free energies computed for a set of alcohol molecules, comparing the generalized GAFF2 

and the bespoke force field in which the torsional parameters are refit; the latter significantly 

improves the agreement between the predicted hydration free energies and the experimental 

measurements.

Generalized force fields sometimes fail to capture the electrostatic potential around the 

molecule. A well-known example is the σ-hole in aromatic halogens,143 in which a “hole” of 

positive potential along the carbon-halogen bond cannot be reproduced by the common 

atom-centered charges. Inclusion of off-atom-center charges, or virtual sites, is an effective 

approach to resolving such discrepancies. Such virtual sites for select functional groups are 

now finding their way into generalized force fields, but transferable parameters take onerous 

efforts to derive. In contrast, they are straightforward to parameterize for bespoke molecular 

force fields. Figure 3 shows how their inclusion in our bespoke force fields for aromatic 

halogens and aromatic nitrogens improves the fit for the electrostatic potential computed by 

DFT and for the predicted hydration free energy.

Parameterizing bespoke molecular force field is associated with a smaller computational cost 

than the binding free energy calculations, yet they may significantly improve the predictive 

accuracy. A number of automated tools for parameterizing small molecules, including 

several in the public domain, have been developed, such as CGenFF,135,136 GAAMP 

(https://gaamp.lcrc.anl.gov/index.html), FFTK,144 and the tools developed by the OpenFF 

Initiative.145 We believe that automated programs for bespoke parameterization will become 

the default option in future applications of binding free energy calculations.

5.2 Protein Preparation

Protein structures must be prepared prior to running MD free energy simulations. While X-

ray structures are the most common source of atomic-resolution structures, the following 

guidelines also apply to structures obtained by other means, such as NMR or Cryo-EM. In 

general, structures must be prepared to add hydrogen atoms, optimize hydrogen bond 

networks, remove atomic clashes, in some cases insert regions missing from the refinement 

such as disordered loops, and perform other operations that are not part of the experimental 

structure refinement process. While the prerequisite for good system preparation is generally 

accepted in the field, the specific steps are not well defined. Fortunately, many of the 

considerations for BFE simulations are similar to those for other structure-based approaches, 

like docking, and have been described in detail in other works.146–148 Nonetheless, docking 

for BFE simulations may entail additional considerations beyond standard docking 

calculations for pose prediction or virtual screening, as described in the Docking section 

below.
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It should be noted that protein preparation can have a significant impact on the quality of 

results and can introduce artificial biases, especially in the case of retrospective validation 

studies, as has been demonstrated for docking studies149 and likely has similar issues in BFE 

calculations. After protein preparation, including the following steps, it is recommended to 

manually inspect the structure, run protein analysis programs (e.g. PROCHECK,150 

WHATCHECK,151 MolProbity,152 and SurVol153), and perform MD simulations148,154 to 

ensure stability of the system before running computationally costly BFE simulations. For 

example, multiple short simulations on different protein preparation states can reveal 

problematic cases where there are large structural fluctuations, degradation in secondary 

structural elements, or loss of key binding site interactions.155 Additionally, such MD 

simulations can be used to improve the overall protein structure.156–158 Details of the protein 

preparation capabilities and options for AMBER20 can be found in the user manual (https://

ambermd.org/doc12/Amber20.pdf).

Hydrogen bonds—Hydrogen atoms are not typically present in experimentally-

determined structures (other than those at resolution better than ~1.0 Å) and therefore need 

to be added computationally. The initial coordinates of hydrogen atoms are inconsequential, 

as long as proper valences are satisfied and subsequent sampling is performed. The 

protonation state of titratable residues should be determined for the pH of interest (typically 

this involves His, Asp, and Glu, although this could be expanded to Lys and Cys). 

Additionally, the two His tautomers should be sampled (proton on the Nδ, Nϵ, or both). 

Programs such as WHATIF159 can be used for this step, which can be augmented with pKa 

predictions programs such as PROPKA.160

Once hydrogen atoms are added, the H-bond network should be optimized by sampling 180° 

flips of the terminal chi angle for Asn, Gln, and His, which significantly changes the spatial 

H-bonding capabilities of the side chains, but does not appreciably change the fit to the 

electron density. In addition, hydrogens on hydroxyls and thiols should be sampled to 

optimize the H-bond network. After the above steps are completed, it is recommended to 

perform an analysis of the structure to ensure a viable state has been generated. Automated 

programs such as WHATIF, PROCHECK, and MolProbity152 are useful for the analysis, 

although manually inspecting changes in the atomic fit to electron density with programs 

such as Coot161 is strongly recommended. If it is unclear which state(s) are correct, it is 

recommended to perform modest MD simulations (on the order of 100 ns) and structural 

analysis to determine the stability of the structures. The aforementioned protocol for H-bond 

optimization is necessary because sampling times required to overcome sampling barriers 

needed to rectify an incorrect initial state could be prohibitively long, and local denaturing 

of the protein can occur in the process, which would take even more sampling time to 

correct, if it could be corrected at all. Nonetheless, if sufficient sampling time is achievable 

or enhanced sampling approaches are available to solve this problem, then simply adding 

hydrogen atoms as needed to satisfy valencies for the pH of interest may be sufficient.

Waters—The treatment of explicit water molecules can influence docking accuracy and 

enrichment results, as has been extensively demonstrated by other works.162–167 Indeed, 

water is the source of the hydrophobic effect168 – subtle changes in waters can impact ligand 
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binding energetics169 and even reverse the thermodynamic signature of ligands binding to a 

protein.170 The treatment of water molecules in BFE calculations should be considered 

during the initial system setup and during the alchemical simulations themselves. The 

determination of which waters to retain during the setup of BFE calculations is often 

unclear, primarily because not all waters are present in crystal structures and even when 

there are many waters, the free energy of a water molecule is not directly related to the 

crystallographic occupancy. Furthermore, the crystal structure being used might not 

correspond to the specific ligand or ligand series being explored and therefore the water 

pattern may be inaccurate.

In most cases, it is recommended that all crystallographic waters are retained for the system 

setup, although the electron density should be inspected to ensure that there is confidence in 

the water presence. Even in cases where there are many water molecules in the 

experimentally determined structure, it is generally necessary to add additional water 

molecules before MD simulations. Programs such as 3D-RISM,171 GCMC,172 JAWS,173 

WaterMap,174 and other approaches175–178 can be useful for this step, since it is generally a 

fast calculation relative to the BFE simulations. Importantly, the method to place water 

should be capable of solvating buried pockets that are challenging to sample during the 

simulation time of a BFE run due to large energetic barrier for entering/exiting the binding 

pocket.

Once waters have been placed for the initial system setup, it still might be necessary to 

explicitly sample waters (beyond MD sampling) during the alchemical simulations. This is 

especially important when dealing with regions of the binding site that are occluded from 

exchange with bulk solvent, such as fully buried binding sites or subpockets that are blocked 

from bulk solvent exchange due to parts of the ligand that are not being perturbed (in the 

case of RBFE). A combined MC/MD method has recently been described and is available in 

AMBER20,179,180 which allows water to equilibrate between bulk and buried cavities. This 

method allows for partial water densities during the BFE calculation by allowing the 

locations and occupancy of buried sites to vary with λ in the course of alchemical 

calculations. Other approaches, such as Grand Canonical Monte Carlo (GCMC), have been 

proposed to address buried water sampling in the context of alchemical free energy 

calculations.181–183

5.3 Ligand Preparation

All-atom three-dimensional (3D) ligands are required for RBFE and ABFE simulations. As 

such, a critical issue to investigate before embarking on computationally expensive free 

energy simulations is to generate the correct ligand state (ionization, tautomers, 

stereochemistry, etc.). Incorrect states could result in false negatives (e.g., where a favorable 

H-bond cannot be made) or false positives (e.g. where an incorrect H-bond is made). In 

addition to calculating reasonable ligand states, it is ideal to predict an energetic penalty 

associated with each state to account for the energetic cost it takes to generate each state in 

solution. This energetic penalty should then be added to a computed free energy to get a 

final binding prediction.
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Significantly, ionization and tautomerization energies are absent from traditional molecular 

mechanics force fields, since there are no terms for bond making/breaking. Some empirical 

corrections are possible via methods like constant-pH MD, but these may not be cost-

effective for the large number of ligands studied in a drug design setting. Although largely 

speculative at this point, we suppose that advances rooted in quantum mechanics and/or 

machine learning will be necessary for progress in this area.

5.4 Docking

Docking is an essential part of binding free energy simulations, while in theory the binding 

free energy results should be independent of input pose, that assumes sufficient sampling to 

explore all accessible poses with MD, which would be prohibitively computationally 

expensive. As such, it is critical to obtain a reasonable initial pose and in cases where the bet 

pose is ambiguous, then multiple poses should be pursued. The nature of the docking 

problem is different between RBFE and ABFE (and different from docking as a final 

calculation): For RBFE calculations a reference pose is typically known and can be used to 

constrain the docking whereas with ABFE there is typically no reference molecule and 

therefore unconstrained docking is required.

Docking for ABFE—Docking for an ABFE calculation can be quite challenging, 

especially if one does not have any prior knowledge that can be employed when evaluating 

docked poses. In addition to sampling the ligand conformation/orientation, the receptor 

might undergo induced-fit.184 As such, in order to generate a reasonable starting pose, it 

may be necessary to induce the site.185 Numerous approaches have been developed in order 

to address this issue ranging from employing a softened non-bonded potential in order to 

alleviate the penalty of protein-ligand clashes, followed by a robust protocol that 

incorporates sampling different side-chain rotamers of the receptor and redocking the 

compound to multiple receptors (ensemble docking).186–188 Cases where large-scale 

backbone motions are required to generate the correct binding pose still remains a challenge 

for the field even when incorporating enhanced sampling methods.

Fortunately, it has been shown that combining docking with molecular dynamics (MD) to 

further refine the pose can be beneficial.186,189 One attractive feature of coupling MD with 

docking is that the receptor and ligand are sampled simultaneously in the presence of 

explicit water, allowing for the receptor to become induced in a physically meaningful way. 

For example, one might generate N docked poses and run a MD simulation in replicate 

varying the random seed to assess pose stability. As an additional example, to prioritize 

poses for more rigorous free energy simulations (e.g. ABFE), multiple short MD simulations 

can be performed and the RMSD from the docked pose can be utilized as a metric to assess 

pose stability. Generally, low RMSDs are attributed to the ligand making energetically 

favorable interactions within a targeted site.190–192 It is important not only to consider the 

averaged RMSD value but also evaluate the RMSD versus time as a ligand could have 

adopted a stable conformation that is substantially different from (e.g., larger than 2.5 Å 

RMSD) from its docked pose and remained there for the duration of the simulation. 

Excluding atoms of the ligand that are very solvent accessible from the RMSD calculation 

may also be required. While MD refinement offers advantages over traditional docking 
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(protein flexibility, explicit water, etc.), it does not contain a rigorous treatment of the 

binding thermodynamics (e.g. no unbound ligand calculation) and therefore should not be 

used as a final scoring estimator.

Docking for RBFE—Docking for a RBFE calculation is theoretically simpler when 

compared to ABFE due to the conserved binding mode of most congeneric molecules. The 

technical challenges of constraining ligand atoms, especially when done in a high-

throughput automated fashion for drug discovery, presents challenges. Core-constrained 

docking is generally the most effective way to generate poses, which requires a definition of 

the core atoms (either manually or based on a maximum common substructure, MCS). As 

seen in Figure 4, core constrained poses produce much cleaner alignments, which facilitate 

the atom mapping and stability of the perturbations in RBFE simulations. Open source 

docking programs such as rDOCK193 support core constraints, although many commercial 

solutions are also available. Common atoms shared between the lead and the candidate 

ligand are constrained while the degrees of freedom of other atoms are sampled during the 

docking calculation. It should be noted that using an MCS is not always optimal, as the 2D 

mapping does not ensure the correct 3D characteristics (see section 5.5).

Steric clashes present another challenge when docking ligands that do not fit into the rigid 

receptor and therefore should be handled carefully. As a consequence of the core constraints, 

significant protein-ligand clashes might be unavoidable while still satisfying the core 

positional constraints. Generally, these types of issues can be resolved through an energy 

minimization and/or short restrained MD equilibration only allowing key atoms to move, or 

redocking the compound with a reduced number of constrained atoms. Another important 

item to note is that if the protein residue(s) involved in the steric clash have to move 

significantly in order to alleviate the clash during the minimization or MD equilibration 

prior to running the RBFE calculation, then the energy required to adopt this new protein 

conformation will not be accounted for during the RBFE simulation, which could possibly 

lead to erroneous results. Therefore it may be advantageous to make a series of smaller 

perturbations or instead run ABFE.

5.5 Atom Mapping

For RBFE calculations, a critical step is determining the relationship between atoms of the 

reference and perturbed structure such that the common atoms (“mapped” atoms) are 

linearly interpolated with λ and the unmapped atoms are treated with a softcore functional 

form to allow for their insertion or deletion. Theoretically, the best atom mapping scheme is 

one that minimizes the thermodynamic path between the two molecules, however there are 

many factors to consider in practice such as atom type, bond order, ring membership, 

chirality, and binding conformation.

Generally, topological similarity is assessed computationally using a maximum common 

substructure (MCS) algorithm, which aims to maximize the number of mapped atoms 

between two molecules from a congeneric series.112 Many MCS algorithms require 

specification of atom type, bond order, and ring membership considerations to define the 

maximum atomic overlap between molecules. Assuming perfect geometric complementarity 
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between molecules, mapping of atoms that differ in type should maximize phase space 

overlap between states by decoupling as few atoms as possible. In practice, many times this 

is not the case due to conformational differences between molecules that can lead to 

convergence issues and large errors between neighboring λ values along a thermodynamic 

path.

In some cases the mappings are clear, such as the substitution of an aromatic para-fluorine 

for a para-methoxy, where the fluorine and methoxy are the only unmapped atoms. 

However, in other cases the mapping can be less clear (or even ambiguous), such as bulky 

ortho/meta substitutions to a similarly substituted phenyl ring. In addition, mapping of atoms 

with different bond orders can be problematic as atomic torsional preferences change 

between atomic environments and such mappings should be avoided whenever possible.

The mapping of atoms within ring systems requires special consideration and introduces a 

potential source of error propagation if mapped inappropriately, such as allowing for ring 

breaking/forming.3 As such, most atom mapping protocols avoid ring breaking when 

possible. Previous literature has demonstrated that bonded term contributions from dummy 

atoms should cancel in RBFE simulations of the bound and unbound states.194 Yet if the 

conformational ensemble of the molecule is significantly affected by the remaining core 

atoms, as is the case for members of a ring, the cancellation of error is no longer valid. It is 

for this reason that large errors are often observed in RBFE calculations involving ring 

breaking/forming, as the free energies are only collected from a restricted and inaccurate 

conformational ensemble. To address these conformational restrictions, recently a “soft 

bond” potential has been added to the softcore functional form and suggests that 

improvements to core hopping transformations can be made. Still, more work is necessary to 

demonstrate its utility across broad ring breaking/forming scenarios.124

When performing manual RBFE calculations it is often straightforward to determine the 

correct mapping between ligands, especially if the binding poses are well determined. 

However, manual mapping is tedious, time consuming, and error prone, especially when 

processing hundreds of molecules on a weekly basis. As such, manual mapping is 

impractical in drug discovery applications, where hundreds of molecules will be explored on 

a weekly basis. There are programs that perform automatic mapping, such as LOMAP,195 

which operates on 2D structures (typically using a 2D method such as maximum common 

substructure). It should be noted that in some cases the mapping is ambiguous based solely 

on the 2D information, such as ortho substitutions to a similarly substituted phenyl ring, as 

seen in Figure 5A. In this example, the preferred conformation of the ortho methoxy 

substituted molecule is forming an intermolecular hydrogen bond between the amide 

nitrogen and the methoxy oxygen. However, the bulky chloro substitution prefers an 

alternate conformation, and using only 2D topological information the oxygen is oriented 

towards the same substitution vector. Mapping issues such as this will often lead to incorrect 

results due to the unreasonably long thermodynamic path between the states (a high-energy 

conformational transition would be required to interconvert between the two states). 

Fortunately, mapping based on 3D poses would yield the correct result, as seen in Figure 5B. 

As such, it is highly recommended to perform atom mapping using accurate 3D poses when 

possible.
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To our knowledge, there is currently no widely adopted tool for atom mapping based on 3D 

poses. A sensible approach is to align the two molecules–say, A and B–in their binding 

poses and preferentially map each atom in A to an atom in B that is spatially close. This may 

be formulated as a discrete optimization problem: one can define a quantitative measure of 

spatial overlap between each pair of atoms, and then find the graph-isomorphic mapping that 

maximizes the total overlap of the mapped atom pairs. We anticipate that such 3D atom 

mapping tools will eventually replace the current 2D atom mapping tools.

5.6 λ Schedule

Alchemical BFE simulations are performed by defining a transformation (e.g. between two 

different bound ligands). The extent of the transformation is defined in terms of a coupling 

parameter, usually denoted as a value λ between zero and one. As such, the intermediate 

steps involved in the perturbation are often referred to as “λ values” or “λ windows”. We 

use the term “λ schedule” to refer to 1) the number and placement of the specific values 

included in the simulations and 2) the functional form of the coupling in terms of λ (e.g. use 

of a softcore potential). One would like to choose the λ schedule in an optimal way. The 

answer to this problem is strongly dependant on the methodology being used and decisions 

to be made by the practitioner. In what follows we will assume that a conventional 

alchemical approach is being used and that multiple λ values will be chosen with 

simulations carried out at each value with λ held fixed. Other simulation approaches may 

permit variation in λ either as a discrete196 or continuous197 quantity, but these are currently 

outside the scope of what constitutes a best practice in AMBER.

In general, the aim is to have enough, but not too many, λ windows in order to obtain 

sufficient accuracy at the lowest possible cost. From the perspective of TI, this means 

sampling the integrand more densely in regions where the curvature changes rapidly and 

possibly spacing the values so as to abide by a numerical quadrature rule. In the context of 

FEP-like protocols (e.g. MBAR), this means choosing neighboring sampling distributions to 

achieve minimum variance behavior with respect to a set of Monte Carlo moves (see, for 

example, the overlap metric introduced by Bennett7). Optimizing according to either of these 

schemes requires a priori information. Lacking this advantage, the most straightforward 

approach is to use equally spaced values and a generic quadrature scheme such as the 

trapezoidal rule. In this case, TI essentially reduces to a piece-wise linear approximation of 

the integrand and is roughly equivalent to approximating the neighboring sampling 

distributions as Gaussians.198 Using this approximation can still provide good results for 

calculations where the lambda spacing is small enough to capture the essence of the 

variations in the integrand with lambda throughout the full λ=[0,1] trajectory.

Interestingly, for simple transformations that only add, remove, or change a charge 

distribution in a limited volume the TI integrand tends to be approximately linear or perhaps 

cubic199 (Figure 6, top row). This follows from a Born-like linear response model where a 

charge or point dipole is introduced into a spherical cavity in a homogeneous dielectric 

environment.198 In this case, the integrand may be extremely linear and well-behaved and 

only a few λ values could be required (only two points are needed to accurately integrate a 

line). Any additional curvature tends to occur near the endpoints, although the general 
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prescription is to focus λ values where the slope is largest (usually at intermediate values).
198 Strong deviation from linearity could simply indicate that the charge change is occurring 

over a large extent and the linear response character could be breaking down. An approach 

that still samples intermediate values is thus recommended in general, rather than assuming 

linearity. We have found that as few as five λ values can give reliable results for small 

perturbations (assuming other sources of error are considered, as discussed below). Indeed, 

it has been shown that in some scenarios a one-step λ schedule can be sufficient to achieve 

accurate binding free energy predictions,200–202 although such cases of very small 

perturbations provide insufficient coverage of chemical space to have high impact for most 

drug discovery applications.

More complicated transformations, especially those that introduce short-range repulsive 

interactions, are by far the most difficult to handle (Figure 6, bottom row). The Lennard-

Jones potential is widely understood to introduce large variance and/or singularities which 

were originally overcome by introducing many finely spaced λ values near (but not at) the 

endpoint. This approach was supplanted by the introduction of softcore potentials which 

tend to redistribute, but not entirely eliminate, the higher variance across the more 

intermediate points. The variance of the result is generally proportional to the size of the 

chemical group being introduced. For example, one should expect higher uncertainty from 

an ABFE calculation of a drug-like molecule compared to removing/inserting a small 

chemical moiety onto a ligand scaffold. Unfortunately, introducing many additional λ values 

does not seem to mitigate this issue beyond a point – one only needs enough values to 

capture the shape of the integrand. This is because the insertion of uncharged, repulsive 

interactions generally leads to configurations of low physical relevance and so the variance 

is inherently a sampling issue. When time and resources are available, then more λ values 

can be added to enhance overlap between adjacent windows and thereby improve reliability 

of results.83,202

5.7 ABFE Pose Restraints

The purpose of pose restraints in ABFE is to hold the ligand in the binding pocket when the 

interactions are scaled to extremely small values (or zero). At the same time, the restraints 

can also be interpreted as defining the bound microscopic state.125,128 Therefore, a 

reasonable criterion is to require that the restraints impose an orientation that is similar to the 

fully interacting ligand. Put another way, the restraints should approximate the potential of 

mean force of the physical system. A similar perspective has been offered in several 

theoretical frameworks125–128 and more elaborate choices than the one described here could 

also be employed using AMBER. In general, the assumptions here hold for relatively 

strongly bound compounds and different restraint protocols may work better in other 

regimes.

A procedure that we have found effective is to first perform a relatively short (~5 ns) non-

alchemical simulation of the ligand-protein complex. We then search for relatively stationary 

points on both the ligand and receptor that can be used to define both their relative 

orientation as well as the internal conformation of the ligand, as described by Kim, et al.131 

For proteins, we look for low-mobility, buried residues by searching for minimal solvent-
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exposed surface area over the course of the trajectory – the α-carbons of these residues are 

then considered good candidates, but other choices are certainly possible (e.g. the backbone 

center of mass). For ligands, we look for heavy atoms within rigid scaffold motifs such as 

fused ring systems or the central core of the ligand. One should be careful not to select 

multiple atoms within a rotatable torsion, otherwise one might “lock-in” the configuration 

and induce non-ergodicity. Candidate coordinates can then be created from both groups and 

the six terms (one distance, two angles, and three dihedrals) can be tracked over the 

trajectory.

The ideal coordinates are unimodally (perhaps Gaussian) distributed and have low variance. 

In AMBER it is also useful to avoid overly long distances (< 30 Å, say), noncolinear angles 

(far from 0° or 180°), and dihedrals that are from the periodic boundary (i.e. not near 

±180°). Any combination of atom or point selections that fit these criteria should constitute a 

reasonable set of restraints.

5.8 Periodicity and Charge Corrections

The use of periodic boundary conditions (PBCs) has long been known to introduce subtle 

artifacts in MD simulations. However, the alternative of no boundary conditions is generally 

not preferred because it would induce artifacts of a different nature (and larger magnitude). 

While some methodologies may avoid different issues, the general philosophy in AMBER is 

that the PME scheme for PBCs is the best compromise between accuracy and efficiency.44,45 

In current AMBER20 implementation, the thermodynamic derivative of the PME reciprocal 

part is calculated in the linear way (,eq:UL i.e. the PME reciprocal calculations are only done 

on the end states and the dU
dλ  is the difference of the PME reciprocal energies of the end 

states. This approach is simple but requires two PME calculations per MD iteration.

Nonetheless, specific care must be taken in alchemical simulations and the issues are 

unusually pronounced for alchemical transformations that do not conserve the net charge. 

Rocklin, et al.203 recently catalogued these issues with an eye towards alchemical ABFE 

calculations and proposed specific approximation schemes for correcting them. A follow up 

work by Chen, et al.204 also examined the Rocklin corrections in the case of RBFE, along 

with other possible solutions. These issues are briefly described here.

The most significant artifacts due to PBCs arise from the mean electrostatic potential 

definition imposed by PME. An extensive review has been supplied by Lin, et al.205 This 

term is normally innocuous, as it amounts to a simple shift in the zero of energy and does 

not affect forces. However, alchemical simulations are extremely sensitive to arbitrary shifts 

in the zero of energy as this effectively shifts the binding free energy of a ligand based 

purely on the system charge. Following Lin, et al., the artifact can be considered as the work 

required to move a charged species across the boundary between a solvent and vacuum – 

clearly no such boundary exists under PBCs and so this contribution is missing. Rocklin, et 
al. refer to this shift as arising from a residual integrated potential (RIP), as it corresponds to 

the energy “left over” when a charge species is removed from a PBC box. The RIP energy is 

proportional to the integral of the mean potential over the whole volume. Lin, et al. describe 

how a correction can be approximated a posteriori from the spatial electrostatic potential 
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averaged over a trajectory and then integrated over the box. Fortuitously, along with 

others204 we find that the approximate Poisson-Boltzmann scheme proposed by Rocklin et 
al. provides reasonable corrections based on only a single structure. In practice we see 

minimal statistical noise of ~0.1–0.2 kcal/mol, which is quite acceptable given the expected 

accuracy of ABFE.

Other PBC-based corrections are possible but generally much smaller in magnitude than the 

RIP correction.203 The net charge interaction and solvation correction terms are generally 

quite small and only depend on the magnitude of the charge change and box size/shape. 

Another term unrelated to PME but dependent on charge is the discrete solvation correction, 

which is meant to compensate for the distortion in solvent structure when, for example, 

water molecules interact with their overly ordered image counterpart. Interestingly, this term 

can be quite large for a given ligand-receptor complex (~ 10 − 20 kcal/mol), but it is 

generally much less sensitive to the differences between the ligand bound and unbound 

states and so tends to cancel extensively. Note, some care must be taken because the 

correction depends on the specific nature of the solvent model (namely the charge 

distribution).

5.9 Confidence and Error Analysis

As has been amply discussed above, there are numerous reasons that a BFE prediction may 

be incorrect. False positive predictions (compounds predicted to be good that are not) can be 

costly in drug design projects, where synthesizing an inactive compound can cost thousands 

of dollars and weeks of lab work. Therefore one should leverage the relatively low cost of 

additional simulations in order to establish confidence (or lack thereof) in a prediction. Here 

we suggest several best practices for appropriately assessing the quality of binding free 

energy predictions as well for building more robust hypotheses around the chemical matter 

surrounding a target. Other works have discussed techniques for confidence assessment and 

error analysis in binding free energy calculations,206 including ways to improve free energy 

predictions by meaningful error estimates.79 Sources of errors can also be attributed to 

validation data sets and data set biases, as examined in detail elsewhere.207 Below we 

discuss ways to assess some of the most common sources of errors in BFE calculations, 

including statistical analysis, structural analysis, binding pose uncertainty, sampling, and 

force fields.

Statistical Errors—There are two main sources of random error in free energy estimates 

in addition to the systematic error related to the quality of the model potential energy 

function. These contributions are:

1. The uncertainty in the ensemble average quantities due to fluctuations in the 

observed sample distribution.

2. The uncertainty caused by approximating the true distribution via finite-length 

simulations.

The uncertainty of the ensemble averages within the observed distribution can be estimated 

by considering only the statistically significant samples to calculate the standard error of the 

mean. The statistically significant samples are those data points separated in time by at least 
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the autocorrelation time of the timeseries. Upon pruning the correlated data of observable x, 

the sample standard deviation σx is calculated, and the standard error of the mean is then 

σ x = σx2/Nx, where Nx is the number of statistically independent samples of x. For TI 

calculations, the observables are the timeseries values of ∂U/∂λ. The estimated error in the 

free energy due to the uncertainty within the observed distribution requires the calculation of 

the standard errors σ ∂U / ∂λ λ and propagation of these errors through the quadrature 

formula; that is,

σΔG = ∑
i

wi2σ ∂U / ∂λ λi
2

(17)

Shirts and Chodera developed an analytic expression for the (large sample size) free energy 

errors calculated from the MBAR method, which is more complicated due to MBARs use of 

coupled equations.9

An alternative approach for calculating the standard errors is bootstrapping. The bootstrap 

algorithm requires one to generate many estimates of the free energy and then calculate the 

standard deviation of those estimates, which is the standard error of the mean. To generate 

many estimates of the free energy, new time series values are artificially created by 

resampling the observed distribution with replacement. That is, if the observed distribution 

contains N data points, then a bootstrap distribution containing N points is created by 

randomly selecting samples from the observed distribution. In the case that the observed 

distribution contains correlated data, a block bootstrap algorithm can be used. The block 

bootstrap algorithm differs only by grouping the observed data into consecutive segments, 

such that the length of each segment is at least as long as the autocorrelation time of the 

data. The bootstrap distributions are then generated by randomly selecting blocks from the 

observed distribution. In general a block bootstrap error estimate will be greater than that 

from the standard algorithm and the ratio of the two estimates can be a used as a rough 

estimate of the autocorrelation time.10

The second source of error in free energy estimates arises from insufficient sampling, such 

that the observed distribution is not reflective of the true distribution.208 To estimate the 

magnitude of this error, one can repeat the simulations with different initial conditions and 

calculate the standard error across independent trials. This strategy has been called the 

“ensemble average approach”.209–212 It has been suggested that the length of each 

simulation should be at least 50 times the length of the autocorrelation time of the data. 

Unfortunately, autocorrelation times are largely system-dependent and so this is difficult to 

verify in practice. For example, it was found that ∂U/∂λ had an autocorrelation time of up to 

3 ns in charge-changing pKa simulations of base pairs,52 whereas autocorrelation times 

between 1 and 2 ps in solvation free energy bookending simulations.60 Finally, it is worth 

noting that Hamiltonian replica exchange between λ-simulations has been shown to reduce 

autocorrelation times and improve the reproducibility of free energy estimates between 

independent trials.52

Perhaps the simplest (although not always sufficient) way to create an ensemble of 

simulations is to repeat a calculation with the same initial structure but different random 
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seed. This behavior has long been the default in AMBER when repeating a simulation with a 

stochastic integration scheme. If one or more simulations initiated from the same 

configuration but using different seeds do not return similar answers, then it is likely that the 

simulations are of insufficient length. As always, one should be cautious of the false negative 

rate of this approach and collect as many repeats of appropriate length as can be afforded in 

order to obtain the necessary accuracy. For example, in the limit of many infinitesimally 

short simulations this approach would (very probably incorrectly) suggest that no 

convergence problems exist.

Structural Analysis—BFE simulations are only accurate if the calculations sample 

important states and transitions. If one could sample infinitely, then it would be relatively 

simple to calculate a binding coefficient by directly counting transitions from a bound state 

to an unbound state. The difficulty is that the transitions themselves are quite rare and 

therefore require exceedingly long simulations to observe sufficient transitions to accurately 

calculate the binding coefficient. Indeed, the real timescale of binding events is generally of 

the order of microseconds or longer. This is currently inaccessible on commodity computing 

architectures and can only be accomplished with modest throughput on purpose-built or 

leadership computing platforms.213,214 Fortunately, the thermodynamics of binding can be 

recapitulated by exclusively sampling the alchemical (as opposed to conformational) 

transition between the states. The problem then becomes a much more tractable issue of 

correctly characterizing these two specific states.215

It is important to ensure, as a basic test, that the protein and ligand are bound for the 

duration of the complex phase of simulation. This can be done by computing the root-mean-

square deviation (RMSD) or center of mass (COM) motion of a ligand in a pocket relative to 

that of the protein. That is, these quantities should be computed once the translational and 

rotational motion of the protein have been minimized via rigid transformations of all 

coordinates. If the RMSD or COM motion of the ligand deviates significantly then the 

ligand has likely fallen out of the pocket.

Another test that can be done to ensure the consistency of a binding calculation is to 

examine torsional profiles of the ligand and perhaps even proximal protein sidechains. As a 

general rule, one expects more flexibility from a ligand in solution. As such, comparisons 

between bound and unbound simulations can easily expose obvious under-sampling when 

the torsional populations appear to be completely uncorrelated. Of course, even when 

sampling is sufficient the overlap need not be exactly identical because the protein binding 

pocket will impact the relevant configurations in the bound state relative to the unbound 

state. If there is reasonable confidence in the sampling, then differences between the 

torsional profiles can also be used to identify specific interactions in the protein.

Additionally, it is important to check dihedral profiles between independent runs, since rare 

transitions involving hidden high energy barriers may need to be captured to get a truly 

accurate binding free energy calculation. This can simply be done by extending your 

simulation time or, in difficult cases, applying enhanced sampling techniques. A number of 

enhanced sampling methods are available in AMBER20, such as Gaussian Accelerated MD 

(GaMD),216 the replica exchange version of GaMD (rex-GaMD),,217 and the recently 
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introduced Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD).218 Other 

enhanced sampling methods, such as replica exchange with solute tempering,219,220 will be 

available in future versions of AMBER. Other methods for enhanced sampling, such as 

umbrella sampling,221,222 metadynamics223,224 and adaptive biasing force,109,225 could be 

employed, although such methods rely on the definition a collective variable (CV) prior to 

simulating the system.

Multiple Poses—Similar to using multiple random seeds, it is also possible to use 

variations of the input poses. In cases where there is an unambiguous pose for each ligand, 

small variations in the poses can still provide insights regarding the local convergence of the 

BFE simulations. Multiple poses can be generated many ways, such as saving multiple poses 

from the docking program, using different docking programs, subjecting a pose to different 

minimization routines, or minimizing with different force fields. Such deviations act in a 

similar way to random seeds, although due to the slight variation in initial coordinates, 

simulations can sample significantly different portions of phase space.

In cases where the poses are ambiguous, it is necessary to run BFE simulations in each of 

the viable poses and combine the results. Multiple possible ligand poses may be encountered 

throughout a drug design project, especially during hit finding or early lead optimization 

when detailed and/or trustworthy structural data may not be available via experimental or 

hybrid means (e.g. homology modeling). Since the docking scores are often only weakly 

correlated with the true binding affinities,226 a subsequent binding free energy assessment 

can provide valuable information. After an initial test that the binding poses are in fact stable 

(see Section 5.9), free energy simulations can be launched from each of the viable poses.

A few scenarios are possible when running simulations from multiple poses:

1. the poses interconvert and yield the same free energy,

2. the poses interconvert and do not yield the same freeenergy,

3. the poses do not interconvert and do not yield thesame free energy.

4. the poses do not interconvert but still yield the samefree energy.

If interconversion does occur, then the presence of multiple poses could imply complex 

dynamics that may offer a useful guide for assessing sampling in other ligands. If one gets 

the same free energies from different poses (scenario #1), then sufficient sampling can 

generally be assumed. If different free energy predictions are produced in the separate 

interconverting simulations (scenario #2), then likely a hysteresis issue has been uncovered, 

suggesting insufficient sampling.

If interconversion does not occur then it is possible that a particular pose is not physically 

relevant or that the energetic barrier between poses is too large to overcome within the 

simulation timescale. Poses like this can be identified based on having significantly different 

binding affinity predictions between them (scenario #3). In this case the more favorable free 

energy state is most probably the correct (or most relevant) state (assuming that the pose for 

the reference ligand is correct, in the case of RBFE simulations). Finally, if the poses do not 

interconvert but the free energy estimate is the same or similar (scenario #4), then a 
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correction should be made to account for the multiple states. For poses giving rise to 

separated states one can use a simple discrete model (more sophisticated alternatives have 

also been reported126,128). For N different poses with binding free energies ΔGi (i = 1,…,N), 

the corrected binding free energy ΔGcorr across all states is:

ΔGcorr = ∑
i = 1

N
piΔGi + β−1 ∑

i = 1

N
pi ln pi . (18)

where β is 1/kT and the probabilities pi are the normalized Boltzmann weights for the ith 

pose:

pi ≡ e−βΔGi

∑i = 1
N e−βΔGi

. (19)

The first term is just a weighted average of the binding free energies for each state (pose) 

while the second term is the entropic contribution. In the special case that all the ΔGi are the 

same, one obtains pi = 1/N and the second term is simply β−1 lnN. In the case that one pose 

is considerably more favorable than the others, it will dominate the first term but not the 

second. A more detailed discussion, including expanded variations to the expression for 

ΔGcorr, is provided elsewhere.126,128

In the case where interconversion between poses takes place in a subset of the λ windows, 

special care should be taken to understand the nature of the poses and the relationship 

between them. While differential interconversion is expected in different λ windows due to 

differences in the Hamiltonian, it may also indicate insufficient sampling. In such cases, 

employing a Hamiltonian replica exchange approach may improve results (or indicate that 

the differential interconversion is not an issue).104 Alternatively, methods can be employed 

to directly sample the transition between the states using an alchemical227 or Monte Carlo 

approach.228

Reversibility and Hysteresis—A related concept to using multiple poses arises in RBFE 

calculations when a reference compound (e.g. one observed in a crystallographic structure) 

is used to dock a candidate compound but multiple orientations are returned. In theory, a free 

energy simulation should yield the same result no matter which compound is alchemically 

morphed into which – any discrepancy likely implies a sampling issue. The two may also 

differ if the candidate is suitably different in character from the reference as to take on a 

completely different pose and/or induce a conformational change in (part of) the protein. 

These two scenarios can be difficult to tell apart when the ligand perturbation is spatially 

quite large.

Force Field Variations—Unfortunately, sampling issues, whatever the cause, are not the 

only concerns when assessing confidence and error estimation – the details of the force field 

can pre-ordain a calculation to yield an inaccurate outcome, no matter how much care is 

placed on the other steps (garbage in, garbage out). Ideally, one would be able to probe 

specific characteristics of a model. What is the extent of charge “prepolarization”? Which 

torsional populations are dominant? How close are specific van der Waals contacts? 
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Unfortunately these are rarely clear cut knobs that the user can dial up and down, but it may 

be possible to correlate them roughly with a family of force fields. While it may not be 

possible in all cases, it can be informative to repeat a simulation with a different force field 

model of the ligand and/or protein (our experience is that solvent models display less 

sensitivity, at least on short time scales). A useful practice is to reserve this strategy for 

extreme predictions (e.g. ligand modifications > 2 kcal/mol more or less favorable than the 

reference). If such outcomes are reproducible, the result may be due to a fundamental bias in 

the force field. For example, excessive polarization may lead to over-stabilized hydrogen or 

halide bonds or an unusual torsional profile might favor an implausible conformation. Rough 

consensus across multiple force field models can be a source of higher confidence or else an 

indication that a trend is qualitatively, but not quantitatively correct.

There are a number of force fields available in AMBER for proteins, nucleic acids, 

carbohydrates, lipids, solvents, and ions (for details about recommended available force 

fields, see the AMBER20 manual http://ambermd.org/doc12/Amber20.pdf). Additionally, 

variants of the general AMBER force field (GAFF133 and GAFF257) are available for non-

standard residues including drug-like molecules and modified amino acids. For protein 

systems, the Stony Brook (SB) family of protein force fields (ff19SB,229 ff14SB,230 and 

ff99SB231) are the most commonly used in AMBER. For organic drug-like molecules, 

GAFF257 is the latest version of the generalized AMBER force field. Additional details can 

be found in the AMBER20 manual.

Here, we specifically suggest that lack of consensus in BFE calculations among different 

force fields is a red flag and should be investigated further. In some cases a particular force 

field may be significantly better than another for the ligands of interest, in which case 

differences in results would be expected (and results from the better force field should be 

more trusted). However, when results vary and it is not clear which force field is better, it is 

not obvious to us that there is a general course of action to take other than to increase 

scrutiny of the results. Recently, Gapsys, et al.34 proposed a consensus method using 

multiple force fields that improved results in certain situations. This may be a profitable 

avenue for future research.

6 Future Work

There are a number of areas that will be the focus of new free energy developments for drug 

discovery in AMBER driven by academic-industry partnership. These include the 

development of new force fields (QM, MM, and machine learning), enhanced sampling 

methods (both in the λ dimension as well as conformational degrees of freedom), improved 

alchemical transformation pathways, and optimization of RBFE networks (including 

integration of experimental constraints). These are briefly summarized below.

6.1 MM→QM Book-ending Approaches

The robust prediction afforded by alchemical free energy methods in drug discovery presents 

considerable challenges for conventional molecular mechanical (MM) force fields.232 This is 

due, in part, to the need to test chemically diverse molecules for which tested parameters 

may not exist.3 Modeling certain types of electrostatic interactions, such as sigma holes and 
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cation-pi interactions are especially challenging for point charge and multipole models. 

Further, the process of drug binding involves a considerable change in the molecular 

electrostatic environment that requires explicit consideration of electronic response for high 

accuracy. Finally, the modeling of complex interactions of metal ions and formation/

cleavage of chemical bonds for covalent inhibitors demands a more sophisticated quantum 

electronic structure treatment. Quantum mechanical (QM) methods, if made sufficiently fast 

to be computationally tractable, offer a potentially transformative solution to these problems.

In this regard, one could argue that practically every alchemical free energy prediction used 

in drug discovery could potentially benefit from accurate QM methods. In addition to the 

general cases described above, particularly prominent examples that demand QM methods 

include systems such as metalloproteins where drugs target inner-sphere coordination to the 

metal centers, and in general highly charged systems (including RNA targets) or systems 

that involve charge-changing transformations (including protonation/deprotonation events) 

that exacerbate the need for many-body polarization and charge transfer effects. As these 

QM methods are still in early stages with respect to their application to drug discovery in 

alchemical free energy simulations, it remains to be seen the degree to which they may have 

impact and over what range of targets and drugs.

Free energy simulations with combined quantum mechanical/molecular mechanical 

(QM/MM) potentials or fully quantum mechanical force fields (QMFFs), if made 

sufficiently fast to be computationally tractable, offer a potentially transformative solution to 

these problems.233–238 Quantum models, if made affordable, are thus highly attractive for 

drug design applications owing to their accuracy, robustness and lack of adjustable free 

parameters relative to MM force fields.239

A common strategy to efficiently correct is to perform the alchemical transformation with a 

MM method, and then apply MM→QM/MM free energy corrections to the end-states. This 

is referred to as a “book-ending”, “indirect” or “reference potential” approach60,240–252 The 

primary goal of these methods is to indirectly estimate a free energy difference between 

states A and B, ΔGA→B, using a computationally demanding Hamiltonian by evaluating the 

free energy change at a low-level of theory and then correcting for the free energy difference 

associated with changing the Hamiltonian.

Book-ending method development was motivated by the idea of using QM and QM/MM 

Hamiltonians to improve the accuracy of solvation and RBFE predictions.239 Book-ending 

methods circumvent a number of obstacles. First, the alchemical transformation step often 

involves simulation of several nonphysical intermediate states connecting the end-states, and 

it may not be obvious how the nonphysical states might be modeled with a QM Hamiltonian. 

For example, in the case where atoms are deleted or inserted into the system, one might have 

to contend with the idea of having a noninteger number of electrons and partial nuclear 

charges. Furthermore, alchemical thermodynamic pathways often require a number of 

intermediate states, each of which requiring a significant amount of sampling to converge 

the free energy result, which would be prohibitively expensive with a QM or QM/MM 

Hamiltonian. A bookending method instead computes the alchemical transformation with a 

molecular mechanical Hamiltonian method, where softcore potentials have been developed 
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and which are inexpensive enough to be sampled. The estimation of the MM→QM/MM 

free energy changes does not require simulation of alchemical systems; one simulates the 

two end-states (A and B) using one-or-more Hamiltonians that connect the low- and high-

level Hamiltonians. It is important to choose the most compatible reference (MM) potential 

for the particular high-level Hamiltonian to avoid slow convergence of the Hamiltonian free 

energy correction estimate.253–256 This has led to work that sought to increase the 

distribution overlap between the reference and high-level Hamiltonians,244,245,254,257–261 

including methods that perform ad hoc parameterization of the MM reference potential via 

“force matching” to the QM/MM potential.245,255,260–267

It is worthwhile to note that other methods have been explored to reduce the number of 

energy and force evaluations necessary to converge QM or QM/MM free energy estimates. 

These include trajectory reweighting,251,268–271 the use of frozen density functional 

approximations,272,273 integrated Hamiltonian sampling,274 orthogonal space random walk 

strategies,275 and paradynamics.258,276 Collectively, these methods offer considerable 

promise to greatly improve the accuracy and predictive capability of alchemical free energy 

simulations with practical computational resources.

6.2 Further Softcore Improvements

Modify the exponents in the softcore potential—We are exploring different forms of 

the softcore potentials in order to obtain more numerically stable and smooth results in TI, 

BAR and MBAR calculations. The general forms of ”effective diatomic distances” (Eq.(15)) 

are:

rijLJ λ; αLJ = rijn + αLJW rij S2(λ)σijn
1/n

rijCoul λ; αCoul = rijm + αCoulW rij S2(λ)σijm
1/m (20)

For the Lennard-Jones and the Coulombic interactions, respectively. In the current default 

AMBER softcore form, m is 2 and n is 6. As mentioned earlier, now both rijLJ λ; αLJ  and 

rijCoul λ; αCoul  are in exactly the same form and αLJ and αCoul are unitless. (Note that αLJ is 

the same as the original α in AMBER) Hence it is easier to explore and directly compare 

different parameters. One obvious observation is that, in the current form, a larger m or n 
will imply a shorter range of the softcore effect. The current setting (m=2, n=6) will have 

stronger short range softness in LJ than in Coul interactions, which could be one of the 

reasons that it is difficult to balance them by only modifying α and αCoul.

We explored different combinations of (m, n), including (m=1, n=1) and (m=2, n=2), 

incorporated with the smoothstep function SSC(2) and the new softcore parameter αCoul and 

the preliminary results are shown in Figure 7 and Figure 8. Figure 7 compares the current 

default scheme (m=2, n=6) with (m=1, n=1) and (m=2, n=2) schemes with the AMBER18 

default β value (12 Å2) for (m=2, n=6) and αLJ = 1 for (m=1, n=1) and (m=2, n=2), with 

various α (the same as αLJ in the new form) values. Figure 8 shows the same comparison 

except β is the AMBER20 default β value for SSC(2) scheme (50 Å2) and αCoul = 4. The 

preliminary results shown in Figure 7 and Figure 8 suggest that by modifying the softcore 

exponents m and n, the imbalance between the LJ and Coul interactions can be significantly 
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reduced. We are currently extending the verification to other more realistic molecular 

systems.

6.3 λ-scheduling with smoothstep functions

As mentioned earlier, AMBER20 now provides λ-scheduling for flexible turning on and off 

for individual interactions at different stages along the alchemical λ-axis, similar to other 

simulation packages such as GROMOS92 and NAMD.84,122 The commonly-used “stepwise” 

scheme is equivalent to ”schedule” the LJ and Coul interactions at different stages (e.g., in 

NAMD). Furthermore, the λ-scheduling can be applied to bonded terms, i.e., bond length, 

bond angle and torsion terms, so that the internal conformation of a disappearing softcore 

region can be kept until very late in the λ transformation, which could prevent or reduce the 

conformation sampling problems when the internal bonded terms need to be scaled with λ. 

We are currently exploring different λ-scheduling for different interactions to identify the 

best scheduling that will deliver the most smooth and stable dU
dλ  curves.

6.4 Enhanced sampling

In the past few decades methods have been developed that address the sampling problem, 

such as replica-exchange molecular dynamics, metadynamics, simulated annealing, and 

orthonomal space methods. Major focus has been on enhanced sampling in the 

conformational spaces. Nevertheless, with the rapid developing advances in hardware and 

software, the MD-based free energy methods become feasible and hence emerges the 

importance of enhanced sampling in the alchemical space. On one hand, enhanced sampling 

methods in the alchemical space concern similarly as the counter methods in the 

conformational space. They both need to have adequate space coverage in order to obtain 

proper statistically meaningful ensembles and at the same time need to reduce the time spent 

on the spaces that are not critical for the desired properties. On the other hand, a 

fundamental difference is that the free energy is a state function hence theoretically it is 

possible to reduce alchemical sampling through efficient and theoretically robust methods.

With the advanced methods recently implemented in AMBER20 reported here, we are in a 

much better position to explore various advanced enhanced sampling methods in the 

alchemical space. For example, the developed SSC(2) scheme is well suited for advanced λ-

scheduling optimization and enhanced sampling schemes in the alchemical space where a 

single-pass concerted λ transformation is desirable, including λ dynamics,99–102 

Hamiltonian replica exchange methods,91,103–107 adaptive biasing,100,108,109 and self-

adjusted mixture sampling110,111 methods. For the conformational enhanced sampling at a 

given λ, the REST/REST2 methods277,278 have been shown to be very successful. We are 

actively investigating possible incorporation of the SSC(2) potential with these techniques.

Another approach is the use of Gaussian accelerated molecular dynamics (GaMD) and its 

more recent derivatives, particularly LiGaMD, as an enhanced sampling methodology.216,218 

This methodology allows for a Gaussian boost potential to be selectively applied to either 

the bonded terms, nonbonded terms, and/or the potential energy. These can be applied to the 

entire system or selectively to the ligand and its contacts. This amount of control allows for 

faster sampling of ligand binding states and to overcome high energy barriers. As the 
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methodology currently does not support λ scaling simulations, we are actively investigating 

incorporating these methodologies for TI and MBAR.

6.5 Force Field

Substantial progress has been made in the parameterization of empirical molecular force 

fields, as manifest in the consistent improvements in the agreement between the predictions 

of molecular dynamics simulations and the experimental measurements,279 including in the 

binding free energies.116,140 The remaining journey to experimental-level accuracy, 

however, is almost surely no shorter and no less arduous than the road that has led us to 

where we are now. Although further improvements in predictive accuracy are expected from 

fine-tuning the parameters for the current functional forms in the force fields, more 

substantive modifications may be required to reach experimental level accuracy.

It is now widely recognized that off-atom-center partial charges are necessary to accurately 

capture the electrostatic potential around a molecule.140,280–282 These off-atom-center 

charges, referred to as virtual sites, are placed at a predetermined position within a molecular 

frame defined by a parent atom and up to three neighboring atoms that are covalently 

bonded to the parent atom. The current AMBER code only supports a limited number of 

ways for placing the virtual sites, and refer to them as extra points (EP). Generalized virtual 

sites, however, have been implemented in a developmental branch of AMBER. Some new 

types of virtual sites are shown in Figure 9 and will likely become available in the next 

official release. In order to make the virtual sites truly useful, however, substantial work is 

required to optimize their locations and the methods to parameterize their charge values.

The short-range repulsive interactions between atoms have commonly been modeled by a 

1/r12 potential, which was originally proposed for computational efficiency rather than for 

physical accuracy. Buckingham suggested that the repulsive potential due to the Pauli 

exclusion principle should resemble an exponential, and he proposed the following potential 

function as a substitute for the prevalent Lennard-Jones 12–6 potential:

V (r) = Ae−Br − C
r6 (21)

The Buckingham potential, first published in an article authored by Buckingham and 

communicated by no other than Lennard-Jones himself to the Proceedings of the Royal 

Society of London,283–285 has found widespread use in material science simulations. But its 

adoption in biomolecular simulations is so far limited. It will be interesting to see whether 

its more realistic description of the repulsive potential can lead to more accurate binding free 

energy results.

In protein-ligand binding, the ligand molecule transfers from the high dielectric environment 

of water to a different dielectric environment of the protein binding pocket. This typically 

induces a redistribution of the electrons in the ligand due to molecular polarizability. Thus, 

at least in theory, a polarizable force field should improve the accuracy of binding free 

energy calculations.286 Polarizability can be modeled by either inducible dipoles287 or 

Drude oscillators.288 So far, however, polarizable force field models have not been widely 
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used in binding free energy calculations, due to both the roughly 10- to 20-fold increase in 

the computational cost and the difficulty in parameterizing the models.289 Nevertheless, it 

will be worthwhile to keep an eye out for the development of polarizable models,290 and to 

implement them in AMBER when the time comes.

6.6 Network RBFE

In a typical drug discovery project, BFE is routinely used to compute the binding free 

energies of a large number–usually 10s to 100s in each batch–of candidate molecules against 

the same protein target of interest. There are many ways to collectively compute these 

binding free energies. Take a simple example of 3 molecules: A, B, and C. One can compute 

the individual binding free energy for A (ΔGA) and the relative binding free energies 

between A and B (ΔΔGAB) and between A and C (ΔΔGAC), and then estimate the binding 

free energies for B and C by ΔGB = ΔGA + ΔΔGAB and ΔGC = ΔGA + ΔΔGAC. 

Alternatively, one can compute the individual binding free energies ΔGA and ΔGB, as well 

as the relative binding free energies ΔΔGBC and ΔΔGAC, and estimate the binding free 

energies for C by ΔGC = (ΔGA + ΔΔGAC + ΔGB + ΔΔGBC)/2. Moreover, some of the 

calculations can be allocated more simulation time than others, resulting in different 

statistical errors in different calculations. Given a fixed computational cost, there are infinite 

numbers of ways to allocate them to the calculations of different individual and relative 

binding free energy calculations. This poses an interesting problem of experimental design: 

how to best allocate the computational resources to the calculations so as to minimize the 

overall statistical error in the estimated binding free energies?

A number of approaches have been developed to address this problem and to plan the 

binding free energy calculations for a set of many (between 10 and 100) compounds against 

the same target. The earlier approaches such as LOMAP195 aim to construct a network of 

relative binding free energy calculations so that any pair of molecules can be computed by 

combining the results of a small number of pairs of structurally similar molecules and the 

binding free energy difference between any pair can be computed by at least two different 

combinations above. Subsequent works introduced rigorous mathematical frameworks to 

minimize the overall statistical error with respect to either the selection of computed pairs291 

or the allocation of computational resources to each pair.292 Using these optimal allocations, 

the same level of statistical precision may be achieved at half of the computational cost 

compared to commonly used ad hoc allocations. Such optimized network of binding free 

energy calculations may help expand the number of molecules that can be characterized by 

binding free energy calculations in each round of drug design.

6.7 Network-wide Free Energy Analysis

In the future, methods will be explored that can incorporate known experimental binding 

energies into RBFE networks to improve the quality of the remaining free energy estimates. 

One idea for achieving this is to incorporate constraints into the RBFE calculations. 

Recently, the solution of the MBAR equations has been re-expressed in terms of a nonlinear 

minimization of an objective function, rather than having to solve a self-referential set of 

equations.293 This re-expression of the MBAR solution allows one to use nonlinear 

parameter optimization software to minimize the objective function, where the parameters of 
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the optimization are the simulation free energies (to within a constant). When a network of 

RBFEs are considered, one can expand the optimization method by constructing a new 

objective function that is a sum of objectives corresponding to each edge of the network. 

Optimization of the objective function sum is equivalent to the independent optimization of 

each objective unless constraints are introduced that couple the free energies between edges. 

An obvious set of constraints are cycle closures that force the sum of free energies along a 

closed path to be zero. Furthermore, if a partial list of known RBFEs are experimentally 

known, then those free energies can be included as affine constraints.

Giese and York have performed a preliminary, proof-of-concept implementation of the 

constrained network MBAR approach described above, and an example of its use is shown 

in Figure 10 which displays RBFEs of ligands to the CDK2 protein. There are 16 ligands, 

and the ligand with the highest experimental binding free energy was chosen to define the 

zero of free energy. There are a total 22 cycle closure constraints (11 constraints for the 

solution-phase network and 11 constraints for the CDK2-bound network). The image shows 

that enforcing cycle closure constraints within the MBAR optimization has little effect on 

the RBFEs unless an additional experimental RBFE is included. In this example, the 

calculated RBFE of “ligand 28” was constrained to match experiment. It is noteworthy that 

the inclusion of the experimental RBFE improves the prediction of most ligands because the 

calculated RBFEs are highly coupled by cycle closures. If the cycle closures were not 

included as constraints, then the experimental constraint on “ligand 28” would only change 

the result of “ligand 28”. Improvement to the correlation coefficient (R) would still be made 

if a different ligand’s RBFE was constrained to match experiment. The average correlation 

coefficient of the 15 possible constraints (the “ligand 28” constraint illustrated in Figure 10 

is only one of the 15 cases) is 0.84 ± 0.02, which is a significant improvement relative to the 

0.69 correlation coefficient obtained when cycle-closure and experimental constraints are 

not enforced. Furthermore, the average mean unsigned error is reduced from 1.0 kcal/mol to 

0.6 ± 0.1 kcal/mol, and the average mean signed error is improved from 0.9 kcal/mol to 0.3 

± 0.2 kcal/mol.

7 Conclusion

In this work we describe new features in AMBER20 for performing GPU-accelerated 

alchemical binding free energy simulations. We focus on features and functionality related to 

drug discovery effort that arose from an ongoing collaboration between the York Group, the 

Laboratory for Biomolecular Simulation Research at Rutgers University, and Silicon 

Therapeutics. We also describe the ancillary tools outside of AMBER needed for preparing 

and analyzing alchemical binding free energy simulations. We have attempted to note the 

nuances associated with free energy simulations in the context of drug discovery, especially 

regarding the balance between ease-of-use and expert control. While automated protocols 

can work, especially for highly validated protein targets, each target presents unique 

challenges with respect to free energy landscapes and intrinsic timescales for sampling 

relevant protein and solvent motions. As such, currently the best results can be obtained by 

experienced users with fine-tuned control of the software packages that they use. Indeed, 

while alchemical free energy simulations offer great value even with current automated 

packages, it is important to note that significant challenges still exist related to obtaining 
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accurate and robust binding free energy predictions for drug discovery applications. We 

hope that this work has illustrated some of the critical issues that should be considered and 

will help educate the broader population of researchers engaged in the use of binding free 

energy simulations in drug discovery and related applications to emerging areas such as 

precision medicine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Performance of AMBER20 for standard MD and thermodynamic integration (TI) on 

GeForce 1080Ti and 2080Ti graphics cards compiled on CUDA 9.1 using a Monte Carlo 

barostat, Langevin thermostat, and 4 fs time step.
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Figure 2: 
Hydration free energies of molecules containing alcohol functional groups. The bespoke 

force field uses the same parameters for bond stretch, bond angle, and van der Waals 

interactions as GAFF2. It derives the partial charges by fitting to the electrostatic potential 

computed using restricted Hartree-Fock with the 6–31G* basis set.142 The torsional 

parameters are then optimized to fit the potential energy surface computed by B3LYP/6–

31G** for conformations generated at different torsional values of the rotatable bonds. 

Refitting the torsional parameters improves the agreement between the predicted and 

experimental hydration free energies.
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Figure 3: 
Hydration free energies of molecules containing aromatic halogens and aromatic nitrogens. 

Including virtual sites on the halogen and nitrogen atoms improves fitting to the electrostatic 

potential calculated by quantum chemistry and the agreement between the predicted and 

experimental hydration free energies.
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Figure 4: 
An example of ligand poses (purple carbons) docked A) not using core-restraints and B) 

using core-restraints. Employing core-constraints ensures that the binding mode is conserved 

between all of ligands in a congeneric series.
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Figure 5: 
Potential mappings using A) 2D or B) 3D information related to differing ortho substitutions 

on a terminal phenyl ring.
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Figure 6: 
Representative TI integrands for different λ schedules used in binding free energy 

calculations. The shape of the curve is highly dependant on the use of a single step versus 

multistep protocol. For simple charge changing transformations the curves may have a near 

linear character (fit dashed lines). The number of atoms being transformed (e.g. RBFE 

versus ABFE) also has a strong effect (left and right columns, respectively). The specific 

transformations are the Tyk2 ejm-47 (ABFE) and p38 2v→3fhm (RBFE) perturbations from 

the Wang, et al. data set. The specific coupling protocols are as outlined in Section 2.3. Note 

that decharge and recharge use opposite conventions for direction (λ=1 is fully coupled for 

decharge and λ = 0 is fully coupled for recharge).
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Figure 7: 
Comparison of 〈dU/dλ〉 curves from (leftmost column:) the original SSC(2) scheme with 

(m=2, n=6), from (middle column:) the modified SSC(2) scheme with (m=2, n=2), and from 

(rightmost column:) the modified SSC(2) scheme with (m=1, n=1) (defined in Eq.(20)). The 

β value is 12 Å2 and αCoul is 1. The molecular systems are upper row: the absolute 

hydration free energy of diphenyltoluene; middle row: the relative hydration free energy 

between the Factor Xa ligand L51h and L51c lower row: the absolute hydration free energy 

of a single Na+ ion.
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Figure 8: 
Comparison of 〈dU/dλ〉 curves from (leftmost column:) the original SSC(2) scheme with 

(m=2, n=6), from (middle column:) the modified SSC(2) scheme with (m=2, n=2), and from 

(rightmost column:) the modified SSC(2) scheme with (m=1, n=1) (defined in Eq.(20)). The 

β value is 50 Å2 and αCoul is 4. The molecular systems are upper row: the absolute 

hydration free energy of diphenyltoluene; middle row: the relative hydration free energy 

between the Factor Xa ligand L51h and L51c lower row: the absolute hydration free energy 

of a single Na+ ion.
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Figure 9: 
Seven types of virtual sites will be made available in a future release of AMBER. (a) 

aromatic halogens: fixed-distance VS from 2-atom frame; (b) aromatic halogens: flexible-

distance VS from 2-atom frame; (c) aromatic nitrogens: flexible-distance VS from 3-atom 

frame; (d) aromatic nitrogens: fixed-distance VS from 3-atom frame; (e) aromatic nitrogens: 

fixed-distance-with-angle VS from 3-atom frame; (f) aromatic carbons: out-of-plane VS 

from 3-atom frame; (g) amines: in(out-of)-pyramid VS from 4-atom-frame. The virtual sites 

are shown as cyan beads; P,fn (n=1,2,3) are parent and frame atoms to define virtual sites. 

The relative positions of the virtual sites are specified by the illustrated geometric 

parameters.
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Figure 10: 
RBFE results for CDK2 (16 ligands). The left pane computes each edge of the RBFE 

network from independent MBAR optimizations. The center pane simultaneously optimizes 

all edges in the network, coupling the results through 22 cycle closure constraints. The right 

pane further includes a constraint that forces the RBFE of “ligand 28” to match experiment.
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