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Abstract

Introduction: The microtubule-associated protein tau (MAPT) gene is considered a strong 

genetic risk factor for Parkinson’s disease (PD) in Caucasians. MAPT is located within an 

inversion region of high linkage disequilibrium designated as H1 and H2 haplotype, and contains 

eight other genes which have been implicated in neurodegeneration. The aim of the current study 

was to identify common coding variants in strong linkage disequilibrium (LD) within the 

associated loci on chr17q21 harboring MAPT.

Methods: Sanger sequencing of coding exons in 90 Caucasian late-onset PD (LOPD) patients 

was performed. Specific gene sequencing for LRRC37A, LRRC37A2, ARL17A and ARL17B was 

not possible given the high homology, presence of pseudogenes and copy number variants that are 

in the region, and therefore four genes (NSF, KANSL1, SPPL2C, and CRHR1) were included in 

the analysis. Coding variants from these four genes that did not perfectly tag (r2=1) the MAPT 
H1/H2 haplotype were genotyped in an independent replication series of Caucasian PD cases 

(N=851) and controls (N=730).

Results: In the 90 LOPD cases we identified 30 coding variants. Eleven non-synonymous 

variants tagged the MAPT H1/H2 haplotype, including two SPPL2C variants (rs12185233 and 

rs12373123) that had high pathogenic combined annotation dependent depletion (CADD) scores 

of >20. In the replication series, the non-synonymous KANSL1 rs17585974 variant was in very 

strong LD with MAPT H1/H2 and had a high CADD score of 24.7.

Conclusion: We have identified several non-synonymous variants across neighboring genes of 

MAPT that may warrant further genetic and functional investigation within the biological etiology 

of PD.
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Introduction

Parkinson’s disease (PD) is a progressive, age-associated neurodegenerative movement 

disorder. PD is considered a multifactorial disease, whereby environment and genetics both 

contribute to disease risk. Although a handful of genes have been identified that harbor 

highly penetrant mutations, disease risk is primarily suspected to be influenced by multiple 
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low penetrant population-based susceptibility variants. Genome-wide association approaches 

have now nominated over 90 susceptibility loci in Caucasians with one of the most highly 

replicated being on Chr17q21, containing the MAPT gene [1].

MAPT encodes for microtubule associated protein tau, a protein which is thought to stabilize 

the formation or facilitate flexibility of axonal microtubules [2, 3]. MAPT is located in a 

region of high disequilibrium (LD) spanning approximately 1.8 megabases and containing a 

900 kilobase inversion polymorphism which defines two extended haplotypes, known as H1 

and H2 [4]. H1 is the most common haplotype, with a frequency ~20% for the H2 allele in 

European populations; the H2 haplotype is completely absent or very rare in other 

populations [5]. Mutations in MAPT have been associated with many neurodegenerative 

diseases, and specifically the H1 haplotype is associated with increased risk of developing 

progressive supranuclear palsy (PSP) [6, 7], corticobasal degeneration (CBD) [8], and 

Alzheimer’s disease (AD) [9], as well as PD [10]. The MAPT H1 association linked to an 

increased risk of PD led to functional studies that determined the tau protein could influence 

α-synuclein aggregation and fibrillization [11–12].

However, the functional variant/s responsible for the MAPT H1 association signal with PD 

are still unknown. While continued research has focused on identifying variants within the 

MAPT gene that drive the PD association signal, few studies have investigated the other 

genes (LRRC37A, LRRC37A2, NSF, ARL17A, ARL17B, KANSL1, SPPL2C, and 

CRHR1), which are located within the inversion on Chr17q2-H1 haplotype and therefore 

could plausibly be driving the Caucasian MAPT PD association signal. In the current study, 

exons of non- MAPT genes on Chr17q2-H1 were Sanger sequenced in a cohort of patients 

with late-onset PD (LOPD). Identified variants were subsequently genotyped in a larger, 

independent, PD case-control cohort to assess association with disease in the context of the 

MAPT H1/H2 signal. Specifically, our aim was to identify common coding variants, in 

genes other than MAPT, in strong LD within the disease-associated haplotype on chr17q21.

Methods

Subjects

A total of 90 individuals, clinically diagnosed with sporadic, late-onset PD (age >50 at 

diagnosis) (LOPD) were initially included for exon sequencing as a discovery cohort (stage 

one). An independent cohort of 851 clinically diagnosed PD patients and 730 healthy 

controls were further recruited for a replication study (stage two). Cohort demographics are 

summarized in Table 1. All subjects were unrelated. PD diagnosis was determined using the 

Queens Square Brain bank criteria [13], and all patients were Caucasian, non-Hispanic and 

of European descent. Known carriers of pathogenic mutations in the leucine-rich repeat 

kinase 2 (LRRK2), α-synuclein (SNCA), vacuolar protein sorting-associated protein 35 

(VPS35), PTEN-induced kinase 1 (PINK1), Parkin E3 ubiquitin protein ligase (PARKIN) 

and PARK7 (DJ1) genes were excluded. This study was approved by Mayo Clinic 

Institutional Review Board and written informed consent was obtained prior to 

commencement. All blood samples were collected at Mayo Clinic Jacksonville (FL, USA).
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Sanger Sequencing

Genomic DNA was extracted from whole blood using Autogen FlexStar standard protocol 

methods (Autogen, Holliston, MA). A total of eight genes (LRRC37A, LRRC37A2, NSF, 

ARL17A, ARL17B, KANSL1, SPPL2C, and CRHR1) located within the chr17q21 H1/H2 

inversion region (chr17:45,761,253–46,765,892; hg38) were initially considered for Sanger 

sequencing of coding exons (primers available upon request). However, specific gene 

sequencing for LRRC37A, LRRC37A2, ARL17A and ARL17B was not possible given the 

high homology, presence of pseudogenes and CNVs that are present in the region, and 

therefore four genes (NSF, KANSL1, SPPL2C, and CRHR1) were included in the analysis. 

Bidirectional Sanger sequencing was performed using established protocols on the Applied 

Biosystems 3730xl DNA analyzer (Thermo Fisher Scientific, Waltham, MA). Sequence data 

was analyzed using Applied Biosystems SeqScape software (version 2.5) (Thermo Fisher 

Scientific, Waltham, MA). Variant annotations were made using human build GRCh37. 

Variants were defined as common and rare if their minor allele frequency (MAF) was ≥1% 

or <1% respectively, and were labeled as H1/H2-defining if they were in perfect linkage 

disequilibrium (LD) (r2=1) with the MAPT H1/H2-tagging variant rs8070723. A variant was 

selected for further genotyping in the replication case-control series if it was (a) a non-

synonymous variant or frameshift mutation, (b) not an H1/H2 tagging variant (r2≠1), and (c) 

not in complete LD with a different variant in the same gene that has already been selected 

for further genotyping in the replication series.

Genotyping

The H1/H2 tagging variant rs8070723 and H1c tagging variant rs242557 were genotyped 

using an ABI TaqMan™ allelic discrimination assay on Applied Biosystems 7900HT Real-

time PCR System (Thermo Fisher Scientific, Waltham, MA) and were analyzed using SDS 

(version 2.2.2) software (Thermo Fisher Scientific, Waltham, MA).The genotype data for 

rs8070723 was then used to determine variants that defined the MAPT H1/H2 haplotype (i.e. 

perfect LD with rs8070723 with an r2=1). Additionally, Selected variants were genotyped 

using Agena Bioscience iPlex Gold chemistry (Agena Bioscience, San Diego, CA) and ABI 

Taqman™ SNP genotyping custom-designed assays (Thermo Fisher Scientific, Waltham, 

MA). Genotyping data was analyzed using Typer 4.0 (Agena Bioscience, San Diego, CA) 

and ABI QuantStudio Real-Time PCR (version 1.1) (Thermo Fisher Scientific, Waltham, 

MA) software respectively. The genotyping call rate was >95% for all variants

Statistical analysis

In the replication series, associations of common variants (MAF≥1%) with risk of PD were 

evaluated using logistic regression models that were adjusted for gender and age at blood 

draw. Odds ratios (ORs) and 95% confidence intervals were estimated, and each variant was 

examined under a dominant model (i.e. presence vs. absence of the minor allele). For rare 

variants (MAF<1%), the proportion of subjects with a copy of the minor allele was 

compared between PD patients and controls using Fisher’s exact test. Associations of 

common variants with age of PD onset were examined using linear regression models that 

were adjusted for gender; regression coefficients and 95% CIs were estimated and are 

interpreted as the change in mean age of PD onset corresponding to presence of the minor 
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allele of the given variant. All statistical analyses were performed using R Statistical 

Software (version 3.6.1). P-values <0.05 were considered as statistically significant, and all 

statistical tests were two-sided. Combined annotation dependent depletion (CADD) scores 

were determined using the online CADD single nucleotide variant lookup tool (https://

cadd.gs.washington.edu/snv); a CADD score >20 indicates a variant is among the 1% most 

deleterious for the gene.

Single-cell RNA-sequencing

For exploration of the expression of genes in substantia nigra dopaminergic (DA) neurons, 

single-cell RNA-seq data from mouse postnatal day 7 (P7) midbrain neurons was 

downloaded (https://github.com/pwh124/sc-da-parkinsons) [14]. These populations included 

DA neurons from the periaqueductal grey area, substantia nigra, and ventral tegmental area 

as well as a postnatal neuroblast population [14]. Expression was visualized using ggplot2 

[15] and custom scripts in the R statistical environment (https://www.r-project.org/).

Results

Discovery cohort

After Sanger sequencing of coding exons in four neighboring genes on the MAPT inversion 

(NSF, KANSL1, SPPL2C, and CRHR1) in 90 individuals with sporadic LOPD, a total of 51 

variants were identified. Of these 51 variants, 40 were common (MAF ≥1%), 11 were rare 

(MAF <1%), and also among the 51 variants, 20 were in perfect LD with the H1/H2 

haplotype tagging variant rs8070723 (r2=1). One NSF variant (rs748314870) was a 

frameshift mutation. We observed 29 variants that were non-synonymous, and 11 of those 

non-synonymous variants (located in KANSL1, SPPL2C and NSF) tagged the H1 haplotype 

(r2=1) (Table 2). Importantly, of these 11 non-synonymous H1/H2 tagging variants, two 

located in SPPL2C have a CADD score >20 (rs12373123 and rs12185233) (Table 3) 

estimating these variants be among the top 1% of those having a deleterious effect; also of 

note, NSF rs1238228075 had a CADD score of 19.2.

Replication cohort

After exclusion of NSF rs2074406 from further analysis due to its complete LD with a 

different NSF variant (rs757532604), 17 non-synonymous variants and the frameshift 

mutation were selected for genotyping in the replication series of 786 PD patients and 751 

controls in order to evaluate whether variants in genes neighboring MAPT may be driving 

the PD association signal that is observed for the MAPT H1/H2 haplotype. When evaluating 

associations between these variants and PD risk (Table 4), no variants were more strongly 

associated with risk of PD than the H1/H2 defining rs8070723 variant (OR=0.57, P<0.001) 

in terms of association ORs. However, similar but slightly weaker associations were noted 

for both KANSL1 rs35643216 (OR=0.62, P<0.001) and KANSL1 rs17585974 (OR=0.61, 

P<0.001); both of these KANSL1 variants were in strong LD with rs8070723 (r2≥0.83) and 

the second of these rs17585974, has a CADD score of 24.7. We attempted to look in single-

cell RNA-seq data from mouse midbrain neurons to assess expression of these PD candidate 

genes in disease relevant tissue. This revealed the expression of Crhr1, Mapt, Nsf and 

Kansl1 (Figure 1) in this population of cells critical to PD pathogenesis (https://
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pwh124.shinyapps.io/expressionshiny/), consistent with their posited roles in modulating 

risk, individually or in combination [14]. Expression levels of the other genes (Lrrc37a, 

Arl17a/b and Sppl2c) were too low to accurately measure or not detectible.

Associations with age of PD onset

We next examined associations with age of PD onset for the MAPT rs8070723 H1/H2 

tagging variant, the MAPT H1c haplotype partial tagging variant rs242557, and the two 

aforementioned KANSL1 non-H1/H2 tagging variants (rs35643216 and rs17585974). 

Consistent with the findings of a recent GWAS [16], there was not a significant association 

with of age of PD onset for MAPT rs8070723 (β: 0.76, 95% CI: −0.98 to 2.49, P=0.39), 

MAPT rs242557 (β: −0.16, 95% CI: −1.82 to 1.49, P=0.85), KANSL1 rs35643216 (β: 1.12, 

95% CI: −0.67 to 2.91, P=0.22), or KANSL1 rs17585974 (β: 1.19, 95% CI: −0.60 to 2.97, 

P=0.19).

Discussion

This study set out to investigate if variation outside of the MAPT gene could account for the 

PD GWAS signal at Chr17q21 in Caucasians. We identified a number of H1/H2 tagging 

non-synonymous variants in genes other than MAPT, including two SPPL2C variants 

(rs12185233 and rs12373123) with CADD scores >20 indicating high likelihood of a 

deleterious effect. We did not observe any stronger associations with PD risk for common 

non-synonymous non-H1/H2 tagging variants relative to the H1/H2 signal. However, 

slightly weaker associations were noted for two KANSL1 variants (rs35643216 and 

rs17585974; ORs 0.62 and 0.61); these two variants were in strong LD with MAPT H1/H2, 

and interestingly KANSL1 rs17585974 has a high CADD score of 24.7. Also of note, while 

not quite reaching a CADD >20, NSF rs1238328075 and KANSL1 rs34043286 have 

relatively high CADD scores 19.19 and 15.71 respectively and should not be excluded from 

being functionally important. Though future functional studies are clearly needed in order to 

establish whether any of the aforementioned variants may truly be the causal variant that 

drives the MAPT H1/H2 association in PD, the results provided herein represent an 

important and necessary first step toward the identification of potential causal variants and 

the subsequent conduction of such functional studies.

A closer look at the functionality of the other genes is warranted. KANSL1 codes for KAT8 

Regulatory NSL Complex Subunit 1, which encodes a nuclear protein that is involved with 

histone acetylation with the MLL1 and NSL1 complexes [17]. Notably a recent study has 

implicated KANSL1 (and KAT8 another potential PD GWAS hit) in regulating PINK1-

directed mitophagy nominating variation within the gene as driving the Chr17q21 

association signal [18]. Differences in KANSL1 expression levels have also been observed 

in brains of individuals with PD, AD, and frontotemporal dementia [19, 20], which suggests 

a potential role in neurodegeneration although this may be simply driven by the broader 

H1/H2 association and not be specific. Additionally, we have reported single cell 

transcriptional analyses of mouse midbrain dopamine neurons in which we reported the 

expression of Crhr1, Mapt, Kansl1 and Nsf within nigral dopamine neurons [14]. The 

expression of Sppl2C was very low or not detectible however, SPPL2C codes for Signal 
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Peptide Peptidase Like 2C, which is a member of the GxGD‐type intramembrane aspartyl 

proteases family, which have emerged as key components of driving pathologies in AD and 

viral infections [21]. Even though not being well-characterized, recently SPPL2C candidate 

substrates have been demonstrated to cluster and impair vesicular trafficking which 

accelerates retention of cargo proteins in the endoplasmic reticulum, and disrupts subcellular 

compartmentation [21]; dysfunction in synaptic vesicle trafficking is well characterized in 

PD pathogenesis [22].

Although links can be made for KANSL1 and SPPL2C in PD pathogenesis, a direct link to 

the well-established PD gene LRRK2 can be made for NSF. NSF codes for a N-

Ethylmaleimide Sensitive Factor, Vesicle Fusing ATPase. The N-terminal of NSF is required 

for SNAP-SNARE complex binding [22], and the D1 domain is essential for ATP binding 

and hydrolysis, which controls NSF activity managing synaptic vesicle endocytosis [23, 24]. 

Belluzzi et al., demonstrated that NSF is directly phosphorylated by LRRK2 at T645 

resulting in enhanced ATPase activity and disrupted synaptic vesicle trafficking [24, 25]. 

Synaptic vesicle release and recycling is one of the major pathways implicated in PD 

etiology and is also linked to α-synuclein dysfunction at the synapse [26, 27].

A number of limitations within the study design did not let us fully resolve the causative 

gene at this locus. For example, specific gene sequencing for LRRC37A, LRRC37A2, 

ARL17A and ARL17B was not possible given the high homology, presence of pseudogenes 

and CNVs that are present in the region. LRRC37A codes for Leucine Rich Repeat 

Containing-37, Member A, and ARL17A and ARL17B encode ADP-Ribosylation Factor-

Like 17A and −17B respectively. LRR motifs are important for intermolecular or 

intercellular interactions with exogenous factors in the immune system and/or with different 

cell types in the developing nervous system [28]. These genes could not be excluded as 

potentially influencing susceptibility to PD phenotype.

Although the sample population chosen was sporadic to address the GWAS signal 

specifically we did observe two variants in KANSL1 (both CADD >20) and one variant 

(CADD >14) in NSF that were detected in PD cases but not in controls. The function of 

these variants have not been characterized, yet both variants in KANSL1 are in the 

pathogenic range, CADD <20.38 is benign and CADD > 33.25 is pathogenic [29]. Further 

sequencing of patients with familial PD may identify pathogenic mutations that would help 

discriminate the disease-related gene or genes on the chr17q21 haplotype. It is important to 

note that next generation sequencing data currently available does not have adequate 

coverage of all coding exons and therefore should be used with caution for identifying 

variants and their significance.

Another approach would be to exploit ethnic-diversity to narrow down the region of 

association and pinpoint the relevant gene. Interestingly, in association studies in Asian 

populations there is no evidence of a signal at Chr17q21 for PD and the H2 haplotype is 

absent in this population [30]. We have included population frequencies from publicly 

available dataset (gnomAD) in Table 4 to highlight the ethnic-specific nature of the alleles. 

If the variants are frequent in the Asian population it would potentially rule those out as 

driving the signal in Caucasian populations. Using populations with different haplotype 
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structure and genomic architecture may be a viable way to fine-map GWAS signals and 

nominate functional genes/variants.

In conclusion, our work explored the association of common coding variation around the 

Chr17q21 PD GWAS signal that do not map to the MAPT gene. Although no association 

was observed that was stronger than the established H1/H2 association, a number of non-

synonymous variants were identified that also tag H1/H2 across at least three genes 

(KANSL1, SPPL2C and CRHR1) and may represent other functional variants that influence 

disease risk. Further biological testing of variants in cell and animal models for modulation 

of PD relevant phenotypes such as alpha-synuclein aggregation/toxicity or PINK1-PRKN 

mitophagy will be needed to establish the disease risk at the Chr17q21 locus.
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• MAPT H1 is a consistent Parkinson’s disease association locus on chr17q21

• Chr17q21 H1 extended haplotype is a complex genetic region of inversion

• Other genes/variants in complete linkage disequilibrium may be responsible

• Potentially damaging variants in KANSL1, NSF and SPPL2C
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Figure 1. 
Boxplots displaying the RNA expression of Mapt, Nsf, Crhr1, and Kansl1 in mouse 

midbrain dopaminergic cell populations identified in postnatal day 7 (P7) mice [14]. The 

levels of other genes (Lrrc37a, Arl17a/b and Sppl2c) are not detectible. The box represents 

the interquartile range and whiskers on the boxplots represent +/−1.5 interquartile range. 

Each dot represents expression measured in a single cell as log2-transformed transcript 

counts.
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Table 1:

Cohort demographics.

Series N Age of PD onset (years) Early onset PD (<50 years) Age at Study (years) Number of Males

Stage One
Discovery PD cases 90 69 ± 8 (51–90) 0 (0.0%) 71 ± 7 (40–90) 60 (67%)

Stage Two
Replication

PD cases 851 65 ± 12 (25–97) 101 (12%) 68 ± 11 (28–97) 540 (63%)

Controls 730 N/A N/A 65 ± 13 (18–88) 305 (42%)

Age is given as the sample mean ± SD (minimum-maximum).
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