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Abstract

Study Objectives: Obstructive sleep apnea (OSA) is characterized by recurrent partial to complete upper airway obstructions during sleep,
leading to repetitive arousals and oxygen desaturations. Although many OSA biomarkers have been reported individually, only a small
subset have been validated through both cross-sectional and intervention studies. We sought to profile serum protein biomarkers in OSA in
unbiased high throughput assay.

Methods: A highly multiplexed aptamer array (SomaScan) was used to profile 1300 proteins in serum samples from 713 individuals in the
Stanford Sleep Cohort, a patient-based registry. Outcome measures derived from overnight polysomnography included Obstructive Apnea
Hypopnea Index (OAHI), Central Apnea Index (CAI), 2% Oxygen Desaturation index, mean and minimum oxygen saturation indices during
sleep. Additionally, a separate intervention-based cohort of 16 individuals was used to assess proteomic profiles pre- and post-intervention
with positive airway pressure.

Results: OAHI was associated with 65 proteins, predominantly pathways of complement, coagulation, cytokine signaling, and hemostasis
which were upregulated. CAI was associated with two proteins including Roundabout homolog 3 (ROBO3), a protein involved in bilateral
synchronization of the pre-Botzinger complex and cystatin F. Analysis of pre- and post intervention samples revealed IGFBP-3 protein to be
increased while LEAP1 (Hepicidin) to be decreased with intervention. An OAHI machine learning classifier (OAHI >=15 vs OAHI<15) trained on
SomaScan protein measures alone performed robustly, achieving 76% accuracy in a validation dataset.

Conclusions: Multiplex protein assays offer diagnostic potential and provide new insights into the biological basis of sleep disordered
breathing.

Statement of Significance

Sleep apnea is a prevalent sleep disorder caused by recurrent collapse of upper airway leading to oxygen desaturation and arousals, with con-
sequences for increased daytime sleepiness, impaired performance, and cardiovascular morbidity. Although, overnight polysomnography
(PSG) is the gold standard in diagnosis of sleep apnea, it is costly, cumbersome, and limited in availability. Here we implemented blood
serum-based proteomic assays in 713 individuals to find protein biomarkers of apnea correlating these measures with gold-standard PSG.
Obstructive sleep apnea was associated with 65 proteins, predominantly modulating complement and coagulation pathways, while central
apnea was associated with ROBO3 and cystatin F proteins. Our study identifies proteomic signatures and associated biological pathways
in sleep apnea.
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Introduction

Obstructive sleep apnea (OSA) is a common sleep disorder whose
prevalence increases with obesity. It occurs more frequently in
men, although the gender ratio equalizes following menopause
in women [1]. OSA is characterized by recurrent complete or par-
tial upper airway obstruction during sleep resulting in oxygen
desaturation and repetitive arousals. In OSA, sleep fragmenta-
tion results in excessive daytime sleepiness [2-4] and recurrent
hypoxemia resulting in a predisposal to cardiometabolic dis-
orders and increased cardiovascular risk [2, 5-10].

The gold-standard diagnostic test for OSA is attended over-
night polysomnography (PSG) in a sleep laboratory [11]. OSA
severity is typically evaluated based on the average number of
apneas and hypopneas per hour of sleep or the apnea-hypopnea
index (AHI). This reliance on AHI is problematic because the
number varies greatly depending on the hypopnea definition.
The American Academy of Sleep Medicine (AASM) criteria de-
fine hypopnea as at least 10 s of reduced (30%) upper airway
respiratory flow resulting in either a 3% oxygen desaturation or/
and an electroencephalogram arousal [12], while the “Medicare”
definition of hypopnea (generally used for older patients) is
10 s of reduced airflow with at least 4% oxygen desaturation.
Based on AASM criterion, Peppard et al. [13] estimated that 26%
of adults between 30 and 70 years have an AHI greater than 5
and 10% have an AHI greater than 15. Other recent studies have
reported the prevalence of moderate-to-severe sleep apnea
(AHI 215) at 23.4% and 49.7% in women and men, respectively
[14]. Some studies emphasize the 4% desaturation criterion for
scoring hypopneas to focus on the increased cardiovascular
risk due to hypoxemia because this definition tends to exclude
events leading to arousals. Other studies use AASM’s definition
with a cut point of AHI at least 15, because cardiovascular risk is
elevated at this level. The Medicare definition of hypopnea tends
to miss patients with early disease where events are short and
primarily associated with arousals (i.e. patients who are young,
female, and lean) [2, 15]. Although the cardiovascular effects of
OSA without hypoxemia are not established, these patients ex-
perience issues with daytime alertness [2]. Furthermore, in a
recent population-based study, those with high arousal-based
indices were found to transition to events with hypoxemia with
aging and/or increasing weight [2], suggesting mild disease
cannot be ignored.

Alternatives to overnight PSG measures of AHI are Home
Sleep Testing (HST), devices that are increasingly employed
for OSA diagnosis. HST devices have limitations. They gener-
ally measure respiratory effort and oxygen saturation without
electroencephalography, so cannot capture arousals and sleep
fragmentation associated with OSA. AHI is generally underesti-
mated because there is variation in both the number and type
of sensors depending on the device. Additionally, sensors can
shift during these unattended studies, resulting in unreliable
measurements.

In summary, the prevalence of OSA is high (particularly with
the obesity pandemic) and accurately diagnosing OSA is challen-
ging and costly. Qualified sleep laboratories are not universally
available resulting in delayed diagnosis. HST has become more ac-
ceptable but misses arousals and sleep fragmentation. Therefore,
there is a need to develop more efficient and cost-effective ap-
proaches to OSA diagnosis. An ideal biomarker should correlate
with severity of disease and also indicate treatment response. The

biomarker should help differentiate cases with recurrent hyp-
oxemia versus with arousal/sleep fragmentation only and help
differentiate between obstructive and central apnea. Identifying
key biomarkers of OSA will also facilitate our understanding of
its pathophysiology and complications. Although numerous ef-
forts to profile biomarkers in OSA have been reported, none have
been consistently reproduced nor do they meet the criteria for
routine diagnostic use. Some studies have used high-throughput
gene expression assays in moderate-to-severe OSA with reports
of increased expression of endothelial junction, proapoptotic
[16] and inflammatory gene signatures [17]. Studies have pro-
filed microRNAs [18] and found that myocardial ischemia and
heart failure associated microRNAs to be elevated in OSA [19].
Other studies used more conventional single- or low-throughput
multiprotein measurements either by ELISA or Luminex to pro-
file differences in OSA versus controls using plasma serum or CSF.
Notably, reports showed associations with elevated Tau [20-23],
amyloid beta [24, 25] in CSF, elevated blood IL-6 cytokine levels [22,
26-37], CRP [26, 32, 34], increased insulin [37], and elevated mono-
cyte to high-density lipoprotein (HDL) cholesterol ratio [38]. Other
groups have performed high-throughput Luminex-based prote-
omic assays with a focus on characterizing the cognitive impair-
ment in OSA by profiling 254 serum proteins. These authors found
a prominent insulin-related protein signature [39]. Notably, sev-
eral others have utilized mass spectrometry. Characterization of
the red blood cell proteome in OSA patients found associations
with proteins involved in catalytic oxidoreductase and response
to stress [40], while dysregulation of lipids was found by other
groups [41].

Developing suitable biomarkers has been hampered by the
inability to measure multiple biomarkers in the same patient
cohort. Recent technological advances have enabled time-
efficient, cost-effective measurement of multiple circulating
biomarkers. In this study, we used the SomaScan array to profile
1,300 proteins to identify novel sleep apnea biomarkers and to
develop multivariate constructs to predict sleep apnea pheno-
types based on proteomic profiles.

Methods
The Stanford sleep cohort

The Stanford sleep cohort includes 1,070 participants aged
18-91 years enrolled at the Stanford Sleep Clinic starting in 1999,
from which a subset of 713 individuals were used as part of this
current study (Table 1) [42, 43]. Approximately 8.5-10.0 mL of
blood was drawn from each participant (typically fasting) the
morning after the initial diagnostic overnight PSG using one
glass red-top serum Vacutainer tube and allowed to clot for a
minimum of 30 min, the serum was then aliquoted and stored at
—-80°C until assay. Laboratory PSG studies for cohort participants
were scored using the alternate AASM hypopnea definition
for AHI and standard criteria for the central apnea index (CAI)
[12]. The lowest oxygen saturation values were also available.
Approximately 49.2% of participants had an obstructive apnea
hypopnea index (OAHI, with hypopneas defined with arousal or
3% desaturation) above or equal to 15/h. The first inclusion cri-
teria were participants who had both PSG and SomaScan prote-
omics (n = 772 participants), from here participants who did not
have continuous positive airway pressure (CPAP) treatment nor



Table 1. Summary of Variables Classified by Apnea Status in the Study Cohort (n = 713)
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Moderate/severe (n = 351)

Control/mild apnea (n = 362)

Variables (Range or N) (Range or N) p Statistic 95% CI

PSG variables

Sleep stage s1 % 14.34 (0-66.6) 9.62 (0-49.46) 1.3e0 6.53 3.3+6.13
Sleep stage s2 % 62.13 (19.52-91.94) 63.27 (14.92-98.2) 0.21180 -1.25 -2.94 + 0.65
Sleep stage s3 % 4.61 (0-25.26) 6. 73 (0-36.88) 1.4e7% -4.87 -2.98 + -1.27
Sleep stage s4 % 2.56 (0-28.85) 7 (0-44.63) 0.00994 -2.59 -2+-0.27
REM ratio % 16.37 (0-37.13) 16. 67 (0-36.28) 0.55591 -0.59 -1.32+0.71
Sleep efficiency % 77.77 (27.34-97.38) 78.16 (21.91-98.1) 0.68846 -0.4 -2.33+1.54
2% Oxygen desaturation events 162.89 (5-651) 61.68 (0-459) <2e16 15.56 88.43 + 113.99
3% Oxygen desaturation events 76.9 (0-432) 21.13 (0-239) <2e16 13.32 47.54 + 64.01
Mean SaO, % 95.39 (16.2-99.4) 96.3 (0-100.2) 0.03624 -2.1 -1.75 + -0.06
Low Sa0, % 87.53 (32-98.3) 92.3 (76.7-98.9) <2e716 -11.59 -5.58 + -3.96
Baseline SaO, % awake 97.4 (92.38-100) 97.94 (92.68-100.08) 9.2e7% -4.47 -0.77 +-0.3
Demographic variables

Age (years) 48.87 (18.9-90.5) 42.49 (13-77.9) 2.0e10 6.45 4.44 +8.32
BMI 28.44 (9.77-73.52) 25.89 (15.08-78.66) 1.3e” 5.34 1.61+3.49
Height (m) 1.74 (1.01-2.27) 1.72 (1.22-1.98) 0.02436 2.26 0+0.03
Weight (kg) 85.79 (39. 7 170.1) 76.61 (43.5-227.32) 4.0e 6.35 6.34 + 12.02
Gender, male % 67.5% (237 52.4% (184) 6.7e7% 0.5 0.36 + 0.68
Systolic BP (mm/Hg) 129.22 (90~ 181) 124.6 (84-184) 0.00049 35 203+7.2
Diastolic BP (mm/Hg) 80.67 (40-112) 77.89 (33-116) 0.00164 3.16 1.05 + 4.5
Comorbidities

Hypertension 42.7% (150) 30.5% (107) 0.00032 0.56 0.41+0.78
Depression 15.1% (53) 19.7% (69) 0.16526 1.32 0.88+ 2
Asthma 3.4% (12) 4.8% (17) 0.45045 1.39 0.62 +3.25
Thyroid disorders 5.7% (20) 2.6% (9) 0.03637 0.42 0.17 +0.99
Type 2 diabetes 1.4% (5) 1.4% (5) 1.00000 0.97 0.22 + 4.25
Gastroesophageal reflux disease 6% (21) 4.3% (15) 0.30604 0.68 0.32 +1.41
Hypercholesterolemia 26.2% (92) 16.8% (59) 0.00132 0.55 0.37+0.8
Blood variables

Glucose (mg/dL) 91.32 (46-174) 88.34 (4-205) 0.01594 2.42 0.56+5.4
Triglycerides (mg/dL) 141.35 (25-741) 121.85 (28-508) 0.00223 3.07 7.03 £ 31.97
Low density lipoproteins (mg/dL)  129.69 (52-251) 123.09 (19-331) 0.01370 2.47 1.36 + 11.85
High density lipoproteins (mg/dL) 47.85 (6-106) 52.46 (23-100) 2.5e7%* -4.24 -6.74 + -2.47
Total cholesterol (mg/dL) 197.47 (105-345) 193. 01 (87-339) 0.13147 151 -1.34 +10.26
Very low density lipoproteins 8.17 (2-66) 7 (2-32) 0.75662 0.31 -2.54 +3.49

(mg/dL)

Fisher’s exact test for categorical variables or student’s t-test was performed for continuous variables. 95% CI is the difference in means between the apnea and

control.

non-missing demographic variables, for example, age, gender,
body mass index (BMI), and date of PSG were included in the
analysis (n = 713). No prior sample size calculations were per-
formed owing to the design of the study which was exploratory
with an aim to generate unbiased hypotheses.

OSA prevalence (moderate to severe >15 events/h) was
49.2% (n = 351/713) and average age in the moderate-to-
severe apnea group was 48.8 years and predominantly male
(67.5%; p = 6.7e%) with significantly increased BMI (mean BMI
28.4 vs 25.8; p = 1.3e”%). The cohort was not followed up for
any neurodegenerative disorders nor was there any data on
comorbidities such as stroke, dementia, mild cognitive impair-
ment, and congestive heart failure (likely low prevalence), but
hypertension (42.7% vs 30.5%) and hypercholesteremia (26.2%
vs 16.8%) was predominant in the moderate-to-severe apnea
group (p = 0.001). Notably, blood HDL levels were significantly de-
creased in the moderate-to-severe apnea group (mean HDL 47.8
vs 52.46; p = 2.5¢%), while other variables were unremarkable.
Table 1 describes other clinical characteristics including sum-
mary PSG data stratified by moderate-to-severe apnea versus
mild/control apnea.

Positive airway pressure intervention cohort

Plasma samples from 16 participants in a study at Washington
University in Saint Louis, described in detail elsewhere [44], were
used for protein measures. These 16 individuals had mild OSA
(AHI of >5 and <15/h) or moderate-to-severe OSA (AHI >15/h)
and gave a preintervention blood sample. The participants re-
ceived positive airway pressure (PAP) treatment. Participants
adherent to PAP, defined as usage at least 4 h on at least 70%
of 30 preceding nights recorded by the PAP machine, provided
a postintervention blood sample. The 16 individuals were ran-
domly selected to assay proteomics from a bigger cohort de-
scribed in detail elsewhere [44].

Protein measures

The relative expression levels of 1,300 serum proteins were
assayed with SomaScan, a highly multiplexed aptamer ap-
proach (see Supplementary Table S1 for a complete list of pro-
teins assayed) as previously detailed elsewhere [45-48]. Several
studies have performed evaluation of the SomaScan platform


http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsaa086#supplementary-data

4 | SLEEPJ, 2020, Vol. 43, No. 11

by characterizing protein quantitative trait loci (pQTL) and then
comparing them to a Luminex-based platform [49, 50] with good
concordance. SomaScan (SomaLogic Inc., Boulder CO) was de-
signed to have extended dynamic range from fM to uM, with
both extracellular and intracellular proteins (including soluble
domains of membrane proteins) being included with predom-
inantly proteins in the secretome being targeted. Serum (150 pL
of each sample) was used for protein measurement assay. More
detailed information on the procedure can be found at the
manufacturer’s website (http://somalogic.com/wp-content/up-
loads/2017/06/SSM-002-Technical-White-Paper_010916_LSM1.
pdf). Data quality control (QC) was performed by SomaScan
(described in detail in http://somalogic.com/wp-content/up-
loads/2017/06/SSM-071-Rev-0-Technical-Note-SOMAscan-
Data-Standardization.pdf) at both sample and protein levels.
Sample-level QC involved using hybridization controls during
hybridization to adjust for systematic variability, further median
of the signal over all the protein dilution sets (0.005%, 1%, and
40%) was used to adjust for within-run variability. These hybrid-
ization and median scale factors were used to normalize data
across samples in a run and acceptance criteria were for these
values to be in the range of 0.5-1.8. Protein-level QC involved
using same replicate calibrator serum sample, and median
values from the calibrator sample signal are used to calculate a
scale factor to correct for between-run variability.

PSG data

About 713 participants had PSG data available in European Data
Format. The following parameters were extracted: baseline
wake oxygen saturation and oxygen desaturation index (ODI)
as described in the study of Koch et al. [2], detailed description
of the subsample can be found in the studies of Andlauer et al.
[51] and Moore et al. [52]. All indices were parsed from scored
event files using custom python scripts. Parameters of interest
chosen wake baseline oxygen saturation (Sa0,), ODI2% and
ODI3%, minimum oxygen saturation, AHI, OAHI, and CAI after
performing cross-correlation with other PSG variables (data not
shown).

SomasScan data analysis

SomaScan data were received in ADAT format and were parsed
with custom scripts in python into a tidy format [53]. SomaLogic
performed both inter- and intra-assay normalization as de-
scribed previously [46]. The 1,300 proteins were measured in
three dilutions (0.005%, 1%, and 40%) to capture the dynamic
range (see Supplementary Table S1 for details). Principal com-
ponent plots were computed to gauge underlying data struc-
ture and no deviations or outliers from expected structure were
found by us or other researchers who used the platform [54].
Boxplots of RFU (relative fluorescence units) protein measures
binned by individuals were further visually inspected, and there
were no individuals with consistently high interquartile range
greater than 75 relative to other individuals. Log-normalized
RFU protein measures were analyzed for associations in a linear
model with empirical Bayes moderation using the Limma library
in R [55]. The model design included covariates such as Age,
Gender, BMI, BMI?, Age x Gender x BMI, and years from blood
draw to assay.

In the intervention cohort, the SomaScan protein measures
were analyzed in a paired approach, comparing preintervention
to postintervention profiles within each individual. Significance
analysis of microarrays [56] was used in paired mode to find pro-
teins differentially expressed utilizing a permutation procedure
to estimate null statistical distribution, local false discovery rate
(FDR) was estimated as described by Storey et al. [57], and cor-
responding q values computed.

Pathway analysis

All 5% FDR significant protein sets were analyzed for biological
pathway enrichment using the module Toppfun of the Toppgene
suite [58]. The toppgene suite determines the similarity between
candidate and known proteins/genes with the exception that
this is modeled as network structure. This entails modeling pro-
teins/genes as nodes in a graph while interactions between pro-
teins/genes are modeled as edges or connections between the
nodes. The goal of this network-based prioritization is to iden-
tify nodes (proteins/genes) that are relevant to biological pro-
cesses or diseases. Candidate proteins/genes are scored based
on their network distance to the known protein/genes.

OAHI classifier

Protein measures were used to train a lasso model with L1 regu-
larization [59] to predict OAHI outcome (OAHI >15 or OAHI <15).
The hyperparameters of the models were tuned via a 10-fold
cross-validation approach: A 75% train-25% test split was
adopted, SomaScan data on 549 individuals was used for model
training, while the remaining data on 164 individuals was used
for validation (total sample size 713 individuals). Three models
were trained to classify OAHI. Model 1 incorporated demo-
graphic information (age, gender, and BMI) in addition to the
protein measures, model 2 incorporated only protein meas-
ures, and model 3 incorporated only demographic information.
All used same test-train split and same lasso-based approach.
The R glmnet library [60] was used to train A L1 regularized
lasso models [59] and class-balanced test-train splits and met-
rics were computed using caret library [61]. Receiver operating
curves (ROCs) were constructed using R libraries plotROC and
ggplot2 and statistical differences between the different model
area under the curves (AUCs) were calculated using pROC
package [62].

Results

Differential expression of proteins associated
with OAHI

SomaScan protein measures were modeled as linear functions
of OAHI adjusted for demographic variables (age, gender, and
BMI) in 713 individuals. Sixty-five proteins (34 upregulated and
31 downregulated) were identified as differentially expressed at
5% FDR (Table 2). Among the top differentially expressed pro-
teins (DEPs) (FDR p-value <0.005) were tPA (tissue-type plas-
minogen activator), laminin, aminoacylase-1, growth hormone
receptor, and IL-18 Ra proteins which were upregulated, that is,
positively correlated with OAHI index, while IGFBP-1 (insulin-
like growth factor-binding protein 1), carbonic anhydrase I, and
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Table 2. 65 proteins were differentially expressed and associated with Moderate to severe apnea (Apnea index >= 15) post 5% FDR adjustment.

Protein Variables t P.Value logFC B (log odds) Adj.P.Value
Laminin 4.851424 1.51E°¢ 0.003258 2.075003 0.000980002
tPA 4.893682 1.23E% 0.003815 2.274444 0.000980002
IGFBP-1 —-4.58588 5.35E% -0.00972 0.858886 0.002314424
Aminoacylase-1 4.22325 2.73E% 0.006367 -0.69741 0.006852415
Carbonic anhydrase I —-4.26599 2.26E% -0.01055 -0.5203 0.006852415
Growth hormone receptor 4.18514 3.21E® 0.003941 -0.85391 0.006852415
IL-18 Ra 4.152204 3.7E% 0.0019 -0.98808 0.006852415
LG3BP 4.079381 5.03E% 0.004581 -1.28114 0.008160917
UNC5H4 -4.02498 6.32E% -0.00321 -1.49685 0.00910507

TFPI 3.97311 7.83E% 0.002999 -1.69992 0.010152077
Factor H 3.89366 0.000108 0.001877 -2.0061 0.012500848
NRX1B -3.87705 0.000116 -0.00343 -2.06937 0.012500848
MBD4 -3.83584 0.000136 -0.00243 -2.22522 0.013609224
Coagulation Factor IXab 3.799048 0.000158 0.002919 -2.36299 0.014262141
DHH -3.75605 0.000187 -0.00364 -2.52238 0.014262141
Factor I 3.784641 0.000167 0.001665 -2.41659 0.014262141
PDE11 3.768198 0.000178 0.002108 -2.47753 0.014262141
Integrin albl 3.739266 0.0002 0.003899 -2.58415 0.014382903
Coagulation Factor IX 3.697546 0.000235 0.002423 -2.73649 0.015106209
Endothelin-converting enzyme 1 3.670881 0.00026 0.00183 —-2.83299 0.015106209
GDF2 -3.67736 0.000254 -0.00423 -2.8096 0.015106209
LYVE1 -3.70172 0.000231 -0.00312 -2.72133 0.015106209
S100A4 -3.65204 0.00028 -0.00527 -2.90078 0.015106209
suPAR 3.662345 0.000269 0.001941 -2.86375 0.015106209
SAP 3.601961 0.000338 0.002407 -3.07932 0.017541381
CD70 3.55832 0.000398 0.003407 -3.23296 0.018453038
IFN-lambda 1 -3.57117 0.00038 -0.0023 -3.18792 0.018453038
MCP-4 -3.56662 0.000386 -0.00346 -3.20389 0.018453038
PLPP -3.52351 0.000453 -0.00455 -3.35423 0.020282104
Calcineurin 3.455373 0.000583 0.002789 -3.58825 0.023488989
Coagulation Factor Xa 3.444959 0.000605 0.002159 -3.62363 0.023488989
NACA -3.45357 0.000586 -0.00528 -3.5944 0.023488989
NOTC2 3.440176 0.000616 0.004877 -3.63984 0.023488989
Peroxiredoxin-6 -3.47393 0.000544 -0.00683 -3.52497 0.023488989
a-Synuclein -3.42896 0.000641 -0.00688 -3.67778 0.023765541
C5b, 6 Complex 3.404628 0.0007 0.001938 -3.75967 0.024456845
CD39 3.398232 0.000717 0.001537 -3.7811 0.024456845
IL-13 Ral 3.412849 0.00068 0.001627 -3.73207 0.024456845
CK2-A1:B -3.3751 0.000779 -0.00558 -3.85828 0.025890244
IFN10 3.366182 0.000804 0.004 -3.88791 0.026060153
41 -3.34035 0.000881 -0.00779 -3.97328 0.027206702
Myokinase, human -3.3412 0.000878 -0.00762 -3.97049 0.027206702
NADPH-P450 Oxidoreductase 3.325114 0.00093 0.004275 —4.02334 0.028045661
PAFAH beta subunit -3.3062 0.000994 -0.00353 —4.08515 0.029295837
Heparin cofactor I 3.288655 0.001057 0.002256 —4.14221 0.030462655
HINT1 -3.27913 0.001093 -0.00356 -4.17307 0.030809107
TRAIL R1 -3.24074 0.001248 -0.00412 —4.29651 0.034453273
KIF23 -3.22738 0.001307 -0.0038 —4.33914 0.035326551
FCN1 3.218203 0.001349 0.002605 —4.36833 0.035715451
IL-34 3.196302 0.001454 0.002649 —4.43765 0.036988268
elF-5 -3.19667 0.001453 -0.00314 —4.43649 0.036988268
AN32B 3.179707 0.001539 0.003421 —4.48987 0.038388116
B7 3.157561 0.001659 0.001316 —4.55915 0.039716532
Lymphotactin -3.16014 0.001645 -0.00222 -4.5511 0.039716532
cGMP-stimulated PDE -3.15312 0.001684 -0.00643 —4.57298 0.039716532
BMP-1 3.115117 0.001914 0.002888 —4.69061 0.043107853
MED-1 3.11292 0.001928 0.00177 —4.69736 0.043107853
Myoglobin 3.116206 0.001907 0.002545 —4.68725 0.043107853
CRTAM -3.10069 0.002008 -0.00323 -4.7349 0.04414232

Peroxiredoxin-1 -3.08962 0.002083 -0.00347 —4.76873 0.045033515
BAD -3.0679 0.002239 -0.00435 —4.83481 0.047598649
IL-16 3.062787 0.002277 0.00101 —4.8503 0.047627679
IMB1 -3.04796 0.002391 -0.00555 —4.89507 0.047929178
Myostatin -3.05082 0.002368 -0.0062 —4.88646 0.047929178
PSA6 -3.0465 0.002402 -0.00213 —4.89945 0.047929178

All associations were adjusted at 5% FDR. t is the empirical Bayes moderated t-statistic; B is the empirical Bayes log odds of differential expres-
sion. logFC is the log fold change
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UNC5H4 (Netrin receptor UNCS5D) were downregulated and
negatively correlated with OAHI (see Supplementary Table S2 for
full list of associations). Robust adjustment for BMI as described
in Methods was performed as it is a major risk factor for ele-
vated OAHI [1]. After adjustment, we did not find any evidence of
residual effects of BMI on the differentially associated proteins
as indicated by absence of BMI-associated proteins, for instance,
leptin (data not shown).

We further stratified our analysis based on the severity index
of OAHI and performed several comparisons outlined below. (1)
Proteomic profiles of individuals (n = 351) with moderate-to-
severe apnea (OAHI >15) were compared to individuals (n = 362)
with mild to no apnea (OAHI <15), we found nine proteins to
be associated with moderate-to-severe apnea (OAHI >15) at
5% FDR (Supplementary Table S3). Interestingly, Factor I and
calcineurin proteins were upregulated while SOST (sclerostin),
NRX1B (neurexin-1b), GDF-2 (growth differentiation factor 2),
lymphotactin, carbonic anhydrase I, CRTAM (cytotoxic and regu-
latory T cell molecule), and SuPAR (soluble urokinase-type plas-
minogen activator receptor) to be downregulated. (2) Proteomic
profiles of individuals (n = 159) with severe apnea (OAHI >30)
were compared to control (OAHI <5) individuals (n = 162), at
5% FDR threshold we found carbonic anhydrase I and Factor
I proteins to be associated with moderate-to-severe apnea
(Supplementary Table S4). We also ran association analyses and
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compared the proteomic profiles in individuals (n = 176) with
moderate apnea (OAHI 215 and OAHI <30) to control individuals
(OAHI <5, n = 162), at 5% FDR we did not find any proteins to
be associated (Supplementary Table S5). Similarly, comparing
proteomic profiles in individuals with mild apnea versus con-
trol individuals, no DEPs were observed at 5% FDR threshold
(Supplementary Table S6).

Pathway analysis and gene ontology (GO) biological process
analyses done in Toppgene [58] webserver (FDR p-value <0.05)
of DEPs in OAHI (modeled as a continuous variable) revealed
overrepresentation of DEPs in several pathways (Figure 1)—
Complement and coagulation cascades, L1ICAM and Laminin
interactions, extracellular matrix and extracellular matrix-
associated proteins, Extrinsic Pathway of Fibrin Clot Formation
and Hemostasis—in general agreement with previous reports
of coagulation being associated with apnea events [63, 64]. GO
biological processes analysis (FDR p-value <0.05) revealed the
involvement of regulation of immune system process, posi-
tive regulation of signal transduction and cytokine-mediated
signaling pathway, and others (see Supplementary Table S7 for
full list). Of additional interest, we also exclusively used either
upregulated and downregulated proteins associated with OAHI
for overrepresentation in pathways or biological processes, at
5% FDR in agreement with overall analyses, upregulated path-
ways were complement and coagulation cascades and laminin

GO: Cellular Component Disease
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Figure 1. Pathway analysis and GO biological process analyses done in Toppgene webserver of 65 differentially expressed proteins (FDR p-value <0.05) in moderate-
to-severe apnea. The y-axis is the negative logarithm 10 of the adjusted p-value of the overrepresented pathways, while the x-axis are the pathways and processes
binned by categories. GO: Biological Process: the pathways and larger processes to which that gene product’s activity contributes. GO: Molecular Function: the mo-
lecular activities of individual gene products. GO: Cellular Component: where the gene products are active. The color gradient indicates the % shared overlap between
the candidate apnea proteins and known pathway/processes-related proteins. GO, gene ontology; LICAM, L1 cell adhesion molecule; MET, MET proto-oncogene alias
hepatocyte growth factor receptor; PTK2, protein tyrosine kinase 2; ECM, extracellular matrix; CA1, the first region in the hippocampal circuit; CK2, casein kinase 2.
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Table 3. Differentially Expressed Proteins Associated With Central Apnea Index (CAI), 2% Oxygen Desaturation Events, Low Oxygen Saturation

Levels (Low Sa0,), and Mean Oxygen Saturation Levels (Mean Sa0,)

Protein variables Variable t P LogFC B (log odds) Adjusted p
CYTF Central apnea 4.965793 8.61le¥” 0.071963 4.894893 0.000558
ROBO3 Central apnea 6.93464 9.29e*? 0.052575 15.97869 1.2E-%®
Laminin 2% Oxygen desaturation events 4.258327 2.38e™® 0.004826 -0.03975 0.023049
UNC5H4 2% Oxygen desaturation events -4.11609 4.38e® -0.00554 -0.6197 0.023049
tPA 2% Oxygen desaturation events 4.069173 5.33e% 0.005345 —-0.80692 0.023049
UNC5H4 Low Sa0, 4.941248 9.72e% 1.222975 4.817064 0.001261
NovH Mean Sa0O, —4.44758 1.01e® -2.50109 3.027134 0.013093
UNC5H4 Mean Sa0, 4.267287 2.25e% 3.88582 2.340392 0.014594

All associations were adjusted at 5% FDR. t is the empirical Bayes moderated t-statistic; B is th empirical Bayes log odds of differential expression.

interactions (Supplementary Table S8), while downregulated
pathways at 5% FDR were protein kinase CK2 complex, positive
regulation of signal transduction, and organophospate catabolic
processes among others (Supplementary Table S9).

ROBO3 protein and Cystatin-F are increased in
central apneas

CAI was fit as linear function of protein measures, this analysis
revealed ROBO3 (Roundabout homolog 3) and CYTF (Cystatin-F)
to be strongly upregulated in central apneas (FDR p-value <5e™,
Table 3 and Supplementary Table S10).

Proteins associated with low oxygen
saturation indices

ODI2% was fit as a function of protein measures adjusted for
demographic variables, and three proteins were found to be dif-
ferentially expressed (FDR p-value <0.05). Laminin and tPA were
upregulated while UNC5H4 was downregulated (Table 3 and
Supplementary Table S11). ODI3% was not associated with any
proteins at 5% FDR (data not shown). Mean SaO, levels during
sleep was significantly associated (FDR p-value <0.05) with
downregulated NovH (Protein NOV homolog) and upregulated
UNC5H4 (Table 3 and Supplementary Table S12). Minimum SaO,
level during sleep was associated only with increased expres-
sion of UNC5H4 and trend to decreased tPA protein expression
(Table 3 and Supplementary Table S13).

Proteins associated with PAP intervention

Paired analyses of pre- and postintervention samples from
the intervention cohort who were treated with PAP showed
that IGFBP-3 and BMP-1 (bone morphogenetic protein
1) were increased, while LEAP-1 (hepicidin) was decreased,
postintervention (5% FDR, see Supplementary Table S14 for list
of proteins).

Moderate-to-severe apnea can be predicted by
SomasScan protein panel

Since we found a relatively large number of proteins (n = 65)
differentially expressed and significantly associated with OAHI
when modeled as continuous variable and additionally among
all the stratified analyses (see above) the largest number of

proteins was associated with moderate-to-severe apnea versus
mild/control apnea, we capitalized on these associations to
train a machine learning classifier on SomaScan protein meas-
ures in a test set (n = 549) to predict moderate-to-severe apnea
(OAHI 215 was treated as case while OAHI <15 was treated as
control or mild apnea) in an validation set (n = 164). Model 1
incorporating demographic variables and protein measures
achieved 77.5% accuracy in classifying OAHI, model 2 (only
SomaScan measures) achieved 76.1% accuracy, and model 3
(only demographic variables) achieved a lower accuracy of
68.3% (see Figure 2 for ROC and AUCs and Table 4 for classi-
fier metrics and Supplementary Table S15 for confusion matrix).
The sensitivity for detecting OAHI at least 15 status was 73.8%
for model 1, 72.1% for model 2, and 65.1% for model 3. The spe-
cificity for identifying control status was 81.2% for model 1,
80.8% for model 2, and 71.6% for model 3. The corresponding
negative predictive values (NPVs) were 74.7%, 72.4%, and 66.7%
for models 1, 2, and 3, respectively.

Proteins associated with age of serum samples

The serum samples assayed in this study were collected and
processed with a mean delay of 11.6 years (blood draw to assay).
Although above results were carefully adjusted for sample age,
we observed 535 proteins to have significant (FDR p-value <0.05)
differential expression (464 proteins downregulated and 71
upregulated) when age of samples was fit as a function of the
protein matrix. The full list of proteins associated with age of
samples is given in Supplementary Table S16.

Discussion

To our knowledge, this is the first study to look at highly multi-
plexed protein biomarkers (1,300) at once in association with
sleep apnea and oxygen desaturation indices utilizing an
aptamer-based approach (SomaScan assay) in the Stanford
sleep cohort of 713 individuals, a patient-based registry. The
overall prevalence of OAHI in our cohort was 49.2% predomin-
antly biased in men (67.5 %), while the overall CAI prevalence
was relatively lower at 1.3%. We analyzed differential expres-
sion patterns in cross-sectional Stanford sleep cohort of 713
individuals as a function of OAHI that revealed 65 proteins to
be dysregulated. On the other hand, CAI was associated with
only two proteins including ROBO3, a protein involved in bi-
lateral synchronization of the pre-Botzinger complex and
cystatin F. Further analysis of pre- and post-CPAP intervention
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Figure 2. The receiver operating curve (ROC) of an OAHI classifier to classify severe-to-moderate apnea (>15/h). The training set included 549 individuals and untouched
test set included 164 individuals. Three models were trained: model 1 incorporating demographic variables and SomaScan protein measures, model 2 trained only
SomaScan protein measures, and model 3 that was trained only demographic variables (age, gender, and BMI). The y-axis represents the true positive fraction while the
x-axis represents the false positive fraction. "Model 3 AUC was statistically significant when compared to model 1 and model 2 AUC (p < 0.05).

Table 4. Performance Metrics of a Machine Learning OAHI Classifiers (OAHI >15), the Model Was Trained on 549 Individuals and Validated in

164 Individuals (total individuals = 713)

Model name Flscore  Accuracy  Sensitivity  Specificity =~ PPV NPV AUC
Model 1 includes SomaScan proteins, age, gender, and BMI 0.77 0.775 0.738 0.812 0.805 0.747 0.84
Model 2 includes only SomaScan proteins 0.761 0.764 0.721 0.808 0.805 0.724 0.815
Model 3 includes only age, gender, and BMI 0.675 0.683 0.651 0.716 0.701 0.667 0.72

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.

in longitudinal cohort of 16 individuals was less revealing with
three proteins that were differentially associated with active
CPAP treatment: IGFBP3 and BMP-1 increased while LEAP1
(hepicidin) decreased with intervention.

We found significant changes with OAHI in 65 proteins,
notably, tPA, laminin, growth hormone receptor, IL-18 Ra,
aminoacylase-1 (involved in oxidative stress), and LG3BP (ad-
hesion molecule) were increased with apnea while IGFBP-1,
carbonic anhydrase I, and UNC5H4 were inversely associated
with moderate-to-severe apnea and observed to be decreased.
Pathway analysis (FDR p-value <0.05) of DEPs in OAHI revealed
overrepresentation of DEPs in complement and coagulation
cascades, L1CAM and Laminin interactions, extracellular ma-
trix and extracellular matrix-associated proteins, and extrinsic
pathway of fibrin clot formation and hemostasis. These changes
show that OAHI is associated with disturbances of multiple
pathways, growth factors, cell adhesion factors, enzymes, not-
ably with previous reports of increased coagulation including

tPA being associated with apnea events [65, 66], which may play
a role in the increased risk of stroke in these patients [67].

tPA is a serine protease found on endothelial cells that line
blood vessels and functions to catalyze the conversion of plas-
minogen to plasmin. Plasminogen is the pro-enzyme of plasmin
and is implicated in fibrin degradation in blood vessels [68]. tPA
while being circadian dependent [69] has been linked to host of
disorders. For instance, tPA increase has been associated with
acute myocardial infarction [70, 71] and coronary artery disease
[70] and while deficiencies in tpA production have been linked
to deep vein thrombosis [72]. Interestingly, previous studies
have found an accumulation of fibrin in patients with sleep
apnea [73], while other investigators have found increased plas-
minogen activator inhibitor-1 protein levels in patients with
sleep apnea [74]. In agreement our data indicate increased tPA
levels in patients with high OAHI indices.

Interestingly, growth hormone receptor and IGFBP-1 pro-
teins were associated with moderate-to-severe apnea in our



study, these associations could be attributed to disruptions in
growth hormone pathway in which both IGFBP-1 and IGFBP-3
(associated with CPAP treatment in our study) are important
conduits [75-77]. It is established that growth hormone is se-
creted predominantly during slow-wave sleep [78, 79], while
OSA is associated with disruptions in slow-wave sleep [80-82].
Furthermore, decreased IGFBP-1 levels have been recognized as
important predictors to development of glucose tolerance/dia-
betes [83-85] and increased cardiovascular risk. Our findings are
consistent with these observations and establish dysregulation
of insulin and growth hormone pathway associated proteins in
apnea. We should however note that the incidence of diabetes
was low (<5%) in our cohort, although this could be attributed
to missing data. Other data on IGFBP-1 are sparse in the context
of apnea, with one study suggesting no association with apnea
nor CPAP treatment [86]. Additional studies are warranted to
understand the role of these proteins in apnea. Taken together,
recurrent episodes of hypoxia and sleep disruption dispose to
a state of hypercoagulability and fibrin dysregulation, which in
turn may promote the incidence of coronary events in patients
with sleep apnea.

The strong positive association of OAHI with IL18RA (IL18 re-
ceptor alpha, called IL18R1, 2q12) is particularly interesting con-
sidering the interleukin 18 receptor IL18RAP associated protein
(IL18 beta chain) is one of two genome-wide significant findings
reported for minimum oxyhemoglobin saturation (rs78136548)
during sleep [87], a variable correlated with OAHI. IL18R1 and
IL18RAP are located close to each other and rs78136548 and
linked markers are an eQTL for both transcripts in various tis-
sues, and for the nearby gene SLC9A4, a proton gene pump [87].
As the rs78136548 region linked with minimum oxygen desatur-
ation in the Cade et al. study [87] regulates both subunits of the
ILR18, it is plausible that the ILR18 is a causal pathway for sleep
apnea. Problematically, however, ILR18RAP was also measured in
this study and did not vary with OSA (data not shown). Notably,
low oxygen saturation in this study was not significantly associ-
ated with IL18RA. Finally, Suhre et al. [50], using the same tech-
nology as this study, found significant cis pQTL but not trans QTL
for these loci in blood. Additional studies of the IL18 pathway in
OSA are thus warranted to follow-up on these findings.

Proteomic signatures associated with CPAP treatment were
much less pronounced, we found a cluster of three proteins that
were associated with CPAP treatment. Among the three proteins,
notably IGFBP-3 protein level was positively correlated with CPAP
treatment, this finding is in line with other investigators who
also found increased IGFBP-3 protein levels post-CPAP adher-
ence using an ELISA assay [88]. BMP-1 protein was found to be
increased in response to CPAP treatment, incidentally it is also
associated with moderate-to-severe apnea in our cross-sectional
cohort (Table 2), while it is recognized as a major player in tissue
remodeling and repair [89], its role in relation to apnea remains
to be elucidated. Strikingly, LEAP-1 (hepicidin) was decreased in
response to CPAP treatment in the current study, hepicidin is
recognized as a liver-derived protein that regulates iron homeo-
stasis and also plays a key role as an antimicrobial agent pref-
erentially inhibiting growth of fungal pathogens. This finding
is in agreement with other reports of increased hepcidin in se-
vere apnea [90], although we could not find any association with
moderate-to-severe apnea in our cross-sectional cohort.

Central apneas were associated with two proteins, ROBO3
and CYTF. ROBO3 is a critical protein for proper neural migration
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and axon guidance. At least 19 different mutations in the ROBO3
gene have been identified in people with horizontal gaze palsy
with progressive scoliosis. This gene is required for hindbrain
axon midline crossing [91]. Interestingly, ROBO3 has been shown
to be a critical component of pre-Botzinger complex (pre-BotC)
responsible for pace inspiration. Inactivation of ROBO3 results
in left-right de-synchronization of the pre-BotC oscillator, with
asymmetric independence of left-right breathing activities and
diaphragm contractions in Robo3 null mice, although rhythm
generation is unaffected [92]. Although the role of ROBO3 post-
development is unknown, it may be that increased ROBO3 levels
in central apnea is a compensatory mechanism in response to re-
peated central apnea events that aim at strengthening the central
pacemaker. Previous studies of ROBO3 have identified eQTLs for
expression in various tissues, but not in blood using the aptamer
technology [50]. Further investigations of the role of ROBO3 in
the regulation of central sleep apnea are warranted. CYTF on the
other hand is a cysteine protease inhibitor and is selectively en-
riched in immune cell subsets [93], and CYTF has been reported
to have a strong affinity to cathepsin L that is implicated in
normal lysomal mediated protein turnover. Interestingly, CYTF
has been found to promote neovascularization after ischemia via
cathepsin L [94]. It is unclear what role increased CYTF plays in
central apneas but it is possible that CYTF promotes tissue re-
pair, further studies are needed to understand this mechanism.
Central apnea incidence was 1.9% in our cohort, this is a limita-
tion that larger cohorts will need to address.

Finding a robust blood biomarker for sleep apnea could be
very useful in clinical practice. In this work, we used a regular-
ized lasso model to classify moderate-to-severe apnea (OAHI
>15/h) on 549 participants with validation in 164 additional
participants. We found that training a machine learning classi-
fier using only protein measures could achieve 76.1% accuracy
(72.1% sensitivity) in classification of moderate-to-severe apnea
(OAHI >15/h), while a classifier also incorporating demographic
variables (age, gender, and BMI) performed with higher accuracy
of 77.5%. In comparison, the STOP-Bang questionnaire [95] had
higher sensitivity at 94% to detect moderate-to-severe OSA (AHI
>15/h), but a specificity of 34% and an NPV of 75%. The Berlin
questionnaire had 54% sensitivity, 97% specificity to classify
moderate-to-severe OSA (AHI >15/h) [96]. Our classifier (model
2 using only protein measures) had 80.8% specificity with an
NPV of 72.4%. This suggests that although there is modest
and comparatively similar performance of the protein meas-
ures in classifying moderate-to-severe OSA (AHI >15/h) with
questionnaire-based methods, larger studies are warranted.

While the aptamer-based approach holds considerable
promise in exploratory analysis of sleep disorders and can
generate hypotheses that can be studied in greater detail, we
note several limitations to our study. First, our serum samples
were old, with mean blood draw to assay time being 11.6 years.
Sample storage time (the samples were kept at —80°C) correl-
ated with many measures, and while we controlled for sample
age in our analyses, ideally this type of analysis should be con-
ducted on recent samples. Second, all samples were derived at
a single sleep center. Replicating findings with samples from
other cohorts would be needed to show generalization. Third,
the protein expression patterns from the cross-sectional cohort
(Stanford sleep cohort) may not be directly comparable to the
longitudinal CPAP interventional cohort, this can be attributed
to the fact that while Stanford sleep cohort was assayed using
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serum samples the CPAP cohort used plasma samples. Fourth,
we did not have data on comorbidities such as stroke, dementia,
mild cognitive impairment, and congestive heart failure in our
cohort, these conditions could present as altered protein expres-
sion profiles. Finally, the study used an earlier SomaScan panel
of proteins that included only 1,300 proteins, while a more re-
cent panel includes 5,500 proteins.

To summarize, thislarge proteomic analysis of sleep-disordered
breathing identified differential protein expression patterns asso-
ciated with obstructive respiratory events, oxygen desaturations,
central apneas, and PAP treatment for OSA. Multiplex protein as-
says offer diagnostic potential and provide new insights into the
biological basis of sleep-disordered breathing.

Supplementary Material

Supplementary material is available at SLEEP online.
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