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* Development of FVIII
inhibitors within the first
50 EDs to FVIll is as-
sociated with distinct
antibody signatures.

* Patients with persistent
FVIII inhibitors develop
unique signatures of
FVIll-binding IgG1, fol-
lowed by IgG3 and
IgG4.

Preventing factor VIII (FVIII) inhibitors following replacement therapies with

FVIII products in patients with hemophilia A remains an unmet medical need.

Better understanding of the early events of evolving FVIII inhibitors is essential for
risk identification and the design of novel strategies to prevent inhibitor development.
The Hemophilia Inhibitor Previously Untreated Patients (PUPs) Study (HIPS; www.
clinicaltrials.gov #NCT01652027) is the first prospective cohort study to evaluate
comprehensive changes in the immune system during the first 50 exposure days
(EDs) to FVIII in patients with severe hemophilia A. HIPS participants were enrolled
prior to their first exposure to FVIII or blood products (“true PUPs”) and were
evaluated for different immunological and clinical parameters at specified time
points during their first 50 EDs to a single source of recombinant FVIII. Longitudinal
antibody data resulting from this study indicate that there are 4 subgroups of patients
expressing distinct signatures of FVIII-binding antibodies. Subgroup 1 did not develop
any detectable FVIII-binding immunoglobulin G (IgG) antibodies. Subgroup 2
developed nonneutralizing, FVIII-binding IgG1 antibodies, but other FVIII-binding IgG
subclasses were not observed. Subgroup 3 developed transient FVIII inhibitors
associated with FVIII-binding IgG1 antibodies, similar to subgroup 2. Subgroup 4
developed persistent FVIII inhibitors associated with an initial development of high-
affinity, FVIII-binding IgG1 antibodies, followed by IgG3 and IgG4 antibodies.
Appearance of FVIII-binding IgG3 was always associated with persistent FVIII
inhibitors and the subsequent development of FVIII-binding IgG4. Some of the antibody
signatures identified in HIPS could serve as candidates for early biomarkers of FVIII
inhibitor development.
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Introduction

Hemophilia A is a congenital bleeding disorder caused by
a deficiency in biologically active factor VIII (FVIIl). Most patients
receive FVIIl concentrates throughout the course of replacement
therapies. These therapies can be complicated by the development
of neutralizing antibodies directed against FVIII (FVIIl inhibitors),
which are usually observed after 5 to 15 exposure days (EDs) to
exogenous FVIII in ~30% of previously untreated patients (PUPs)
with severe hemophilia A."™* Morbidity and cost of care for patients
with FVIIl inhibitors are substantially increased which is why novel
treatment strategies to prevent FVIII inhibitor development in
patients undergoing FVIIl replacement therapies are required.>”

FVIII inhibitors are quantified by their ability to inhibit FVIII activity
using the Bethesda assay or the Nijmegen-modified Bethesda
assay.>® Recent studies indicated that FVIIl inhibitors represent
only a fraction of the potential antibody response directed against
FVIIL'®"2 Using a combination of Bethesda assays and sensitive
enzyme-linked immunosorbent assays (ELISAs), circulating anti-
bodies directed against FVIIl were detected in patients with and
without FVIII inhibitors, indicating the development of both,
neutralizing and nonneutralizing antibodies. Moreover, nonneutraliz-
ing antibodies against FVIIl were also found in some healthy
individuals.'®""

Why some patients develop FVIII inhibitors and others do not is
poorly understood. There is evidence that both genetic risk factors
(eg, F8 mutations, family history of FVIIl inhibitors, polymorphisms in
genes encoding immune regulatory proteins, and ethnicity back-
grounds) and nongenetic risk factors (eg, treatment-related and
environmental factors) influence the development of these
antibodies."®'” However, the molecular mechanisms responsible
for the initiation or prevention of FVIIl inhibitors in patients have not
been well explained. Hofbauer et al reported that antibodies
detected in patients with FVIII inhibitors are predominantly of high
affinity, whereas antibodies found in some patients without FVIII
inhibitors and in some healthy individuals are predominantly of
medium or low affinity.'' These data support previous findings in
hemophilic mouse models indicating that the development of
neutralizing antibodies directed against FVIIl depends on cognate
interactions between FVIlI-specific B cells and FVIll-specific T cells,
for example follicular helper T cells, in specific structures of
secondary lymphoid organs called germinal centers.'®'® These
cognate interactions drive affinity maturation and class-switch
recombination of antibodies as well as the differentiation of B cells
into memory B cells and long-lived plasma cells secreting high-
affinity antibodies.?>?' On the other hand, antibodies with low and
medium affinity could be the result of extrafollicular B-cell
differentiation, which can be either dependent or independent of
their cognate interaction with antigen-specific T cells.?°

To further explain the underlying immune mechanisms that are
responsible for the generation of high- and low-affinity antibodies
against FVIIl in patients, a good understanding of the longitudinal
events associated with these different antibody responses and the
potential interdependence of nonneutralizing and neutralizing
antibody responses is required. Therefore, prospective, longitudinal
clinical studies monitoring the development and characteristic
features of FVIIl-binding antibodies as well as underlying immune
mechanisms in PUPs, starting prior to the first dose of FVIII, are
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important. Such studies could not only facilitate early risk
identification for FVII inhibitor development in individual patients
but also support the design of novel treatment approaches to
prevent FVIII inhibitor development.

The Hemophilia Inhibitor PUPs Study (HIPS; www.clinicaltrials.gov
#NCT01652027) is a prospective, longitudinal, observational study
that was designed to identify early biomarkers of FVII inhibitor
development and prospectively evaluate early changes in the
immune system upon exposure to FVIII in patients with severe
hemophilia A. HIPS patients were enrolled prior to their first
exposure to FVIII or blood products (ie, true PUPs) and were
evaluated at specified time points during their first 50 EDs to
a single source of full-length, standard half-life, recombinant FVIII
concentrate. In this article, we present data indicating different
subpopulations of patients who express distinct signatures of
longitudinal antibody responses directed against FVIII.

Materials and methods
Study design

HIPS is a multicenter, investigator-initiated, prospective longitudinal
cohort study of previously untreated infants with severe hemophilia
A (www.clinicaltrials.gov #NCT01652027). Sixteen US and
European hemophilia treatment centers (supplemental Table 1)
participated in HIPS and performed HIPS qualification testing to
ensure quality of the biological specimens. Each site obtained
approval from their institutional review board or independent ethics
committee.

Enroliment criteria, treatment, and clinical procedures

Eligible patients were previously untreated infants with a baseline
FVIIl coagulant activity (FVII:C) <0.01 IU/mL confirmed in the
central laboratory at the Medical University of Vienna. Minimal
weight of 3.5 kg for patients at enrollment was required to allow for
7.5 mL of blood to be drawn at each visit with minimal risk to the
patient. Patients were excluded from HIPS if they had prior
exposure to clotting factor concentrates or blood products,
including packed red blood cells, platelets, plasma, or cryoprecipi-
tate. Written informed consent, approved by the appropriate
institutional review board or independent ethics committee, was
obtained from a parent or legally authorized representative of each
study participant.

Patients were treated with a recombinant FVIIl concentrate (anti-
hemophilic factor [recombinant], Advate; Baxalta US, a Takeda
company, Lexington, MA) as their only source of FVIIl concentrate
for prophylaxis, treatment of bleeding episodes, surgical proce-
dures, and immune tolerance induction, if required. The type of
regimen (prophylaxis vs on demand), dose, and frequency of
infusions were at the discretion of the investigator. Patients were
followed for 50 EDs or 3 years, whichever came first.

Screening and baseline evaluations took place prior to the first FVIII
infusion. Patients underwent clinical evaluation visits every 12 weeks
(=10 days) after the first ED during which the medical, social, and
family histories were updated and a physical examination was
performed. Parents were required to maintain a paper diary to
record information about FVIIl infusions, including date of infusion,
number of units infused, number of vials used, lot number(s), reason
for infusion, and any adverse events. In addition, the diary included

24 NOVEMBER 2020 - VOLUME 4, NUMBER 22 € blood advances


http://www.clinicaltrials.gov
http://www.clinicaltrials.gov

Table 1. Blood volumes required for analytical procedures during the
HIPS study

Blood sample analytics

Sampled blood volume, mL*

Screening and baseline samples

FVIII activity in plasma 1.8
Transcriptome profiling in PBMCs after short-term 4.0
in vitro stimulation with FVIII; FVIll-specific antibody
analytics
Epigenetic immune cell counting; whole-blood 2.0

transcriptome profiling
Post-FVIIl exposure samples

FVIIl inhibitor testing; whole-genome profiling (once); 2.7
FVIIl mutation analysis (once)

Transcriptome profiling in PBMCs after short-term 4.0
in vitro stimulation with FVIII; FVIIl-specific antibody
analytics

Epigenetic immune cell counting; whole-blood 2.0

transcriptome profiling

PBMC, peripheral blood mononuclear cell.
*The total blood volume sampled did not exceed 8 mL/kg body weight at any month
during the study

information about infections, immunizations, medications and
dietary supplements, surgeries, and trauma.

Blood sample schedule

Blood samples were drawn at baseline before FVIIl exposure and
then 7 days (+2 days) after the first ED. Subsequently, samples
were taken 5 days (*2 days) after the fifth, 10th, 20th, 30th,
40th, and 50th ED for the same set of measurements as
indicated in supplemental Figure 1. In the event that not all
samples for the first, fifth, 10th, 20th, 30th, 40th, or 50th post-
FVIIl exposure visit could be obtained, a scheduled blood draw
was performed after the subsequent FVIIl exposure following the
same visit window of 5 days (2 days) after exposure to FVIII.
Further details for the blood sampling schedule are provided in
supplemental Materials and methods. Blood volumes required
for analytical procedures during the HIPS study are shown in
Table 1.

F8 genotyping

F8 genotyping was performed at BloodWorks Northwest,
Seattle, WA. Details are provided in supplemental Materials
and methods.

Detection of neutralizing antibodies

FVIII inhibitor analysis was performed in the central laboratory
at the Medical University of Vienna using a Nijmegen-modified
Bethesda assay. The lower limit of inhibitor detection was 0.4
Bethesda (BU)/mL. A patient was considered FVII inhibitor
positive if neutralizing antibodies were detected at =0.6 BU/mL
in at least 2 consecutive exposure samples. A positive inhibitor
that peaked at =5 BU/mL after rechallenge with FVIII was
considered a low-titer inhibitor, and a positive inhibitor >5 BU/mL
was considered a high-titer inhibitor. Transient inhibitors were
defined as those that were of low titer (=5 BU/mL) that
disappeared within 6 months and the patient was able to remain
on FVIIl therapy for the treatment of hemorrhages.??
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Detection of FVIII-binding antibodies

FVIll-specific antibodies of immunoglobulin isotypes immunoglob-
ulin A (IgA), IgM, and IgG subclasses 1 to 4 were analyzed using
a fully validated ELISA platform as described elsewhere.'®""

Assessment of apparent affinities of
FVIil-binding antibodies

The apparent affinities of FVIll-binding antibodies for IgA and IgG
subclasses were assessed using a competition-based ELISA
approach. The test principle, technical details, and validation of
the affinity ELISA platform were described by Hofbauer et al.'" In
brief, the competition-based ELISA approach provides apparent
affinities in equilibrium; it analyzes free antibodies against FVIII
present in diluted human plasma after preincubation of the antibody
solution with preselected molar concentrations of FVIIl. Based on
the assumption of equimolar interaction between antibodies and
FVIII antigen, this approach enables apparent affinity determination
without antibody purification. The assessment of affinity constants is
based on the availability of antibody for binding to FVIll-coated
ELISA plates after competition with FVIIl in solution. Data for
apparent affinity constants (Kx [M~']) were derived from nonlinear
regression modeling of competition ELISA 3 optical densities as
described by Stevens et al*® and Hofbauer et al.'" The calculations
of apparent affinity constants and the best-fit model for affinity
cluster analyses were done as described previously."’

Statistical analyses

In order to compare antibody signatures in patients with FVIII
inhibitors (subgroup 4; Table 2) and in patients with nonneutralizing
antibodies (subgroup 2; Table 2), medians and interquartile ranges
(IQRs) for titers and apparent affinity constants of FVIII-binding
antibodies, differentiated for IgG subclasses, IgM and IgA, were
calculated. The calculations for the IQR included all antibody data
for each patient in the respective subgroup at each time point
analyzed. Group comparisons were done using GraphPad Prism
8.0 and IBM SPSS Statistics version 23 (IBM). Medians, 95%
confidence intervals (Cls), and IQRs were used to describe data.
Comparisons between the groups were done using the Mann-
Whitney U test. For all analyses, a value of P < .05 was considered
as statistically significant.

Results

Screening, enroliment, and baseline characteristics
of patients

Twenty-six patients were screened and 25 determined to be eligible
(1 subject with FVIIl >1% at central laboratory was excluded) for
the study. Of these 25 patients enrolled, 1 patient was withdrawn
after ED1 due to the lack of compliance, and 1 patient withdrew
after ED10 due to investigator choice (change in treatment), leaving
23 patients who completed 50 EDs. Baseline characteristics of
these 23 subjects, such as age at first FVIIl infusion (0.4-16.6
months), ethnical background (16 White, 3 Black, 3 Hispanic, and 1
Asian/Pacific), family history of hemophilia A and of FVIII inhibitors,
hospitalizations during the study, infections, and FVIIl treatment
regimens are shown in Tables 2 and 3. A total of 17 patients
(73.9%) carried high-risk or moderate-risk F8 mutations (intron 22
inversion, 9; duplications, 2; frameshift, 2; large deletions, 2; intron 1
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Table 3. Hospitalizations and FVIII treatment regimens for HIPS subjects, stratified in 4 subgroups with distinct signatures of FVIII-binding

antibodies developed during the HIPS study

Patient no.

Hospitalizations during study

EDs when prophylaxis and ITI (if applicable) were
initiated (FVIIl dose in 1U/kg and treatment frequency)

Subgroup 1: no FVIII-binding IgG antibodies

1 No hospitalizations reported ED1 (55 qw, 55 biw, 75 biw)
2 4 hospitalizations: tongue bleed, head trauma, muscle bleed, ED35 (25 qw, 25 biw)
port implant
3 1 hospitalization: port implant and circumcision ED13 (25 biw & 50 qw; 50 biw & 70 qw)
4 No hospitalizations reported ED5 (50 biw, 45 biw)
5 No hospitalizations reported EDS5 (90 qw, 55qw, 65 qw, 60 biw)
6 No hospitalizations reported ED1 (70 qw, 95 qw, 60 qw, 60 biw)
7 No hospitalizations reported ED1 (70 qw, 45 qw, 20 biw, 20 tiw)

Subgroup 2: nonneutralizing FVIII-binding

antibodies

8 1 hospitalization: port implant ED1 (25 biw, 25 tiw)

9 No hospitalizations reported ED3 (55 qw, 55 biw)

10 3 hospitalizations: muscle bleed, left knee joint bleed, port ED7 (25 - 55 qw, 25 biw, 20 tiw)

implant

11 No hospitalizations reported ED17 (25 tiw)

12 1 hospitalization: muscle bleed (back) ED1 (50 qw, 60 qw, 35 biw)

13 No hospitalizations reported ED6 (30 qw, 30 biw)

14 No hospitalizations reported ED8 (40 gqw, 50 qw, 50 biw)
Subgroup 3: transient FVIII inhibitors

15 No hospitalizations reported ED6 (60 qw, 45 qw, 50 qw)

16 1 hospitalization: port implant (procedure occurred 3 mo after  ED3 (90 qw, 55 qw, 65 biw)

first inhibitor detection)

Subgroup 4: persistent FVIIl inhibitors

17 1 hospitalization: port implant (procedure occurred 20 d prior to  ED1 (55 qw); ITI 225 qd (initiated on ED12)

inhibitor detection)

18 No hospitalizations reported

19 2 hospitalizations: intraspinal bleed and port implant, MRl and

ED1 (45 - 60 qw); ITI 210 gd (initiated on ED7)
ED2 (85 qw); ITI 105 qd (initiated on ED13)

diagnosis after intraspinal bleed (all events occurred 1.5 y

after inhibitor detection)

20 1 hospitalization: port implant (procedure occurred 2 wk after

inhibitor detection)

ED2 (120 qw); ITI 560 qd (initiated on ED16)

21 3 hospitalizations: port implant (3 d prior to inhibitor detection), 2 ED1 (30 qw); ITI 190 qd (initiated on ED11)
infections (1 wk after inhibitor detection)

22 3 hospitalizations: 2 fistulas, 1 hematoma episode (all events
occurred after inhibitor detection)

ED1: 35 biw, ITI 210 qd (initiated on ED12)

23 1 hospitalization: shunt for venous access (procedure occurred ED3: 30 qw, ITI 155 qd (initiated on ED13)

2 mo after inhibitor detection)

The last column, “EDs when prophylaxis and ITI (if applicable) were initiated,” includes the dose and frequency of prophylaxis and any changes to dose and frequency. Dose was calculated
using the most recent prior weight measured (at screening or interval visit) and the FVIII dose in 1U/kg reported on the infusion diary. All subjects received prophylaxis at some stage during
the HIPS study. Subjects who did not start prophylaxis on ED1 were treated on demand until the exposure day specified in the table.

biw, twice a week; ITl, immune tolerance induction; MRI, magnetic resonance imaging; qd, daily; qw, once a week; tiw, 3 times a week.

inversion, 1; and nonsense, 1), while 6 patients (26.1%) had low-
risk mutations (missense).

Incidence of FVIII inhibitors

Nine of the 23 patients who completed 50 EDs developed FVIll
inhibitors (6 high titer and 3 low titer). Two of the low-titer inhibitors
were transient (Table 2). All 7 patients who developed persistent
FVIIl inhibitors (6 high titer and 1 low titer) carried high-risk or
moderate-risk F8 mutations (Table 2).

€ blood advances 24 NovEMBER 2020 - vOLUME 4, NUMBER 22

Longitudinal monitoring for FVIll-binding antibodies

The analyses of FVIII-binding antibodies revealed 4 subgroups of
patients with distinct antibody signatures: subgroup 1 (no FVIII-
binding IgG antibodies), subgroup 2 (nonneutralizing FVIII-
binding antibodies), subgroup 3 (transient FVIII inhibitors), and
subgroup 4 (persistent FVIIl inhibitors) (Table 2).

Subgroup 1: Seven patients did not develop inhibitors and
did not have detectable FVIIl-binding IgG throughout the
course of the study (subgroup 1 in Tables 2 and 3; Figure 1;
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Figure 1. Longitudinal monitoring of FVIII-binding antibodies and FVIII inhibitors in 2 representative examples of patients in subgroup 1. (A-B) Results of the
analysis of FVIIl-binding antibodies (IgG1, IgG2, IgG3, IgG4, IgA, IgM as indicated) and FVIIl inhibitors (BU/mL) for 2 representative examples of patients in subgroup 1, patient 3 (A)
and patient 6 (B), who did not develop FVIIl inhibitors throughout the study period. The red dotted lines represent the limit for positive evaluation of FVIIl inhibitors (0.6 BU/mL). The
data for the remaining 5 patients of subgroup 1 are shown in supplemental Figure 2. B, baseline; ND, not detectable (below the detection limit of 1:20 for FVIIl-binding antibodies).

supplemental Figure 2). The transient appearance of low- intron 22 inversion, 3 missense mutations, 1 duplication, and
titer FVIIl-binding IgM or IgA antibodies at single EDs was 1 frameshift mutation of the F8 gene were found in these
observed in 2 of the 7 patients. One nonsense mutation, 1 patients (Table 2).
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Figure 2. Longitudinal monitoring of FVIII-binding antibodies and FVIII inhibitors in 2 representative examples of patients in subgroup 2. (A-B) Results of the
analysis of FVIIl-binding antibodies (IgG1, 1IgG2, IgG3, IgG4, IgA, and IgM, as indicated) and FVIIl inhibitors (BU/mL) for 2 representative examples of patients in subgroup 2,
patient 9 (A) and patient 14 (B), who developed FVIII-binding IgG1 antibodies but did not develop FVIIl inhibitors throughout the study period. The red dotted lines represent
the limit for positive evaluation of FVIIl inhibitors (0.6 BU/mL). (C-D) Apparent affinity constants of FVIll-binding IgG1 antibodies (mean Ka) and FVIIl inhibitors (BU/mL) in
patient 9 (C) and patient 14 (D). Data for apparent affinity constants include the 95% Cls for up to 2 IgG1 affinity clusters (open blue bars, IgG1 population 1; closed blue
bars, IgG1 population 2). The red dotted lines represent the limit for positive evaluation of FVIIl inhibitors (0.6 BU/mL). Ka, apparent affinity constant. The data for the remaining
5 patients of subgroup 2 are shown in supplemental Figure 3.
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Figure 3. Longitudinal monitoring of FVIII-binding antibodies and FVIII inhibitors in the 2 patients in subgroup 3. (A-B) Results of the analysis of FVIll-binding antibodies
(IgG1, 19G2, IgG3, IgG4, IgA, and IgM, as indicated) and FVIIl inhibitors (BU/mL) for the 2 patients in subgroup 3, patient 15 (A) and patient 16 (B), who developed FVIl-binding IgG1
antibodies and transient low-titer FVIIl inhibitors. The red dotted lines represent the limit for positive evaluation of FVIIl inhibitors (0.6 BU/mL). (C-D) Apparent affinity constants of FVIIl-
binding IgG1 antibodies (mean Ka) and FVIIl inhibitors (BU/mL) in patient 15 (C) and patient 16 (D). Data for apparent affinity constants include the 95% Cls for up to 2 IgG1 affinity
clusters (open blue bars, IgG1 population 1; closed blue bars, IgG1 population 2). The red dotted lines represent the limit for positive evaluation of FVIIl inhibitors (0.6 BU/mL).

Subgroup 2: Seven patients who were negative for FVII inhibitors Subgroup 4: The remaining 7 patients developed persistent FVIII

throughout the observation period developed FVlil-binding IgG1
(subgroup 2 in Tables 2 and 3; Figure 2; supplemental Figure 3).
The IgG1 antibodies were transient in 3 patients and persisted to the
end of the observation period in 4 patients. The apparent affinity
constants of these antibodies revealed 1 or 2 affinity clusters (Figure
2; supplemental Figure 3). The kinetics of FVIIl-binding IgG1 and
their persistence and apparent affinity constants showed patient-
specific characteristics. For example, patient 9 had detectable FVIII-
binding IgG1 antibodies as early as ED5, but the antibodies were
transient in nature. In contrast, FVIll-binding IgG1 antibodies observed
in patient 14 were first detected at ED5 but persisted throughout the
study observation period (Figure 2). FVIll-binding IgM was not
observed in any patient of this subgroup, and low-titer transient FVIII-
binding IgA was observed in 2 patients of this subgroup. Three
missense mutations, 3 intron 22 inversions, and 1 intron 1 inversion
of the F8 gene were found in patients of subgroup 2 (Table 2).

Subgroup 3: Two patients developed FVIll-binding IgG1 and low-
titer transient FVIII inhibitors (peak titers <1.8). The apparent
affinity constants of the IgG1 antibodies revealed 2 affinity
clusters (subgroup 3 in Tables 2 and 3; Figure 3). Neither of
these 2 patients developed any other FVIll-binding IgG subclass
antibody. FVIIl-binding IgM or IgA antibodies were not observed
in these patients. One intron 22 inversion and 1 frameshift
mutation of the F8 gene were found in these patients (Table 2).
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inhibitors with peak titers ranging between 4.5 and 3049 BU/
mL (subgroup 4 in Tables 2 and 3; Figure 4; supplemental
Figure 4). FVIIl inhibitors were first detected within 20 EDs (EDs
6-20) and persisted until the end of the study observation
period. All patients in subgroup 4 initially developed high-affinity
FVIll-binding IgG1 antibodies, followed by FVIII-binding IgG3
and IgG4. FVIll-binding IgG3 was usually observed subsequent
to FVlll-specific IgG1. FVlll-specific IgG4 appeared later than
IgG1 and either at the same time or subsequent to IgG3. FVIIl-
specific IgG2, observed in 3 patients only, was first detected
subsequent to IgG1 and either subsequent to IgG3 and IgG4 or
at the same time as IgG3 and IgG4. The highest apparent
affinity constants were observed for FVIlI-binding IgG4. FVIII-
binding IgM and IgA antibodies of low titer were found in 1 of the
7 patients. Two large deletions, 4 intron 22 inversions, and 1
duplication in the F8 gene were found in patients of subgroup 4
(Table 2).

Comparison of FVIlI-binding antibody signatures in
patients with persistent FVIIl inhibitors and those
with nonneutralizing antibodies

In order to compare antibody signatures in patients with FVIII
inhibitors (subgroup 4; Table 2) and those with nonneutralizing
antibodies (subgroup 2; Table 2), we compared titers and apparent
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Figure 4. Longitudinal monitoring of FVIII-binding antibodies and FVIII inhibitors in 2 representative examples of patients in subgroup 4. (A-B) Results of the

analysis of FVIIl-binding antibodies (IgG1, IgG2, IgG3, IgG4, IgA, and IgM, as indicated) and FVIIl inhibitors (BU/mL) for 2 representative examples of patients in subgroup 4,

patient 17 (A) and patient 21 (B), who developed FVIIl-binding IgG subclass-switched antibodies and persistent FVIIl inhibitors. The red dotted lines represent the limit for
positive evaluation of FVIIl inhibitors (0.6 BU/mL). (C-D) Apparent affinity constants of FVIIl-binding antibodies (mean Kp), differentiated for individual IgG subclasses and FVIII

inhibitors (BU/mL), in patient 17 (C) and patient 21 (D). Data for apparent affinity constants include the 95% Cls for =2 affinity clusters for each IgG subclass (open bars,

population 1; closed bars, population 2). The red dotted lines represent the limit for positive evaluation of FVIIl inhibitors (0.6 BU/mL). The asterisk indicates antibodies with

apparent affinities that were too high to be assessed. Therefore, they were set to 10e11. The data for the remaining 5 patients of subgroup 4 are shown in supplemental

Figure 4.

affinity constants of FVIll-binding antibodies, differentiated for IgG
subclasses, IgM and IgA (Figure 5). Whereas patients in subgroup
2 (nonneutralizing FVIII-binding antibodies) developed FVIll-binding
IgG1 but no other IgG subclass, all patients in subgroup 4
(persistent FVIIl inhibitors) developed FVIIl-binding IgG1, IgG3, and
IgG4 antibodies, and some of them developed FVIiI-binding IgG2
antibodies. Moreover, some patients in both subgroups developed
FVIIl-binding IgA antibodies.

FVIll-binding IgG1 antibodies differ in their quality
between patients with persistent FVIII inhibitors and
those with nonneutralizing antibodies

FVIll-binding IgG1 was the only IgG subclass found in both
patients with nonneutralizing antibodies (subgroup 2) and patients
with persistent FVIl inhibitors (subgroup 4). Therefore, we asked if
the quality of FVIll-binding IgG1 antibodies differs between these
2 subgroups. The data indicate that both antibody titers and
apparent affinity constants of FVIIl-binding IgG1 antibodies were
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significantly higher in patients with FVIII inhibitors in subgroup 4
(Figure 6).

High-affinity FVIlI-binding IgG1 and subsequent
development of FVIlI-binding IgG3 is a unique
antibody signature indicating evolving FVIIl inhibitors

Patients who developed FVIlI-binding IgG1 and never developed
any other FVIll-binding IgG subclass either did not develop FVIII
inhibitors or developed transient, low-titer FVIII inhibitors only
(Figures 2 and 3; supplemental Figure 3). On the other hand,
patients who developed high-affinity FVIIl-binding IgG1 antibodies
and subsequently FVIll-binding IgG3 antibodies developed persis-
tent FVIIl inhibitors that were of high titer in 6 out of 7 patients
(Figure 4; supplemental Figure 4). All patients who developed FVIII-
binding IgG3 antibodies, subsequently developed high-affinity FVIII-
binding IgG4 antibodies. However, FVlll-specific IgG4 antibodies
were only detected subsequent to first inhibitor detection (6 out of
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Figure 5. Summary of FVIII-binding antibodies for all patients in subgroups 2 and 4. (A-B) Medians and IQRs for titers and apparent affinity constants of FVIll-binding

antibodies, differentiated for IgG subclasses 1-4, IgM and IgA, as detected in patients in subgroup 2, who did not develop FVIIl inhibitors (A), and patients in subgroup 4, who

developed persistent FVIIl inhibitors (B). The calculation of medians and IQRs for titers and apparent affinity constants included all antibody data for each patient in the

respective subgroup at each time point analyzed.

7 patients) or at the same time as first FVIIl inhibitor detection (1 out
of 7 patients) (Figure 4; supplemental Figure 4).

Discussion

HIPS is the first prospective cohort study to evaluate comprehen-
sive changes in the immune system during the first 50 EDs to FVIil in
patients with severe hemophilia A. Longitudinal antibody data
coming out of this study indicate subpopulations of patients
expressing distinct signatures of evolving antibody responses
directed against FVIIl. These signatures differentiate patients
developing persistent FVIII inhibitor responses from those de-
veloping nonneutralizing antibody responses and those without any
IgG antibody response. Some of the antibody signatures, such as
the appearance of FVIll-binding IgG3 antibodies after an initial
phase of FVIll-specific IgG1 responses, provide candidates for the
development of early biomarkers of FVIII inhibitor development.

Patients in subgroup 1 never developed any FVIIl-binding IgG (1-4)
antibodies, neutralizing or nonneutralizing. Patients in subgroups 2
and 3 developed FVIil-binding IgG1 antibodies that were either
restricted to nonneutralizing antibodies (subgroup 2) or associated
with transient FVIIl inhibitors (subgroup 3). The underlying immune
mechanisms limiting the antibody responses to transient or
persistent IgG1 are probably similar in patients of subgroups 2 and
3. It is likely that the epitopes recognized by these IgG1 antibodies
determine whether the antibodies are nonneutralizing or neutraliz-
ing. Whereas neutralizing antibodies have been shown to be
directed against several functional epitopes of FVIII with a pre-
dominance of antibodies directed against epitopes of the A2 and
C2 domains, nonneutralizing antibodies have been reported to be
directed against nonfunctional epitopes of FVII.2*2® The 7 patients
in subgroup 4 developed persistent FVIIl inhibitors of mostly high
titer, associated with antibody signatures that differed substantially
from those observed in patients of subgroups 2 and 3. FVIIl-binding
IgG1 antibodies appeared first, followed by IgG3 and IgG4
antibodies. The appearance of FVlll-specific IgG3 antibodies after
an initial phase of FVIl-specific IgG1 responses was always
associated with the subsequent FVIII inhibitor diagnosis and the
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development of high-affinity FVIll-binding IgG4. In addition to FVIII-
binding IgG antibodies, we observed transient low-titer FVIIl-binding
IgM or IgA in a few patients of subgroups 1, 2, and 4. This finding
confirms our previous observations.'®"" The temporary appearance
of these antibodies was not associated with any particular FVIII-
binding IgG antibody signature or any other clinical parameter.

What differentiates the underlying immune mechanisms that
prevented detectable IgG antibody responses against FVII in
patients of subgroup 1, limited the IgG antibody responses to IgG1
in patients of subgroups 2 and 3, and resulted in high-affinity IgG
subclass-switched antibodies accompanied by persistent FVIII
inhibitor development in patients of subgroup 4? The significantly
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Figure 6. Comparison of titers and apparent affinities for FVIII-binding IgG1
antibodies in patients in subgroups (SG) 2 and 4. Medians and IQRs for titers
and apparent affinity constants of FVIIl-binding IgG1 antibodies, as detected in
patients of subgroup 2, who did not develop FVIIl inhibitors, and patients in sub-
group 4, who developed persistent FVIll inhibitors. Median IQRs for titers and appar-
ent affinity constants include all antibody data for each patient in the respective
subgroup at each time point analyzed. There is a significant difference in both titers
and apparent affinity constants between patients of subgroups 2 and 4.

P < 0001.
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lower titers and affinity constants of FVIIl-binding IgG1 antibodies
observed in patients of subgroup 2 compared with patients of
subgroup 4 and the lack of FVIlI-binding IgG3 and IgG4 responses
in patients of subgroups 2 and 3 support the idea that FVIII-
directed IgG antibody responses in patients of subgroups 2 and 3
were halted in a less advanced activation phase of FVIII-specific
B-cell responses. B-cell activation in response to FVIII could be
restrained when second signals, such as those provided by
cognate interactions with FVIll-specific helper T cells, are limiting.
Recently, Tan et al provided evidence indicating that Nr4a1-3,
encoding a small family of orphan nuclear receptors that are
rapidly induced by B-cell antigen receptor stimulation, are involved
in restraining B-cell responses under conditions of competition for
limiting T-cell help.2° The differentiation of B cells into antibody-
secreting cells is associated with profound changes in transcrip-
tional programs that are controlled by distinct transcription factors
and epigenetic regulators.®® B cells and plasma cells express
distinct transcriptomes that are maintained by 2 groups of mutually
exclusive transcription factors. One group of transcription factors
(eg, Bcl6, PAX-5, and BACH-2) maintains the B-cell program. The
other group of transcription factors (eg, Blimp-1, XBP1, and IRF-
4) maintains the program of antibody-secreting cells. The mutually
exclusive expression programs are maintained by transcriptional
repression, such as the B-cell-maintaining transcription factors
Bcl6, PAX5, and BACH2, directly suppress the expression of the
plasma-cell-maintaining transcription factors, Blimp-1, XBP1, and
IRF-4. On the other hand, Blimp-1 represses the expression of
Bcl-6 and PAX5.2%%" More recently, molecular mediators that
serve as endogenous brakes to the effector B-cell responses,
such as antibody class-switch recombination and the develop-
ment of antibody-secreting cells, were identified in mouse models
and in vitro studies.®>®® These brakes control the propensity of
B cells to undergo affinity maturation, antibody class-switch
recombination, and plasma cell differentiation. Some of these
brakes, such as the cytoplasmic aryl hydrocarbon receptor, can
act as sensors of immune cells for the local microenvironment.®* A
tolerizing local microenvironment could favor the induction of
immune tolerance associated with the induction of regulatory
T cells and, at the same time, restrict the immune response to
a less mature IgG1 response.

The evolving understanding of the molecular regulation of early
B-cell effector responses, such as the role of endogenous negative
brakes in antibody class-switch recombination and B-cell differen-
tiation into antibody-secreting cells, will help to further unravel the
mystery of distinct antibody signatures found in patients with and
without FVIIl inhibitors following FVIll-replacement therapies. Future
studies focusing on the molecular analysis of genome and
transcriptome signatures of patients enrolled in the HIPS study will
contribute to this process.
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