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Key Points

•Development of FVIII
inhibitors within the first
50 EDs to FVIII is as-
sociated with distinct
antibody signatures.

• Patients with persistent
FVIII inhibitors develop
unique signatures of
FVIII-binding IgG1, fol-
lowed by IgG3 and
IgG4.

Preventing factor VIII (FVIII) inhibitors following replacement therapies with

FVIII products in patients with hemophilia A remains an unmet medical need.

Better understanding of the early events of evolving FVIII inhibitors is essential for

risk identification and the design of novel strategies to prevent inhibitor development.

The Hemophilia Inhibitor Previously Untreated Patients (PUPs) Study (HIPS; www.

clinicaltrials.gov #NCT01652027) is the first prospective cohort study to evaluate

comprehensive changes in the immune system during the first 50 exposure days

(EDs) to FVIII in patients with severe hemophilia A. HIPS participants were enrolled

prior to their first exposure to FVIII or blood products (“true PUPs”) and were

evaluated for different immunological and clinical parameters at specified time

points during their first 50 EDs to a single source of recombinant FVIII. Longitudinal

antibody data resulting from this study indicate that there are 4 subgroups of patients

expressing distinct signatures of FVIII-binding antibodies. Subgroup 1 did not develop

any detectable FVIII-binding immunoglobulin G (IgG) antibodies. Subgroup 2

developed nonneutralizing, FVIII-binding IgG1 antibodies, but other FVIII-binding IgG

subclasses were not observed. Subgroup 3 developed transient FVIII inhibitors

associated with FVIII-binding IgG1 antibodies, similar to subgroup 2. Subgroup 4

developed persistent FVIII inhibitors associated with an initial development of high-

affinity, FVIII-binding IgG1 antibodies, followed by IgG3 and IgG4 antibodies.

Appearance of FVIII-binding IgG3 was always associated with persistent FVIII

inhibitors and the subsequent development of FVIII-binding IgG4. Some of the antibody

signatures identified in HIPS could serve as candidates for early biomarkers of FVIII

inhibitor development.
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Introduction

Hemophilia A is a congenital bleeding disorder caused by
a deficiency in biologically active factor VIII (FVIII). Most patients
receive FVIII concentrates throughout the course of replacement
therapies. These therapies can be complicated by the development
of neutralizing antibodies directed against FVIII (FVIII inhibitors),
which are usually observed after 5 to 15 exposure days (EDs) to
exogenous FVIII in ;30% of previously untreated patients (PUPs)
with severe hemophilia A.1-4 Morbidity and cost of care for patients
with FVIII inhibitors are substantially increased which is why novel
treatment strategies to prevent FVIII inhibitor development in
patients undergoing FVIII replacement therapies are required.5-7

FVIII inhibitors are quantified by their ability to inhibit FVIII activity
using the Bethesda assay or the Nijmegen-modified Bethesda
assay.8,9 Recent studies indicated that FVIII inhibitors represent
only a fraction of the potential antibody response directed against
FVIII.10-12 Using a combination of Bethesda assays and sensitive
enzyme-linked immunosorbent assays (ELISAs), circulating anti-
bodies directed against FVIII were detected in patients with and
without FVIII inhibitors, indicating the development of both,
neutralizing and nonneutralizing antibodies. Moreover, nonneutraliz-
ing antibodies against FVIII were also found in some healthy
individuals.10,11

Why some patients develop FVIII inhibitors and others do not is
poorly understood. There is evidence that both genetic risk factors
(eg, F8 mutations, family history of FVIII inhibitors, polymorphisms in
genes encoding immune regulatory proteins, and ethnicity back-
grounds) and nongenetic risk factors (eg, treatment-related and
environmental factors) influence the development of these
antibodies.13-17 However, the molecular mechanisms responsible
for the initiation or prevention of FVIII inhibitors in patients have not
been well explained. Hofbauer et al reported that antibodies
detected in patients with FVIII inhibitors are predominantly of high
affinity, whereas antibodies found in some patients without FVIII
inhibitors and in some healthy individuals are predominantly of
medium or low affinity.11 These data support previous findings in
hemophilic mouse models indicating that the development of
neutralizing antibodies directed against FVIII depends on cognate
interactions between FVIII-specific B cells and FVIII-specific T cells,
for example follicular helper T cells, in specific structures of
secondary lymphoid organs called germinal centers.18,19 These
cognate interactions drive affinity maturation and class-switch
recombination of antibodies as well as the differentiation of B cells
into memory B cells and long-lived plasma cells secreting high-
affinity antibodies.20,21 On the other hand, antibodies with low and
medium affinity could be the result of extrafollicular B-cell
differentiation, which can be either dependent or independent of
their cognate interaction with antigen-specific T cells.20

To further explain the underlying immune mechanisms that are
responsible for the generation of high- and low-affinity antibodies
against FVIII in patients, a good understanding of the longitudinal
events associated with these different antibody responses and the
potential interdependence of nonneutralizing and neutralizing
antibody responses is required. Therefore, prospective, longitudinal
clinical studies monitoring the development and characteristic
features of FVIII-binding antibodies as well as underlying immune
mechanisms in PUPs, starting prior to the first dose of FVIII, are

important. Such studies could not only facilitate early risk
identification for FVIII inhibitor development in individual patients
but also support the design of novel treatment approaches to
prevent FVIII inhibitor development.

The Hemophilia Inhibitor PUPs Study (HIPS; www.clinicaltrials.gov
#NCT01652027) is a prospective, longitudinal, observational study
that was designed to identify early biomarkers of FVIII inhibitor
development and prospectively evaluate early changes in the
immune system upon exposure to FVIII in patients with severe
hemophilia A. HIPS patients were enrolled prior to their first
exposure to FVIII or blood products (ie, true PUPs) and were
evaluated at specified time points during their first 50 EDs to
a single source of full-length, standard half-life, recombinant FVIII
concentrate. In this article, we present data indicating different
subpopulations of patients who express distinct signatures of
longitudinal antibody responses directed against FVIII.

Materials and methods

Study design

HIPS is a multicenter, investigator-initiated, prospective longitudinal
cohort study of previously untreated infants with severe hemophilia
A (www.clinicaltrials.gov #NCT01652027). Sixteen US and
European hemophilia treatment centers (supplemental Table 1)
participated in HIPS and performed HIPS qualification testing to
ensure quality of the biological specimens. Each site obtained
approval from their institutional review board or independent ethics
committee.

Enrollment criteria, treatment, and clinical procedures

Eligible patients were previously untreated infants with a baseline
FVIII coagulant activity (FVIII:C) ,0.01 IU/mL confirmed in the
central laboratory at the Medical University of Vienna. Minimal
weight of 3.5 kg for patients at enrollment was required to allow for
7.5 mL of blood to be drawn at each visit with minimal risk to the
patient. Patients were excluded from HIPS if they had prior
exposure to clotting factor concentrates or blood products,
including packed red blood cells, platelets, plasma, or cryoprecipi-
tate. Written informed consent, approved by the appropriate
institutional review board or independent ethics committee, was
obtained from a parent or legally authorized representative of each
study participant.

Patients were treated with a recombinant FVIII concentrate (anti-
hemophilic factor [recombinant], Advate; Baxalta US, a Takeda
company, Lexington, MA) as their only source of FVIII concentrate
for prophylaxis, treatment of bleeding episodes, surgical proce-
dures, and immune tolerance induction, if required. The type of
regimen (prophylaxis vs on demand), dose, and frequency of
infusions were at the discretion of the investigator. Patients were
followed for 50 EDs or 3 years, whichever came first.

Screening and baseline evaluations took place prior to the first FVIII
infusion. Patients underwent clinical evaluation visits every 12 weeks
(610 days) after the first ED during which the medical, social, and
family histories were updated and a physical examination was
performed. Parents were required to maintain a paper diary to
record information about FVIII infusions, including date of infusion,
number of units infused, number of vials used, lot number(s), reason
for infusion, and any adverse events. In addition, the diary included
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information about infections, immunizations, medications and
dietary supplements, surgeries, and trauma.

Blood sample schedule

Blood samples were drawn at baseline before FVIII exposure and
then 7 days (12 days) after the first ED. Subsequently, samples
were taken 5 days (62 days) after the fifth, 10th, 20th, 30th,
40th, and 50th ED for the same set of measurements as
indicated in supplemental Figure 1. In the event that not all
samples for the first, fifth, 10th, 20th, 30th, 40th, or 50th post-
FVIII exposure visit could be obtained, a scheduled blood draw
was performed after the subsequent FVIII exposure following the
same visit window of 5 days (62 days) after exposure to FVIII.
Further details for the blood sampling schedule are provided in
supplemental Materials and methods. Blood volumes required
for analytical procedures during the HIPS study are shown in
Table 1.

F8 genotyping

F8 genotyping was performed at BloodWorks Northwest,
Seattle, WA. Details are provided in supplemental Materials
and methods.

Detection of neutralizing antibodies

FVIII inhibitor analysis was performed in the central laboratory
at the Medical University of Vienna using a Nijmegen-modified
Bethesda assay. The lower limit of inhibitor detection was 0.4
Bethesda (BU)/mL. A patient was considered FVIII inhibitor
positive if neutralizing antibodies were detected at $0.6 BU/mL
in at least 2 consecutive exposure samples. A positive inhibitor
that peaked at #5 BU/mL after rechallenge with FVIII was
considered a low-titer inhibitor, and a positive inhibitor .5 BU/mL
was considered a high-titer inhibitor. Transient inhibitors were
defined as those that were of low titer (#5 BU/mL) that
disappeared within 6 months and the patient was able to remain
on FVIII therapy for the treatment of hemorrhages.22

Detection of FVIII-binding antibodies

FVIII-specific antibodies of immunoglobulin isotypes immunoglob-
ulin A (IgA), IgM, and IgG subclasses 1 to 4 were analyzed using
a fully validated ELISA platform as described elsewhere.10,11

Assessment of apparent affinities of

FVIII-binding antibodies

The apparent affinities of FVIII-binding antibodies for IgA and IgG
subclasses were assessed using a competition-based ELISA
approach. The test principle, technical details, and validation of
the affinity ELISA platform were described by Hofbauer et al.11 In
brief, the competition-based ELISA approach provides apparent
affinities in equilibrium; it analyzes free antibodies against FVIII
present in diluted human plasma after preincubation of the antibody
solution with preselected molar concentrations of FVIII. Based on
the assumption of equimolar interaction between antibodies and
FVIII antigen, this approach enables apparent affinity determination
without antibody purification. The assessment of affinity constants is
based on the availability of antibody for binding to FVIII-coated
ELISA plates after competition with FVIII in solution. Data for
apparent affinity constants (KA [M21]) were derived from nonlinear
regression modeling of competition ELISA d optical densities as
described by Stevens et al23 and Hofbauer et al.11 The calculations
of apparent affinity constants and the best-fit model for affinity
cluster analyses were done as described previously.11

Statistical analyses

In order to compare antibody signatures in patients with FVIII
inhibitors (subgroup 4; Table 2) and in patients with nonneutralizing
antibodies (subgroup 2; Table 2), medians and interquartile ranges
(IQRs) for titers and apparent affinity constants of FVIII-binding
antibodies, differentiated for IgG subclasses, IgM and IgA, were
calculated. The calculations for the IQR included all antibody data
for each patient in the respective subgroup at each time point
analyzed. Group comparisons were done using GraphPad Prism
8.0 and IBM SPSS Statistics version 23 (IBM). Medians, 95%
confidence intervals (CIs), and IQRs were used to describe data.
Comparisons between the groups were done using the Mann-
Whitney U test. For all analyses, a value of P, .05 was considered
as statistically significant.

Results

Screening, enrollment, and baseline characteristics

of patients

Twenty-six patients were screened and 25 determined to be eligible
(1 subject with FVIII .1% at central laboratory was excluded) for
the study. Of these 25 patients enrolled, 1 patient was withdrawn
after ED1 due to the lack of compliance, and 1 patient withdrew
after ED10 due to investigator choice (change in treatment), leaving
23 patients who completed 50 EDs. Baseline characteristics of
these 23 subjects, such as age at first FVIII infusion (0.4-16.6
months), ethnical background (16White, 3 Black, 3 Hispanic, and 1
Asian/Pacific), family history of hemophilia A and of FVIII inhibitors,
hospitalizations during the study, infections, and FVIII treatment
regimens are shown in Tables 2 and 3. A total of 17 patients
(73.9%) carried high-risk or moderate-risk F8 mutations (intron 22
inversion, 9; duplications, 2; frameshift, 2; large deletions, 2; intron 1

Table 1. Blood volumes required for analytical procedures during the

HIPS study

Blood sample analytics Sampled blood volume, mL*

Screening and baseline samples

FVIII activity in plasma 1.8

Transcriptome profiling in PBMCs after short-term
in vitro stimulation with FVIII; FVIII-specific antibody
analytics

4.0

Epigenetic immune cell counting; whole-blood
transcriptome profiling

2.0

Post-FVIII exposure samples

FVIII inhibitor testing; whole-genome profiling (once);
FVIII mutation analysis (once)

2.7

Transcriptome profiling in PBMCs after short-term
in vitro stimulation with FVIII; FVIII-specific antibody
analytics

4.0

Epigenetic immune cell counting; whole-blood
transcriptome profiling

2.0

PBMC, peripheral blood mononuclear cell.
*The total blood volume sampled did not exceed 8 mL/kg body weight at any month

during the study
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inversion, 1; and nonsense, 1), while 6 patients (26.1%) had low-
risk mutations (missense).

Incidence of FVIII inhibitors

Nine of the 23 patients who completed 50 EDs developed FVIII
inhibitors (6 high titer and 3 low titer). Two of the low-titer inhibitors
were transient (Table 2). All 7 patients who developed persistent
FVIII inhibitors (6 high titer and 1 low titer) carried high-risk or
moderate-risk F8 mutations (Table 2).

Longitudinal monitoring for FVIII-binding antibodies

The analyses of FVIII-binding antibodies revealed 4 subgroups of
patients with distinct antibody signatures: subgroup 1 (no FVIII-
binding IgG antibodies), subgroup 2 (nonneutralizing FVIII-
binding antibodies), subgroup 3 (transient FVIII inhibitors), and
subgroup 4 (persistent FVIII inhibitors) (Table 2).

Subgroup 1: Seven patients did not develop inhibitors and
did not have detectable FVIII-binding IgG throughout the
course of the study (subgroup 1 in Tables 2 and 3; Figure 1;

Table 3. Hospitalizations and FVIII treatment regimens for HIPS subjects, stratified in 4 subgroups with distinct signatures of FVIII-binding

antibodies developed during the HIPS study

Patient no. Hospitalizations during study

EDs when prophylaxis and ITI (if applicable) were

initiated (FVIII dose in IU/kg and treatment frequency)

Subgroup 1: no FVIII-binding IgG antibodies

1 No hospitalizations reported ED1 (55 qw, 55 biw, 75 biw)

2 4 hospitalizations: tongue bleed, head trauma, muscle bleed,
port implant

ED35 (25 qw, 25 biw)

3 1 hospitalization: port implant and circumcision ED13 (25 biw & 50 qw; 50 biw & 70 qw)

4 No hospitalizations reported ED5 (50 biw, 45 biw)

5 No hospitalizations reported ED5 (90 qw, 55qw, 65 qw, 60 biw)

6 No hospitalizations reported ED1 (70 qw, 95 qw, 60 qw, 60 biw)

7 No hospitalizations reported ED1 (70 qw, 45 qw, 20 biw, 20 tiw)

Subgroup 2: nonneutralizing FVIII-binding

antibodies

8 1 hospitalization: port implant ED1 (25 biw, 25 tiw)

9 No hospitalizations reported ED3 (55 qw, 55 biw)

10 3 hospitalizations: muscle bleed, left knee joint bleed, port
implant

ED7 (25 – 55 qw, 25 biw, 20 tiw)

11 No hospitalizations reported ED17 (25 tiw)

12 1 hospitalization: muscle bleed (back) ED1 (50 qw, 60 qw, 35 biw)

13 No hospitalizations reported ED6 (30 qw, 30 biw)

14 No hospitalizations reported ED8 (40 qw, 50 qw, 50 biw)

Subgroup 3: transient FVIII inhibitors

15 No hospitalizations reported ED6 (60 qw, 45 qw, 50 qw)

16 1 hospitalization: port implant (procedure occurred 3 mo after
first inhibitor detection)

ED3 (90 qw, 55 qw, 65 biw)

Subgroup 4: persistent FVIII inhibitors

17 1 hospitalization: port implant (procedure occurred 20 d prior to
inhibitor detection)

ED1 (55 qw); ITI 225 qd (initiated on ED12)

18 No hospitalizations reported ED1 (45 - 60 qw); ITI 210 qd (initiated on ED7)

19 2 hospitalizations: intraspinal bleed and port implant, MRI and
diagnosis after intraspinal bleed (all events occurred 1.5 y
after inhibitor detection)

ED2 (35 qw); ITI 105 qd (initiated on ED13)

20 1 hospitalization: port implant (procedure occurred 2 wk after
inhibitor detection)

ED2 (120 qw); ITI 560 qd (initiated on ED16)

21 3 hospitalizations: port implant (3 d prior to inhibitor detection), 2
infections (1 wk after inhibitor detection)

ED1 (30 qw); ITI 190 qd (initiated on ED11)

22 3 hospitalizations: 2 fistulas, 1 hematoma episode (all events
occurred after inhibitor detection)

ED1: 35 biw, ITI 210 qd (initiated on ED12)

23 1 hospitalization: shunt for venous access (procedure occurred
2 mo after inhibitor detection)

ED3: 30 qw, ITI 155 qd (initiated on ED13)

The last column, “EDs when prophylaxis and ITI (if applicable) were initiated,” includes the dose and frequency of prophylaxis and any changes to dose and frequency. Dose was calculated
using the most recent prior weight measured (at screening or interval visit) and the FVIII dose in IU/kg reported on the infusion diary. All subjects received prophylaxis at some stage during
the HIPS study. Subjects who did not start prophylaxis on ED1 were treated on demand until the exposure day specified in the table.
biw, twice a week; ITI, immune tolerance induction; MRI, magnetic resonance imaging; qd, daily; qw, once a week; tiw, 3 times a week.
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supplemental Figure 2). The transient appearance of low-
titer FVIII-binding IgM or IgA antibodies at single EDs was
observed in 2 of the 7 patients. One nonsense mutation, 1

intron 22 inversion, 3 missense mutations, 1 duplication, and
1 frameshift mutation of the F8 gene were found in these
patients (Table 2).
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Figure 1. Longitudinal monitoring of FVIII-binding antibodies and FVIII inhibitors in 2 representative examples of patients in subgroup 1. (A-B) Results of the

analysis of FVIII-binding antibodies (IgG1, IgG2, IgG3, IgG4, IgA, IgM as indicated) and FVIII inhibitors (BU/mL) for 2 representative examples of patients in subgroup 1, patient 3 (A)
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Figure 2. Longitudinal monitoring of FVIII-binding antibodies and FVIII inhibitors in 2 representative examples of patients in subgroup 2. (A-B) Results of the

analysis of FVIII-binding antibodies (IgG1, IgG2, IgG3, IgG4, IgA, and IgM, as indicated) and FVIII inhibitors (BU/mL) for 2 representative examples of patients in subgroup 2,

patient 9 (A) and patient 14 (B), who developed FVIII-binding IgG1 antibodies but did not develop FVIII inhibitors throughout the study period. The red dotted lines represent

the limit for positive evaluation of FVIII inhibitors (0.6 BU/mL). (C-D) Apparent affinity constants of FVIII-binding IgG1 antibodies (mean KA) and FVIII inhibitors (BU/mL) in

patient 9 (C) and patient 14 (D). Data for apparent affinity constants include the 95% CIs for up to 2 IgG1 affinity clusters (open blue bars, IgG1 population 1; closed blue

bars, IgG1 population 2). The red dotted lines represent the limit for positive evaluation of FVIII inhibitors (0.6 BU/mL). KA, apparent affinity constant. The data for the remaining

5 patients of subgroup 2 are shown in supplemental Figure 3.
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Subgroup 2: Seven patients who were negative for FVIII inhibitors
throughout the observation period developed FVIII-binding IgG1
(subgroup 2 in Tables 2 and 3; Figure 2; supplemental Figure 3).
The IgG1 antibodies were transient in 3 patients and persisted to the
end of the observation period in 4 patients. The apparent affinity
constants of these antibodies revealed 1 or 2 affinity clusters (Figure
2; supplemental Figure 3). The kinetics of FVIII-binding IgG1 and
their persistence and apparent affinity constants showed patient-
specific characteristics. For example, patient 9 had detectable FVIII-
binding IgG1 antibodies as early as ED5, but the antibodies were
transient in nature. In contrast, FVIII-binding IgG1antibodies observed
in patient 14 were first detected at ED5 but persisted throughout the
study observation period (Figure 2). FVIII-binding IgM was not
observed in any patient of this subgroup, and low-titer transient FVIII-
binding IgA was observed in 2 patients of this subgroup. Three
missense mutations, 3 intron 22 inversions, and 1 intron 1 inversion
of the F8 gene were found in patients of subgroup 2 (Table 2).

Subgroup 3: Two patients developed FVIII-binding IgG1 and low-
titer transient FVIII inhibitors (peak titers #1.8). The apparent
affinity constants of the IgG1 antibodies revealed 2 affinity
clusters (subgroup 3 in Tables 2 and 3; Figure 3). Neither of
these 2 patients developed any other FVIII-binding IgG subclass
antibody. FVIII-binding IgM or IgA antibodies were not observed
in these patients. One intron 22 inversion and 1 frameshift
mutation of the F8 gene were found in these patients (Table 2).

Subgroup 4: The remaining 7 patients developed persistent FVIII
inhibitors with peak titers ranging between 4.5 and 3049 BU/
mL (subgroup 4 in Tables 2 and 3; Figure 4; supplemental
Figure 4). FVIII inhibitors were first detected within 20 EDs (EDs
6-20) and persisted until the end of the study observation
period. All patients in subgroup 4 initially developed high-affinity
FVIII-binding IgG1 antibodies, followed by FVIII-binding IgG3
and IgG4. FVIII-binding IgG3 was usually observed subsequent
to FVIII-specific IgG1. FVIII-specific IgG4 appeared later than
IgG1 and either at the same time or subsequent to IgG3. FVIII-
specific IgG2, observed in 3 patients only, was first detected
subsequent to IgG1 and either subsequent to IgG3 and IgG4 or
at the same time as IgG3 and IgG4. The highest apparent
affinity constants were observed for FVIII-binding IgG4. FVIII-
binding IgM and IgA antibodies of low titer were found in 1 of the
7 patients. Two large deletions, 4 intron 22 inversions, and 1
duplication in the F8 gene were found in patients of subgroup 4
(Table 2).

Comparison of FVIII-binding antibody signatures in

patients with persistent FVIII inhibitors and those

with nonneutralizing antibodies

In order to compare antibody signatures in patients with FVIII
inhibitors (subgroup 4; Table 2) and those with nonneutralizing
antibodies (subgroup 2; Table 2), we compared titers and apparent
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Figure 3. Longitudinal monitoring of FVIII-binding antibodies and FVIII inhibitors in the 2 patients in subgroup 3. (A-B) Results of the analysis of FVIII-binding antibodies

(IgG1, IgG2, IgG3, IgG4, IgA, and IgM, as indicated) and FVIII inhibitors (BU/mL) for the 2 patients in subgroup 3, patient 15 (A) and patient 16 (B), who developed FVIII-binding IgG1

antibodies and transient low-titer FVIII inhibitors. The red dotted lines represent the limit for positive evaluation of FVIII inhibitors (0.6 BU/mL). (C-D) Apparent affinity constants of FVIII-

binding IgG1 antibodies (mean KA) and FVIII inhibitors (BU/mL) in patient 15 (C) and patient 16 (D). Data for apparent affinity constants include the 95% CIs for up to 2 IgG1 affinity

clusters (open blue bars, IgG1 population 1; closed blue bars, IgG1 population 2). The red dotted lines represent the limit for positive evaluation of FVIII inhibitors (0.6 BU/mL).
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affinity constants of FVIII-binding antibodies, differentiated for IgG
subclasses, IgM and IgA (Figure 5). Whereas patients in subgroup
2 (nonneutralizing FVIII-binding antibodies) developed FVIII-binding
IgG1 but no other IgG subclass, all patients in subgroup 4
(persistent FVIII inhibitors) developed FVIII-binding IgG1, IgG3, and
IgG4 antibodies, and some of them developed FVIII-binding IgG2
antibodies. Moreover, some patients in both subgroups developed
FVIII-binding IgA antibodies.

FVIII-binding IgG1 antibodies differ in their quality

between patients with persistent FVIII inhibitors and

those with nonneutralizing antibodies

FVIII-binding IgG1 was the only IgG subclass found in both
patients with nonneutralizing antibodies (subgroup 2) and patients
with persistent FVIII inhibitors (subgroup 4). Therefore, we asked if
the quality of FVIII-binding IgG1 antibodies differs between these
2 subgroups. The data indicate that both antibody titers and
apparent affinity constants of FVIII-binding IgG1 antibodies were

significantly higher in patients with FVIII inhibitors in subgroup 4
(Figure 6).

High-affinity FVIII-binding IgG1 and subsequent

development of FVIII-binding IgG3 is a unique

antibody signature indicating evolving FVIII inhibitors

Patients who developed FVIII-binding IgG1 and never developed
any other FVIII-binding IgG subclass either did not develop FVIII
inhibitors or developed transient, low-titer FVIII inhibitors only
(Figures 2 and 3; supplemental Figure 3). On the other hand,
patients who developed high-affinity FVIII-binding IgG1 antibodies
and subsequently FVIII-binding IgG3 antibodies developed persis-
tent FVIII inhibitors that were of high titer in 6 out of 7 patients
(Figure 4; supplemental Figure 4). All patients who developed FVIII-
binding IgG3 antibodies, subsequently developed high-affinity FVIII-
binding IgG4 antibodies. However, FVIII-specific IgG4 antibodies
were only detected subsequent to first inhibitor detection (6 out of
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Figure 4. Longitudinal monitoring of FVIII-binding antibodies and FVIII inhibitors in 2 representative examples of patients in subgroup 4. (A-B) Results of the

analysis of FVIII-binding antibodies (IgG1, IgG2, IgG3, IgG4, IgA, and IgM, as indicated) and FVIII inhibitors (BU/mL) for 2 representative examples of patients in subgroup 4,

patient 17 (A) and patient 21 (B), who developed FVIII-binding IgG subclass-switched antibodies and persistent FVIII inhibitors. The red dotted lines represent the limit for

positive evaluation of FVIII inhibitors (0.6 BU/mL). (C-D) Apparent affinity constants of FVIII-binding antibodies (mean KA), differentiated for individual IgG subclasses and FVIII

inhibitors (BU/mL), in patient 17 (C) and patient 21 (D). Data for apparent affinity constants include the 95% CIs for #2 affinity clusters for each IgG subclass (open bars,
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apparent affinities that were too high to be assessed. Therefore, they were set to 10e11. The data for the remaining 5 patients of subgroup 4 are shown in supplemental

Figure 4.
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7 patients) or at the same time as first FVIII inhibitor detection (1 out
of 7 patients) (Figure 4; supplemental Figure 4).

Discussion

HIPS is the first prospective cohort study to evaluate comprehen-
sive changes in the immune system during the first 50 EDs to FVIII in
patients with severe hemophilia A. Longitudinal antibody data
coming out of this study indicate subpopulations of patients
expressing distinct signatures of evolving antibody responses
directed against FVIII. These signatures differentiate patients
developing persistent FVIII inhibitor responses from those de-
veloping nonneutralizing antibody responses and those without any
IgG antibody response. Some of the antibody signatures, such as
the appearance of FVIII-binding IgG3 antibodies after an initial
phase of FVIII-specific IgG1 responses, provide candidates for the
development of early biomarkers of FVIII inhibitor development.

Patients in subgroup 1 never developed any FVIII-binding IgG (1-4)
antibodies, neutralizing or nonneutralizing. Patients in subgroups 2
and 3 developed FVIII-binding IgG1 antibodies that were either
restricted to nonneutralizing antibodies (subgroup 2) or associated
with transient FVIII inhibitors (subgroup 3). The underlying immune
mechanisms limiting the antibody responses to transient or
persistent IgG1 are probably similar in patients of subgroups 2 and
3. It is likely that the epitopes recognized by these IgG1 antibodies
determine whether the antibodies are nonneutralizing or neutraliz-
ing. Whereas neutralizing antibodies have been shown to be
directed against several functional epitopes of FVIII with a pre-
dominance of antibodies directed against epitopes of the A2 and
C2 domains, nonneutralizing antibodies have been reported to be
directed against nonfunctional epitopes of FVIII.24-28 The 7 patients
in subgroup 4 developed persistent FVIII inhibitors of mostly high
titer, associated with antibody signatures that differed substantially
from those observed in patients of subgroups 2 and 3. FVIII-binding
IgG1 antibodies appeared first, followed by IgG3 and IgG4
antibodies. The appearance of FVIII-specific IgG3 antibodies after
an initial phase of FVIII-specific IgG1 responses was always
associated with the subsequent FVIII inhibitor diagnosis and the

development of high-affinity FVIII-binding IgG4. In addition to FVIII-
binding IgG antibodies, we observed transient low-titer FVIII-binding
IgM or IgA in a few patients of subgroups 1, 2, and 4. This finding
confirms our previous observations.10,11 The temporary appearance
of these antibodies was not associated with any particular FVIII-
binding IgG antibody signature or any other clinical parameter.

What differentiates the underlying immune mechanisms that
prevented detectable IgG antibody responses against FVIII in
patients of subgroup 1, limited the IgG antibody responses to IgG1
in patients of subgroups 2 and 3, and resulted in high-affinity IgG
subclass-switched antibodies accompanied by persistent FVIII
inhibitor development in patients of subgroup 4? The significantly
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Figure 5. Summary of FVIII-binding antibodies for all patients in subgroups 2 and 4. (A-B) Medians and IQRs for titers and apparent affinity constants of FVIII-binding

antibodies, differentiated for IgG subclasses 1-4, IgM and IgA, as detected in patients in subgroup 2, who did not develop FVIII inhibitors (A), and patients in subgroup 4, who
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lower titers and affinity constants of FVIII-binding IgG1 antibodies
observed in patients of subgroup 2 compared with patients of
subgroup 4 and the lack of FVIII-binding IgG3 and IgG4 responses
in patients of subgroups 2 and 3 support the idea that FVIII-
directed IgG antibody responses in patients of subgroups 2 and 3
were halted in a less advanced activation phase of FVIII-specific
B-cell responses. B-cell activation in response to FVIII could be
restrained when second signals, such as those provided by
cognate interactions with FVIII-specific helper T cells, are limiting.
Recently, Tan et al provided evidence indicating that Nr4a1-3,
encoding a small family of orphan nuclear receptors that are
rapidly induced by B-cell antigen receptor stimulation, are involved
in restraining B-cell responses under conditions of competition for
limiting T-cell help.29 The differentiation of B cells into antibody-
secreting cells is associated with profound changes in transcrip-
tional programs that are controlled by distinct transcription factors
and epigenetic regulators.30 B cells and plasma cells express
distinct transcriptomes that are maintained by 2 groups of mutually
exclusive transcription factors. One group of transcription factors
(eg, Bcl6, PAX-5, and BACH-2) maintains the B-cell program. The
other group of transcription factors (eg, Blimp-1, XBP1, and IRF-
4) maintains the program of antibody-secreting cells. The mutually
exclusive expression programs are maintained by transcriptional
repression, such as the B-cell–maintaining transcription factors
Bcl6, PAX5, and BACH2, directly suppress the expression of the
plasma-cell-maintaining transcription factors, Blimp-1, XBP1, and
IRF-4. On the other hand, Blimp-1 represses the expression of
Bcl-6 and PAX5.30,31 More recently, molecular mediators that
serve as endogenous brakes to the effector B-cell responses,
such as antibody class-switch recombination and the develop-
ment of antibody-secreting cells, were identified in mouse models
and in vitro studies.32,33 These brakes control the propensity of
B cells to undergo affinity maturation, antibody class-switch
recombination, and plasma cell differentiation. Some of these
brakes, such as the cytoplasmic aryl hydrocarbon receptor, can
act as sensors of immune cells for the local microenvironment.34 A
tolerizing local microenvironment could favor the induction of
immune tolerance associated with the induction of regulatory
T cells and, at the same time, restrict the immune response to
a less mature IgG1 response.

The evolving understanding of the molecular regulation of early
B-cell effector responses, such as the role of endogenous negative
brakes in antibody class-switch recombination and B-cell differen-
tiation into antibody-secreting cells, will help to further unravel the
mystery of distinct antibody signatures found in patients with and
without FVIII inhibitors following FVIII-replacement therapies. Future
studies focusing on the molecular analysis of genome and
transcriptome signatures of patients enrolled in the HIPS study will
contribute to this process.
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