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Microglia alter the threshold of spreading
depolarization and related potassium
uptake in the mouse brain
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Abstract

Selective elimination of microglia from the brain was shown to dysregulate neuronal Ca2þ signaling and to reduce the

incidence of spreading depolarization (SD) during cerebral ischemia. However, the mechanisms through which microglia

interfere with SD remained unexplored. Here, we identify microglia as essential modulators of the induction and evolution of

SD in the physiologically intact brain in vivo. Confocal- and super-resolution microscopy revealed that a series of SDs induced

rapid morphological changes in microglia, facilitated microglial process recruitment to neurons and increased the density of

P2Y12 receptors (P2Y12R) on recruited microglial processes. In line with this, depolarization and hyperpolarization during SD

were microglia- and P2Y12R-dependent. An absence of microglia was associated with altered potassium uptake after SD and

increased the number of c-fos-positive neurons, independently of P2Y12R. Thus, the presence of microglia is likely to be

essential to maintain the electrical elicitation threshold and to support the full evolution of SD, conceivably by interfering with

the extracellular potassium homeostasis of the brain through sustaining [Kþ]e re-uptake mechanisms.
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Introduction

Microglia play many roles in the brain beyond their

primary immune function, including the removal of

terminally injured neurons and the support of tissue

repair through their interactions with neurons or glial

cells.1–3 In addition, microglia are critical for the con-

solidation of neuronal networks. Microglia monitor

synaptic function, prune redundant boutons in a

complement-mediated manner and assist synapse for-

mation by secreting brain-derived neurotrophic

factor.4,5 In the healthy adult brain, surveilling micro-

glia are characterized by motile, ramified processes,

which form contacts with different compartments of

neurons and respond to increased neuronal depolariza-

tion. In turn, the spontaneous and evoked activity of

the contacted neurons is suppressed.6 Microglia–

neuron interactions may be partially independent of

astrocytes, because blockade of astrocyte function by

fluoroacetate did not alter glutamate-induced micro-
glial process recruitment to neurons.7

Microglia respond to a wide range of stimuli via
purinergic signaling. For example, P2Y12R, which is
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specifically expressed by microglia in the brain,8 is
essential for ATP-induced chemotaxis, process out-
growth to injury, and enhanced surveillance activity.9,10

In turn, microglia can release a wide range of signaling
molecules including pro-inflammatory cytokines
(IL-1b, IL-18, TNF-a) or Kþ, which can modulate neu-
ronal excitability.9,11–14

We have previously found that selective elimination of
microglia with a colony-stimulating factor 1 receptor
(CSF1R) kinase inhibitor15 triggered slow neuronal cal-
cium oscillations (0.1Hz) in the acute phase of focal cere-
bral ischemia in mice, while the spontaneous occurrence
of cortical spreading depolarization (SD) was ham-
pered.16 SD is a self-propagating wave of abrupt, tran-
sient, mass depolarization that reflects a near-complete
breakdown of neuronal transmembrane ion gradients
and travels slowly (3–5mm/min) over the cerebrocortical
gray matter.17,18 The hallmark of SD is a negative shift in
the local field potential filtered in direct current (DC)
mode, and an immense elevation of extracellular potas-
sium ([Kþ]e) and glutamate concentration, accompanied
by cellular swelling and the initiation of inflammatory
cascades.19–22 SD has been recognized as a potentially
harmful event promoting secondary injury in the meta-
bolically compromised ischemic brain, and has been rec-
ognized to be the cellular counterpart of migraine aura.23

Microglia react to SD by increased IL-1b release,24,25

and enhanced outward potassium conductivity.26 They
have also been shown to remain reactive for days after
series of SDs triggered in rats27 and to modulate SD
initiation ex vivo.28 However, the mechanisms through
which microglia may tune the susceptibility of the ner-
vous tissue to SD are yet to be explored in vivo.
Neuronal hyperexcitability and impaired Kþ clearance
have long been accepted as key contributors to the evo-
lution of SD.29,30 Thus, we hypothesized that surveilling
or activated microglia may sustain SD susceptibility by
interfering with either of these mechanisms.
Accordingly, we investigated whether the presence of
microglia is critical for the elicitation or the propagation
of an SD triggered in the nervous tissue at resting state
(i.e. no prior SDs occurred), and for recurrent SDs in
vivo. To understand the mechanisms involved, we eval-
uated [Kþ]e changes associated with SDs using ion-
selective microelectrodes in microglia-depleted and
P2Y12R knock out (P2Y12R KO) mice, and analyzed
nanoscale changes in the expression of microglial
P2Y12R using super-resolution microscopy.

Materials and methods

Mice

Experiments were carried out in 12–14-weeks-old adult
male C57BL/6J (n¼ 28) and P2Y12R KO (#TF1881,

Taconic) (n¼ 7) mice (male, C57BL/6J background),
bred in the SPF unit of the Institute of Experimental
Medicine (Budapest, Hungary). The animals were
housed under controlled temperature, humidity and
lightning conditions (23�C, 12:12-h light/dark cycle,
lights on at 7 a.m.), with ad libitum access to food
and water.

Selective elimination of microglia was performed in
C57BL/6J mice (n¼ 12) by feeding a chow diet contain-
ing CSF1R inhibitor, PLX5622 for threeweeks.15

PLX5622 was provided by Plexxikon Inc. and formu-
lated in AIN-76A standard chow by Research Diets
(1200 p.p.m.; 1200mg PLX5622 in 1 kg chow). Body
temperature was recorded for every mouse before sur-
gery or electrophysiological recording. No mice were
excluded from these studies due to fever, weight loss,
infection or behavioral alterations as a result of
PLX5622 treatment. P2Y12R KO mice (n¼ 7) and ref-
erence groups (n¼ 14) were on control diet
(Supplementary Table 1).

Surgical procedures

All procedures were approved by the National Food
Chain Safety and Animal Health Directorate of
Csongrád County, Hungary, conforming to the guide-
lines of the Scientific Committee of Animal
Experimentation of the Hungarian Academy of
Sciences (updated Law and Regulations on Animal
Protection: 40/2013. (II. 14.) Gov. of Hungary), follow-
ing the EU Directive 2010/63/EU on the protection of
animals used for scientific purposes, and reported in
compliance with the ARRIVE guidelines.

Mice were anesthetized with 1.5–2% isoflurane in
N2O:O2 (3:2) and were allowed to breathe spontane-
ously through a head mask. Atropine (0.1%, 0.01ml)
was injected intramuscularly to avoid the production of
airway mucus. Body temperature was maintained at
37�C with a servo-controlled heating pad (507222F,
Harvard Apparatus, USA). The animal was fixed in a
stereotaxic frame, and two craniotomies (3mm lateral
from sagittal suture, �1 and �3 caudal from bregma)
were created with a dental drill (ProLab Basic, Bien
Air, Switzerland) on the right parietal bone. The dura
mater in each craniotomy was left intact. The rostral
window was used for SD elicitation, while electrophys-
iological variables were monitored in the caudal
window. To assess whether any focal inflammatory
reaction developed at the site of electrode insertion,
microglial activation, leukocyte recruitment and vascu-
lar activation were investigated by Iba1, CD45 and
ICAM-1 immunofluorescence, respectively. Only
minor changes in microglial morphology were noticed
no deeper than 100 mm below the meninges, while no
increases in CD45 or ICAM-1 immunofluorescence
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were found. Quantitative measurements took place

remotely from the site of electrode insertion (Figure 1).

Experimental protocols

Two series of experiments were designed

(Supplementary Table 1). In series 1, the electrical

threshold of SD induction was determined, whereas

in series 2, [Kþ]e was assessed during SD induced

with a topical application of 1M KCl in the absence

of microglia or P2Y12R.

Electrophysiology

In series 1, a glass capillary electrode (outer tip diame-

ter¼ 20mm) filled with physiological saline was inserted

into the cortex. An Ag/AgCl reference electrode was

implanted under the skin of the animal’s neck. DC

potential was recorded via a high input impedance pre-

amplifier (NL100AK, Digitimer Ltd, UK), connected to

a differential amplifier with associate filter and condition-

er systems (NL107, NL125 and NL530, Digitimer Ltd,

UK). Potential line frequency noise (50Hz) was removed

by a noise eliminator (HumBug, Quest Scientific

Instruments, Canada). The resulting signal was then dig-

itized and continuously acquired at a sampling frequency

of 500Hz with a dedicated analog-to-digital (A/D) con-

verter (NI USB-6008/6009, National Instruments, USA)

controlled through a custom-made software in Labview

(National Instruments, USA).
In series 2, ion-sensitive microelectrodes were pre-

pared according to Viitanen et al.31 Glass capillary

microelectrode tips (outer tip diameter: 10–12mm)

were filled with a liquid Kþ-ion exchanger (Potassium

ionophore I – cocktail A; Sigma-Aldrich,

Germany),31,32 and the shank of the microelectrode

was backfilled with 100mM KCl. Each Kþ-selective
microelectrode was calibrated in standard solutions of

known Kþ concentrations (1, 3, 5, 10, 30, 50 and

100mM) (Figure 3(a)).33 In each experiment, a Kþ-sen-
sitive microelectrode was lowered into the cortex,

together with another microelectrode (outer tip diame-

ter¼ 20 mm) filled with 150mM NaCl and 1mM

HEPES to serve as reference and acquire DC potential

(<1Hz). An Ag/AgCl electrode implanted under the

skin of the animal’s neck was used as common

ground. Microelectrodes were connected to a custom-

made dual-channel high input impedance electrometer

(including AD549LH, Analog Devices, USA) via Ag/

AgCl leads. The voltage signal recorded by the refer-

ence electrode was subtracted from that of the Kþ-sen-
sitive microelectrode by dedicated differential

amplifiers and associated filter modules (NL106 and

NL125, Digitimer Ltd, UK), which yielded potential

variations related to changes in [Kþ]e. The recorded

signals were then forwarded to an A/D converter
(MP 150, BIOPAC Systems, USA) and digitized by a
sample rate of 1 kHz using the software AcqKnowledge
4.2.0 (BIOPAC Systems, USA). The completed prepa-
rations were enclosed in a Faraday cage. Kþ signals
were displayed together with the DC potential essen-
tially as described above.

Induction of SD

In each animal, four SDs were triggered at a 15-min of
inter-SD interval. In series 1, SDs were triggered as
reported earlier.34 Briefly, a concentric bipolar needle
electrode with a tip diameter of 40mm (Neuronelektr�od
KFT, Hungary) was placed upon the dura. It was con-
nected to an opto-coupled stimulus isolator with a con-
stant current output (NL 800, Digitimer Ltd, UK), a
pulse generator (NL301), a with-delay panel (NL405),
and a pulse buffer (NL510), which enabled the adjust-
ment of amplitude and duration of the stimuli at will.
Stimulation was implemented with a single bipolar con-
stant current stimulation. The charge delivered was quan-
tified as Q(mC)¼ I(mA)� t(ms), and it was raised
stepwise with an interstimulus interval of 1min until
SD was observed. Whenever necessary, the position of
the needle electrode was adjusted to optimize the contact
between the electrode tip and the tissue. Successful elici-
tation of SD was confirmed by a negative DC-shift of an
amplitude greater than 5mV at the recording electrode.

In series 2, a cotton ball soaked in 1M KCl was
placed into the rostral cranial window. The cotton
ball was removed, and the cranial window rinsed with
artificial cerebrospinal fluid (aCSF; mM concentra-
tions: 126.6 NaCl, 3 KCl, 1.5 CaCl2, 1.2 MgCl2, 24.5
NaHCO3, 6.7 urea, 3.7 glucose bubbled with 95% O2

and 5% CO2 to achieve a constant pH of 7.4) immedi-
ately after each successful elicitation.

Tissue processing and immunostaining

Following in vivo measurements, mice were deeply
anesthetized with an overdose of chlorale hydrate
(i.p.). For immunohistochemistry, animals were trans-
cardially perfused with ice-cold saline followed by 4%
paraformaldehyde 1.5 h after the induction of the first
SD. Subsequently, the brains were removed, post-fixed
and cryoprotected overnight in 10% sucrose/4%PFA/
PBS and were stored in 10% sucrose/PBS at 4�C until
25 mm thick coronal sections were prepared using a
sliding microtome (Leica SM 2010R).

Immunofluorescence

Thick free-floating brain sections (25 mm) were blocked
with 5–10% normal donkey serum for 1 h and incubat-
ed with different primary antibodies at 4�C,
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overnight: rabbit anti-Iba-1 (1:1000, #019–19741,

Wako Chemicals), goat anti-Iba1 (1:500, NB100-

1028, Novusbio), rabbit anti-P2Y12R (1:1000,

#55043A, AnaSpec), rabbit anti-c-fos (1:500, #sc-52,

Santa Cruz Biotechnology), guinea pig anti-c-fos

(1:500, #226 004, Synaptic Systems), chicken anti-

GFAP (1:500, #173 006, Synaptic Systems), guinea

pig anti-glutamine synthetase (1:500, #367 005,
Synaptic Systems), rat anti-CD45 (1:250, #MCA1388,

Bio-Rad), goat anti-ICAM-1 (1:250, #AF796, R&D

Systems) and mouse anti-Kv2.1 (1:500, #75-014

NeuroMab). Sections were washed several times with

TBS and incubated with the corresponding secondary

antibody (Jackson ImmunoResearch, unless specified

below) for 2 h: donkey anti-rabbit Alexa 488 (1:1000,

#711-546-152), donkey anti-mouse Alexa 488 (1:1000,

#715-006-151), donkey anti-chicken Alexa 488 (1:500,

#703-546-155), donkey anti-goat Alexa488 (1:500,

#705-546-147), donkey anti-rabbit CF568 (1:1000,

#20098-1mg, Biotium), donkey anti-rabbit Alexa 594

(1:5000, #A21207, Invitrogen), donkey anti-mouse
Alexa 594 (1:500, #715-586-151), donkey anti-rabbit

Alexa 647 (1:1000, #711-605-152), donkey anti-mouse

Alexa 647 (1:1000, #715-605-150), donkey anti-guinea

pig Alexa647 (1:500, #706-606-148). After washing,

sections were mounted on glass slides and coverslipped

(Fluoromount-G, Southern Biotech).

STORM super-resolution microscopy

To examine the exact localization of P2Y12R,

STORM imaging was performed. Immunolabeled

(rabbit anti-P2Y12R, 1:1000, #55043A, AnaSpec,
mouse anti-Kv2.1 1:500, #75-014 NeuroMab) sec-

tions were covered with imaging medium35 immedi-

ately before imaging. Correlated confocal and

super-resolution imaging was performed with

VividSTORM (donkey anti-rabbit Alexa 647,

1:1000, #711-605-152, Jackson ImmunoResearch,

donkey anti-mouse Alexa 488, 1:1000, #715-006-151,

Jackson ImmunoResearch, donkey anti-rabbit

CF568, 1:1000, #20098-1mg, Biotium). Images were

captured with a Nikon N-STORM C2þ super-

resolution system based on the platform of a Nikon

Ti-E inverted microscope, equipped with a Nikon C2
confocal scan head and an Andor iXon Ultra 897

EMCCD camera and a CFI Apo TIRF 100� objec-

tive. Image acquisition and processing were per-

formed using Nikon NIS-Elements AR software

with N-STORM module.

Quantitative analysis

In the PLX5622-treated groups, microglia depletion

was validated based on P2Y12R immunofluorescence

(Figure 1(d)). Two mice were excluded from the anal-
ysis pre hoc due to insufficient microglia depletion (less
than 85%).

All physiological variables (i.e. DC potential and
[Kþ]e) were first downsampled to 1Hz, then either
analyzed with the inbuilt tools of AcqKnowledge
4.2.0 (BIOPAC System, USA) software, or were
transferred into a MATLAB environment
(MathWorks, USA). The transient negative DC
shift indicative of SD was analyzed to assess ampli-
tude of depolarization, duration of depolarization at
half amplitude and area under the curve of post-SD
hyperpolarization. Raw [Kþ]e data expressed in mV
were translated into mM concentration using polyno-
mial cubic regression (R2¼1) on calibration solutions
of data range (1, 3, 10, 30mM).36 Polynomial regres-
sion was used to determine subtle changes in the
lower range of the [Kþ]e concentration accurately.
Baseline level of [Kþ]e was determined by sampling
a 1-min average before induction of each SD.
Changes in [Kþ]e during SD were analyzed to deter-
mine: peak [Kþ]e, and duration at half maximum and
AUC of potassium elevation. The rate of [Kþ]e
release was determined by linear regression, while
half-time recovery of [Kþ]e to baseline ([Kþ]e clear-
ance) was calculated by exponential regression as
described previously.33

Immunofluorescent quantification

To assess the level of microglia depletion after
PLX5622 treatment, images were captured with Zeiss
Axiovert 200M epi-fluorescent microscope and the
number of P2Y12R-positive cells counted in three ran-
domly selected ROIs at five different coronal sections
from the cortex, hippocampus and striatum.

The number of activated neurons was counted based
on c-fos immunostaining on three different coronal sec-
tions. Two ROIs (200 mm� 300 mm) were placed near
to, and one ROI was placed distant from the stimulat-
ing electrode and the number of c-fos positive cells was
averaged in each ROI.

Astrocyte reaction to SD was investigated by stain-
ing of glial fibrillary acidic protein (GFAP) and gluta-
mine synthetase (GS) on free floating coronal brain
sections and images were taken with a 20� objective
by Nikon A1R confocal system guided by NIS-
Elements Microscope Imaging Software. Integrated
density values were measured in three ipsilateral and
three contralateral ROIs (250 mm� 80 mm).

For precise microglial morphology analysis, sections
were analyzed and only those included that had the
best signal-to-noise ratio (crisp microglia-specific stain-
ing with low background). Confocal images were taken
with a 60� objective by Nikon A1R confocal system
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guided by NIS-Elements Microscope Imaging Software

with a Z-step of 1 mm. Two-dimensional morphological

analysis was performed on maximum intensity projec-

tion images of the confocal stacks. Data were analyzed

using GraphPad Prism 8.0. software.

STORM super-resolution microscopy analysis

The 3D STORM localization points were filtered for

photon number, z position (within �300; 300 nm axial

distances from the center plane) and local density using

VividSTORM software.35 The clusters of selected

localization points were determined by the density-

based spatial clustering of applications with noise

(DBSCAN) algorithm.

Statistical analysis

The statistical approach used has been specified in each

figure legend. The software SPSS (SPSS Statistics,

Version 22.0, IBM, USA) or the inbuilt statistical func-

tions of MATLAB (MathWorks, USA) were used for

statistical analysis. The distribution of the data was

tested with Shapiro–Wilk normality test. Outliers

were filtered with Grubbs test. Homogeneity of the

variances was checked by Levene’s test. A Friedman

analysis of variance (ANOVA) and Mann–Whitney

U test were used to evaluate electrical threshold level

differences of SD induction. A one-way ANOVA

model followed by Tukey’s HSD or Games-Howell

post hoc test was applied for the analysis of variables

derived from the DC potential signature of SD, [Kþ]e
shift with SD, whereas data from series 1 were evalu-

ated by independent t-test or Welch-t test, dependent

on the type of data set. A repeated measures paradigm

was used to evaluate baseline [Kþ]e changes. Mann–

Whitney U test was used to assess morphological

changes (cell body area, number of branches) in micro-

glia labelled with Iba1. Data from P2Y12R, P2Y12R/

Kv2.1 immunofluorescence and combined P2Y12R

confocal and STORM labeling were analyzed with

unpaired-t test, while data from GFAP, GS, Kv2.1/c-

fos immunofluorescence were analyzed using two-way

ANOVA followed by Sidak’s multiple comparison.

The level of significance was defined as p< 0.05* and

p< 0.01**.

Data and software availability

Supplementary material for this paper can be found at

http://jcbfm.sagepub.com/content/by/supplemental-

data. All reagents and protocols used in this study are

available for sharing upon reasonable request to the

authors.

Results

SD facilitates microglia-to-neuron interactions, while
microglia depletion alters the electrical threshold
of SD elicitation

SD travels across the cerebral cortex restricted to the
ipsilateral hemisphere,37 and microglia are supposed to
detect changes in neuronal activity induced by SD.26,38

To test the possible effect of repeated SDs on micro-
glia, we first performed 2D morphology analysis on
representative microglial cells sampled randomly from
the ipsi- and the corresponding contralateral insular
cortex of mice (Figure1(a) and (b)). We found a
small, but significant decrease in the area of microglial
cell bodies (ipsilateral: 36.14 mm2 (median, 32.2–42.2
interquartile range), n¼ 66 cells; contralateral: 38.84
mm2 (33.6–44.36), n¼ 79 cells from three mice), and
the number of microglial processes originating
from the soma was reduced by 17% (n¼ 79 cells
from three mice). SD did not affect microglial numbers
in the ipsilateral hemisphere (not shown). Next, we
assessed the relationship between microglial processes
and neurons in two representative areas in the cerebral
cortex (Figure 1(c)). P2Y12R-positive microglial pro-
cesses were recruited to the vicinity of neurons in the
cerebral cortex after repeated SD induction leading to a
25% increase in microglial process density around the
neuronal soma visualized by Kv2.1 immunostaining,
which was most apparent in the ROI closer to SD
induction (Figure 1(c)). This was in line with our earlier
observation made under ischemic conditions by using
in vivo two-photon imaging.16

To investigate the functional contribution of micro-
glia to neuronal responses following a series of SDs, we
selectively eliminated microglia from the brain
(Figure 1(d)).8 The electric threshold of SD elicitation
was expressed as the lowest electric charge sufficient to
trigger SD (Figure 1(e) and (f)). The initiation of the
first SD (SD1) required lower electric charge in the
microglia depleted group (41� 30 vs. 88� 28 mC;
depleted vs. control), whereas the electric threshold of
elicitation for recurrent SDs (rSDs) increased consider-
ably in the microglia depleted group (182� 120 vs. 85
� 30 mC; microglia depleted vs. control) (Figure 1(f)).
Statistical analysis confirmed that the elicitation of a
series of subsequent rSDs at the absence of microglia
required increasingly greater electric charge (from 41
� 30 to 210� 120 mC, corresponding to SD1 and SD4
in the microglia-depleted group). In contrast, the
charge necessary for SD elicitation did not change
during a series of SDs in the control group (Figure 1
(e)). Similarly, during the chemical elicitation (series 2),
1M KCl proved to be sufficient to trigger SDs repeat-
edly in the control group, yet higher concentrations of
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KCl were required to induce SDs in the microglia

depleted and P2Y12R KO groups (1.25� 0.57 and

1.81� 1.6 vs. 1.0M KCl; microglia depleted and

P2Y12R KO vs. control, Figure 1(g)). Thus, microglia

appear to be substantially involved in the induction of

SDs in the otherwise healthy brain.

The DC potential signature of SD is altered by

selective microglia elimination or in the absence

of functional P2Y12R signaling

P2Y12R signaling is essential for microglial process

chemotaxis towards sites of tissue damage or neuronal

hyperactivity in response to the release of purinergic

metabolites such as ATP, ADP or adenosine,39 while

adenosine is released to the extracellular space upon the

development of SD.40 We found that a series of SDs

resulted in increased P2Y12R immunopositivity (by

27%) in microglia in the ipsilateral side (Figure 2(a)).

Next, we visualized P2Y12 receptors at 20 nm lateral

resolution by using STORM super-resolution micros-

copy as established earlier,16 which are specific for

microglia in the brain.8 We found that a series of

SDs increased the density of P2Y12R on microglial

processes in the vicinity of the neuronal soma (278

� 29 and 404� 44 clustered NLP/cluster in the contra-

lateral side vs. ipsilaterally after SD, Figure 2(b)), sug-

gesting that recruited microglial processes upregulate

and/or redistribute P2Y12R in response to SD.

The absence of microglial P2Y12Rs also resulted in

Figure 1. Spreading depolarization (SD) attracts microglial processes to neuronal somata and selective elimination of microglia alters
the electrical threshold of SD elicitation. (a) Schematic illustration of the experimental setting in series 1, and areas of quantification
for the immunofluorescent analysis shown in Panels (b) and (c). Area size (420mm� 320 mm). (b) Changes in microglial cell body area
and the number of branches as obtained from 2D morphological analysis of Iba1-positive microglia in the cerebral cortex (the region
used for analysis is identical to Area 1 shown in panel (a)). Mann–Whitney U test (p< 0.05*). Scale bar, 10lm. (c) Representative
images demonstrating microglial (P2Y12R, red) process recruitment to Kv2.1 labeled neuronal soma (green) in the neocortex,
contralateral and ipsilateral to SD elicitation. Microglial process density is increased around neurons in the ipsilateral cortex relative to
the contralateral cortex in Area 1 (near SD induction) depicted in Panel A. Data are expressed as mean�stdev. Control vs. ipsi
p< 0.01, two-way ANOVA followed by Sidak’s multiple comparison test (p< 0.05 for Area 1). Scale bar, 10lm. (d) Representative
images and quantitative analysis confirming elimination of microglia (P2Y12 receptors, green) after feeding mice a PLX5622
(1200 ppm)-containing diet for threeweeks. Data are expressed as mean�stdev. Unpaired t-test (p< 0.01**). Scale bar, 50lm. (e)
Microglia depletion increased the electric threshold of SD elicitation for each consecutive SD in a train (Series 1). Data are shown as
median and interquartile ranges. Friedman ANOVA for time (p< 0.05* vs. 1st SD, in the depleted group), and a Mann–Whitney U test
for group comparison (no significant differences between groups). (f) Microglia depletion altered the electric threshold of SD elic-
itation (series 1). First SDs (circles) are shown apart from pooled, recurrent SDs (triangles). Black circle and error bars stand for
mean� 95% CI. Mann–Whitney U test (p< 0.05* and p< 0.01** vs. respective Control). (g) The induction of SD required a KCl
concentration higher than 1M in some of the microglia-depleted and P2Y12R KO animals (series 2). Each colored sphere in the graph
stands for the induction of an individual SD.
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altered microglial response to repeated SDs: opposite
to the decrease in cell body area and number of
branches observed in wild type mice ipsilaterally to
SDs, P2Y12R KO microglial cells showed an increase
in these parameters after SDs (P2Y12R KO somatic
area – ipsi: 1.11 of contralateral value (0.97–1.24),
n¼ 66 cells; contra: 1 (0.88–1.25), n¼ 86 cells from
three mice; P2Y12R KO number of branches – ipsi:
1.2 (1–1.4) of contralateral value; contra: 1 (0.8–1.2);
Figure 2(c)).

Subsequently, we studied whether P2Y12R-
mediated actions in microglia contribute to the

evolution of SD. In agreement with the results that
microglia depletion elevates the elicitation threshold
of rSDs, both microglia depletion and the absence of
P2Y12R decreased the amplitude of rSDs consistent
for both electrical (series 1) and chemical (i.e. 1M
KCl, series 2) SD elicitation (�15.5� 2.8 vs. �18.4
� 2.3mV, microglia depleted vs. control, series 1;
�18� 1.3 and �18.7� 1.5 vs. �21.4� 2.5mV, micro-
glia depleted and P2Y12R KO vs. control, series 2)
(Figure 2(d) and (e)). However, the duration of depo-
larization was shorter only in the microglia-depleted
groups, but not in P2Y12R KO mice, with respect to

Figure 2. Selective elimination of microglia or absence of P2Y12R curbs SD and supports hyperpolarization after SD. (a) Confocal
analysis revealed increased microglial P2Y12R mean fluorescence intensity (MFI) in response to a series of SDs (assessed in Area 1
according to Figure 1(a)). Unpaired t-test, n¼ 40 randomly selected microglia from the contralateral hemisphere and n¼ 38 microglia
from the ipsilateral hemisphere from seven mice per group. (b) Representative images depict the enrichment of P2Y12R (STORM,
cyan) on microglial processes (P2Y12R, confocal, red) recruited to the Kv2.1 (green) labeled neurons in the neocortex, contralateral
and ipsilateral to SD elicitation. Scale bar, 1000 nm. STORM super-resolution microscopy reveals increased P2Y12R densities on
microglial processes recruited to neurons, in response to SD. Mean�stdev values of the number of localization points (NLP) are
shown normalized to P2Y12R clusters determined by the density-based spatial clustering of applications with noise (DBSCAN)
algorithm (Local density filter: 10 neighbours within 150 nm Z-filter: �300 nm from focal plane). Unpaired t test, p< 0.05*, n¼ 20
neurons randomly selected from seven mice per group. (c) Changes in microglial cell body area and the number of branches in
P2Y12R KO mice as obtained from 2D morphological analysis of Iba1-positive microglia in the cerebral cortex (the region used for
analysis is identical to Area 1 shown on Figure 1 Panel (a)). Values normalized to the contralateral side are shown as median
�interquartile range. Mann–Whitney U test, (p< 0.05*). Scale bar, 10lm. (d) The direct current (DC) potential signature of
recurrent SDs (rSDs) (each trace is the mean of rSDs in each experimental group, series 2). Capital letters indicate variables
quantitated in the respective Panels. (e) Amplitude of the negative DC potential shift of rSDs (series 1 and 2). (f) Duration of the
negative DC potential shift of rSDs (series 1 and 2). (g) Area under the curve of the hyperpolarization after rSDs (series 1 and 2). In
Panels (d)–(f), data are given as mean�stdev. Sample size is indicated in each bar. Statistical analysis of data in series 1 relied on an
independent t-test or a Welch-t test. Data in series 2 were evaluated by a one-way ANOVA paradigm followed by a multiple
comparison of Tukey for equal variances, or Games-Howell for unequal variances (p< 0.01** depleted vs. respective control,
p< 0.05# and p< 0.01## P2Y12R KO vs. respective control).
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the control (23.3� 8.5 vs. 35.7� 6.2 s, microglia deplet-

ed vs. control, series 1; 20.9� 3.6 vs. 29� 9.3 and 25.6

� 7.8 s, microglia depleted vs. control and P2Y12R

KO, series 2) (Figure 2(f)). Finally, the AUC of post-

SD hyperpolarization increased in both microglia-

depleted and P2Y12R KO mice (166.8� 96 vs. 68.8

� 49mV� s, microglia depleted vs. control, series 1;

182.8� 54.3 vs. 138.6� 87.9 vs. 68.9� 41.1mV� s,

microglia depleted vs. P2Y12R KO vs. control, series

2) (Figure 2(g)). Thus, microglia appear to contribute

to SD propagation – in part – via P2Y12R.

The absence of microglia but not of P2Y12R limits

the duration of [Kþ]e shift during SD

The quantitative assessment of [Kþ]e variation by

potassium-selective microelectrodes was conducted in

series 2 (Figure 3(a), Supplementary Table 1).

Baseline [Kþ]e (i.e. the value taken prior to the elicita-

tion of each SD in a train) proved to be consistently

higher in P2Y12R KO mice compared to controls or

the microglia-depleted group (Figure 3(b)), although

the higher concentration remained within the physio-

logical range throughout (i.e. below 4–5mM) and is,

therefore, not expected to have significant pathophysi-

ological consequences. In line with this, microglia

depletion did not alter baseline [Kþ]e or physiological

interstitial potassium levels in the cortex (Figure 3(b)).
The analysis of the [Kþ]e shift with rSDs did not

reveal any notable difference in magnitude character-

ized by the peak amplitude or the AUC across different

groups of mice (Figure 3(c) to (e)). However, the dura-

tion of [Kþ]e shift was considerably shorter in the

absence of microglia compared to the other two

groups (22.4� 4 vs. 33.8� 10.2 and 41.3� 10.6 s,

microglia depleted vs. control and P2Y12R KO)

(Figure 3(f)), which is consistent with the shorter dura-

tion of the DC potential deflection in the same mice

(Figure 2(f)). At last, a more rapid clearance of [Kþ]e
was revealed in microglia-depleted mice compared to

Figure 3. Selective elimination of microglia shortens the duration of spreading depolarization (SD)-related potassium elevation.
(a) Calibration curve for the Kþ-selective microelectrodes using Kþ solution standards (1, 3, 5, 10, 30, 50, and 100mM KCl).
Microelectrodes were calibrated before and after each in vivo measurement. (b) Baseline level of extracellular potassium concen-
tration ([Kþ]e) (mean of 60 s) immediately before the induction of each SD. Data are given as mean�stdev. Repeated measures
ANOVA for within group variation, and one-way ANOVA followed by Tukey’s multiple comparison for group evaluation (p< 0.05$

and p< 0.01$$ P2Y12R KO vs. depleted, p< 0.05# P2Y12R KO vs. control). (c) The transient increase of [Kþ]e with recurrent SDs
(rSDs) (each trace is the mean of rSDs in each experimental group, series 2). Capital letters indicate variables quantitated in the
respective Panels. (d) Peak elevation of the [Kþ]e shift with rSDs. The base of each bar in the chart is set at [K

þ]e immediately prior to
rSDs. (e) Magnitude of the [Kþ]e shift with rSDs, expressed as area under the curve (AUC). (f) Duration of the [Kþ]e shift with rSDs,
taken at half amplitude. (g) [Kþ]e clearance, calculated by an exponential regression at half-time recovery of [Kþ]e to baseline. In
Panels (d)–(f), data are given as mean�stdev. Sample size is indicated in each bar. In Panel (g), triangles denote individual values, while
black circle and error bars stand for mean�CI. Note, that the y-axis for control and depleted (left) is an expanded segment of the y-
axis (right) for P2Y12R KO (grey arrows). One-way ANOVA followed by Tukey’s multiple comparison for equal variances, or Games-
Howell for unequal variances (p< 0.01** Depleted vs. control, p< 0.05$ and p< 0.01$$ P2Y12R KO vs. depleted, p< 0.05# P2Y12R
KO vs. Control).
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the other groups. At the same time, [Kþ]e clearance in

the P2Y12R KO mice was hindered with respect to

both other groups (16.2� 3 vs. 21.8� 3.5 and 43.6

� 21.1 s, microglia depleted vs. control and P2Y12R

KO, Figure 3(g)). Taken together, activated microglia

seem not only to elongate Kþ release but also to decel-

erate [Kþ]e uptake, whereas P2Y12 receptor signaling

seems not to be involved in these processes.

The absence of microglia alters neuronal activation

in response to SD

Since the effects of microglia depletion and P2Y12R-

deficiency on potassium uptake after SDs were

different and astrocytes are known to contribute to

Kþ clearance in the brain,41 we investigated whether

SD induction resulted in changes in astrocyte GFAP

and glutamine synthetase (GS) levels. No significant

changes in the integrated density of GFAP and GS

immunofluorescence were seen in response to SD

(Figure 4(a)), and levels were not altered in P2Y12R

KO or microglia-depleted mice (Figure 4(b)). We next

investigated whether the absence of microglia or

P2Y12R-deficiency resulted in any changes in neuronal

activation in response to SD. The transcription of c-fos

is controlled by an increase in the intracellular Ca2þ

concentration,42 which occurs in neurons in response

to SD.43,44 We found that recurrent SDs markedly

increased neuronal c-fos expression in the ipsilateral

hemisphere (by 54% in Area 1, 88% in Area 2 and

124% in Area 3), compared to the contralateral side

(Figure 4(c)). Importantly, the number of c-fos-positive

neurons markedly increased in the microglia-depleted

group, which was most apparent in the insular cortex

and less obvious in the cingulum, in line with the area

of SD induction and propagation (Figure 4(c)). These

differences were not seen in the insular cortex of

P2Y12R KO mice (Figure 4(d)).

Discussion

Here, we identify microglia as essential modulators of

the induction of SD in the physiologically intact brain,

in vivo. Moreover, we show that SD alters microglial

responses that include enhanced interaction between

microglia and neurons, which is associated with sus-

tained potassium uptake and altered neuronal activity

after SD. Indeed, c-fos expression induced by SD is

attenuated by the inhibition of NMDA receptors or

voltage-gated calcium channels,44,45 both involved in

physiological neuronal signaling,46 SD evolution47

and excitotoxic injury.48 Our results also provide mech-

anistic insight into how microglial responses are altered

by SD, in part via P2Y12R.

First, we sought to determine whether microglia
react to SD in the physiologically intact mouse brain
in vivo. Our histological findings that activated micro-
glial processes are recruited to neurons in response to
SD, while P2Y12Rs are upregulated and redistributed
at this interface extrapolate that microglia sense SD
and are ideally positioned to modulate neuronal activ-
ity in the non-ischemic brain. In line with our findings,
the upregulation of P2Y12R on spinal cord microglia
was found to promote hypersensitivity of the nocicep-
tive network in the development of neuropathic pain
after peripheral nerve injury.49

Subsequently, we set out to investigate whether
selective elimination of microglia alters SD induction
in the mouse brain. With constant current stimulation
1mm rostral to the implanted microelectrodes, we reli-
ably induced SD with no interference with the acquired
electrophysiological parameters,34 while the sensibility
of the nervous tissue for SD elicitation could be pre-
cisely determined. Our data indicate that microglia are
essential to maintain the susceptibility of the cerebral
cortex for SD. Interestingly, the absence of microglia
may render the otherwise intact brain more sensitive to
the initiation of an SD, whereupon subsequent SDs are
impeded. Microglia have been shown to downregulate
both spontaneous and evoked neuronal activities in the
optic tectum of larval zebrafish, while injury-induced
microglial recruitment augmented neuronal firing.6 The
increased neuronal activity state may make it easier to
simultaneously discharge a sufficient number of neu-
rons in order to generate an SD via electrical stimula-
tion.47 This suggests that microglial actions may also
shape SD induction or propagation differently in dif-
ferent forms of neuropathologies. For example, micro-
glia activated by SD or other stimuli may induce a
more proinflammatory milieu making the brain prone
to recurrent SDs,26,28 while an absence of microglia was
found to reduce SD incidence in the evolving penumbra
after experimental stroke in mice.16 Thus, these obser-
vations provide evidence for the first time that
microglia effectively modulate SD threshold in the
non-injured brain in vivo, similar to that seen during
brain ischemia,16 indicating that SD susceptibility
seems to depend on the activity status of microglia
(Figure 5).

Surveilling microglia may not only respond rapidly
to SD elicitation, but are also expected to change their
activity and produce inflammatory mediators to shape
the excitability of the nervous tissue during recurrent
SD events. This is in agreement with the in vitro obser-
vations that pro-inflammatory cytokines, especially
TNFa released from activated microglia lowered SD
threshold,28 and reduced SD amplitude.50 Besides,
there is an existing continuous outward potassium cur-
rent on surveilling microglia through a recently
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identified two-pore domain Kþ channel,9 which can be

potentiated by P2Y12R activation.10 Microglial slow

outward potassium currents therefore could curtail

the neuronal transmembrane potassium leakage, shift-

ing neuronal membrane potential to more positive

values and altering the excitability of neurons.51

We also found that the SD-related transient negative

shift of DC potential was markedly attenuated by

microglia depletion, and in mice lacking the P2Y12R.

Although there is no ultimate consensus on the condi-

tions that govern SD amplitude, a causal link has

recently been established between the amplitude of

the negative DC shift and the total number of synchro-

nously discharged cortical neurons.52 Considering this

association, the reduced SD amplitude observed in our

studies may infer the involvement of a possibly smaller

cell mass locally depolarized, thus reduced neuronal

excitability in the absence of activated microglia, in

line with increased SD threshold for recurring SDs.

Our results confirm that the excitability of the nervous

tissue after SD occurrence is modulated by microglial

responses implicating P2Y12R signaling in this process.

The repolarization after SD is achieved by the ATP-

consuming Naþ/Kþ pump and astrocytic buffering of

Kþ and glutamate,20,47,53,54 the efficacy of which is sub-

ject to the metabolic status of the tissue.55 Our data

indicate that the presence of activated microglia decel-

erates the uptake of the accumulated [Kþ]e or gluta-

mate. This process, however, may not require

P2Y12R signaling, suggesting that additional

microglia-dependent mechanisms also contribute to

the restoration of extracellular ion homeostasis after

Figure 4. The absence of microglia is associated with augmented neuronal activation after spreading depolarization (SD). (a)
Schematic showing the areas used for quantitative analysis relative to the site of SD induction. (b) Representative images showing glial
fibrillary acidic protein (GFAP) and glutamine synthetase (GS) immunofluorescence in the ipsilateral hemisphere 1.5 h after SD
induction (Area 1 is displayed). Graphs showing integrated density values of GFAP and GS signal normalized to the corresponding
areas of the contralateral hemisphere as mean�stdev. Two-way ANOVA followed by Sidak’s multiple comparison. (c) Representative
images demonstrate activated, c-fos labeled (green) neurons (Kv2.1, a voltage-dependent Kþ channel; magenta) in the cerebral cortex
ipsilateral to SD elicitation (mean�stdev). Mice were sacrificed 1.5 h after the induction of the first SD in a train of four events, to
allow the assessment of c-fos protein expression. Scale bar, 10mm. Quantification of c-fos protein expression was performed in areas
indicated in the schematic coronal brain section in Panel (a) (ROI: 300 mm� 200mm). p< 0.01**, control vs. depleted (ipsilaterally),
two-way ANOVA followed by Sidak’s multiple comparison. (d) Representative images demonstrate activated, c-fos labeled (green)
neurons (Kv2.1, magenta) in the cerebral cortex ipsilateral to SD elicitation in control and P2Y12R KO mice (Area 1 on panel A is
shown). Quantification of c-fos protein expression was performed in areas indicated in the schematic coronal brain section in Panel (a)
(ROI: 300 mm� 200mm, only Area 1 and Area 2 assessed based on the results of microglia depletion studies). n¼ 4–7, data are
expressed mean�stdev.
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SD. The hyperpolarization that follows an SD is
thought to be a transient overshoot of extracellular

Cl�, which accompanies cationic changes due to an
increased pumping activity of the Naþ/Kþ ATPase.20

This seems to be consistent with the finding that the
absence of activated microglia curbs the peak of depo-

larization. The smaller depolarization and the more
enhanced hyperpolarization observed in the

microglia-depleted mice all together signify that micro-
glia shift the balance from hyperpolarization to depo-

larization, possibly by restraining Naþ/Kþ ATPase

activity.
The evolution of SD is dependent on a massive

efflux of potassium through tetraethylammonium-
sensitive, ATP-sensitive or large-conductance Ca2þ-
activated potassium channels,56,57 all of which are
also expressed by microglia.58,59 Accordingly, we

hypothesized that activated microglia may tune the sus-
ceptibility of the cortex to SD by modulating trans-

membrane potassium currents. Thus, we set out to
evaluate [Kþ]e dynamics with SD at the absence of

microglia or P2Y12R. We observed shorter [Kþ]e-relat-
ed changes during SDs and facilitated Kþ uptake fol-

lowing SDs only in the microglia-depleted group. In
contrast to microglia depletion, Kþ reuptake was

found hindered in the P2Y12R KO animals. Even
though the activation of P2Y12R enhances microglial

outward potassium currents, which was shown to be
countered by pharmacological blockade of the micro-

glial P2Y12R,9–11 and thus P2Y12R appears to be

implicated in Kþ homeostasis, the mechanism behind
the low rate of [Kþ]e clearance in the absence of
P2Y12R cannot be identified with certainty. In line
with this, while astrocytes are known for their contri-
bution to the uptake of extracellular potassium, levels
of astrocyte markers did not differ between control,
microglia-depleted and P2Y12R KO mice. However,
astrocyte-microglia interactions may still be altered in
microglia-depleted and P2Y12R KO mice, which are
not reflected by the markers assessed within this time
frame upon SD induction. Similarly, the potential
interactions between microglial P2Y12R and neuronal
potassium channels such as Kv2.1 will need to be inves-
tigated in future studies. Here, Kv2.1 was merely used
to visualize neuronal membranes for microglia–neuron
interactions and its functional contribution to SD
propagation or microglial activity was not investigated.
The duration of [Kþ]e shift is determined by a compet-
ing force of opposing potassium currents. Activated
microglia may contribute to the potassium outflow
through inward rectifying, calcium-activated or ATP-
sensitive Kþ channels,58–60 independent of P2Y12R
signaling. Likewise, increased barium sensitive Kþ con-
ductance of microglial cells was shown in response to
SD in vitro.26 As the recovery from SD is critically
dependent on the activity of the Naþ/Kþ-ATPase, as
well as the buffering capacity of the astrocyte net-
work,54 our results indicate that microglia modulate
the sustenance or termination of SD by interacting
with either of these mechanisms. Here we identified
potassium homeostasis as a novel microglia-
associated SD-regulatory pathway, in addition to the
previously proposed cytokine signalization.28

Furthermore, activated microglia have been known to
alter glutamate homeostasis61 and are critical source of
the pro-inflammatory IL-1b in the brain,11 both of
which have been shown to modulate neuronal sensitiv-
ity12,14 and influence either the induction or the evolu-
tion of SD.21,47,62 Thus, it is conceivable that these
additional, microglia-linked pathways are also impli-
cated in the modulation of SD evolution.

To investigate how selective elimination of microglia
affects neuronal activation in the cerebral cortex after
SD, we turned to c-fos immunofluorescence. Spreading
depolarization induces the expression of the early
proto-oncogene c-fos, which is a widely used marker
of neuronal activation.45,49 We observed elevated c-
fos expression ipsilateral to the SD induction. Based
on the known contribution of NMDA receptors and
voltage-gated calcium channels to c-fos expression
during SD,45,63 microglia are proposed to suppress cal-
cium influx through these channels, and thus protect
neurons against SD-related hyperactivity or potential
injury. The lack of a major effect of P2Y12R-deficiency
on potassium clearance and neuronal c-fos expression

Figure 5. Surveilling microglia may favor lower tissue suscep-
tibility to SD, while primed microglia could support SD occur-
rence. We propose that resting microglia balance out neuronal
overactivation and make SD occurrence less likely. Once SD
occurs, the homeostasis of the nervous tissue is challenged,
microglia transform to a primed state, which together preserve
or increase the susceptibility of the nervous tissue to sustain
subsequent SDs.
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collectively suggests that microglia shape neuronal
activity via different mechanisms after SD, which is
only partially dependent on microglial P2Y12R.

In conclusion, the presence of microglia is likely to
be essential to maintain the electrical elicitation thresh-
old and to support the full evolution of SD, partly by
sustaining the release or the cellular clearance of [Kþ]e.
While microglial P2Y12R signaling is suggested to take
part in sensitizing the tissue to SD, it appears that acti-
vated microglia decelerate the recovery from SD inde-
pendent of their P2Y12 receptors. Altogether, our
findings suggest that surveilling microglia may favor
SD suppression, while in turn, SD-induced microglial
activation preserves the susceptibility of the nervous
tissue to sustain subsequent, recurrent SDs.
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