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Abstract

Function magnetic resonance imaging (fMRI) data are typically contaminated by noise introduced 

by head motion, physiological noise, and thermal noise. To mitigate noise artifact in fMRI data, a 

variety of denoising methods have been developed by removing noise factors derived from the 

whole time series of fMRI data and therefore are not applicable to real-time fMRI data analysis. In 

the present study, we develop a generally applicable, deep learning based fMRI denoising method 

to generate noise-free realistic individual fMRI volumes (time points). Particularly, we develop a 

fully data-driven 3D convolutional encapsulated Long Short-Term Memory (3DConv-LSTM) 

approach to generate noise-free fMRI volumes regularized by an adversarial network that makes 

the generated fMRI volumes more realistic by fooling a critic network. The 3DConv-LSTM model 

also integrates a gate-controlled self-attention model to memorize short-term dependency and 

historical information within a memory pool. We have evaluated our method based on both task 

and resting state fMRI data. Both qualitative and quantitative results have demonstrated that the 

proposed method outperformed state-of-the-art alternative deep learning methods.
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1 Introduction

Head motion, physiological noise, and thermal noise are main sources of noise in functional 

magnetic resonance imaging (fMRI) data [1, 2]. To mitigate noise artifact in fMRI data 

analysis, a variety of methods have been developed. Particularly, the combination of global 

signal regression (GSR) and motion censoring [3] has achieved promising performance to 

reduce head motion related noise [3–5]. However, such an approach reduces motion artifact 

in fMRI data analysis at a risk of losing fMRI volumes and even entire participants from 

analyses because of insufficient data remain after scrubbing. Filtering based methods are 

widely used to remove cardiac and respiratory noise fluctuations with the record of the 

spectrum or physiological wave functions [6, 7]. However, such methods may also affect the 

BOLD signal at the same frequency.
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Data driven methods built upon principal component analysis (PCA) [8, 9] or independent 

component analysis (ICA) [10, 11] have achieved promising performance in fMRI data 

denoising. Deep learning methods have also been developed for denoising fMRI data [12–

14], including a convolutional neural network (CNN) method for noise component 

identification after ICA decomposition [12], a Long Short-Term Memory (LSTM) method 

for denoising task-based fMRI data [13], and a deep convolutional generative adversarial 

network to reconstruct lost BOLD signal in resting state fMRI (rsfMRI) data [14]. However, 

these methods are not generally applicable in that they could only work on ICA component 

data, task fMRI data, or one-dimension BOLD signals.

In order to overcome limitation of the existing fMRI denoising methods, we develop a 3D 

convolutional LSTM method to generate noise-free fMRI volumes. Particularly, our method 

consists of an encoder network, a decoder network, and a critic network. The encoder 

network is built upon 3D convolutional encapsulated LSTM (3DConv-LSTM) structures to 

generate spatiotemporal data, in conjunction with the decoder network. The critic network 

together with an adversarial regularizer encourages the generated spatiotemporal data to be 

realistic by fooling the critic network which is trained to predict a mixing factor of different 

time points, similar to Generative Adversarial Networks (GANs) [15, 16]. We have 

evaluated our method in two different experiments. The first experiment with task fMRI data 

of the Human Connectome Project (HCP) [17] has demonstrated that our method could 

accurately generate fMRI volumes without altering brain activation patterns. The second 

experiment with rsfMRI data from ABIDE data [18] has demonstrated that our method 

could directly generate noise-free fMRI data by learning from supervision information 

generated by ICA-AROMA [11]. Different from ICA-AROMA method that identifies and 

removes noisy independent components, our method directly predicts noise-free individual 

time points. All these experimental results have demonstrated that our method is generally 

applicable to both task and resting state fMRI data and could achieve promising fMRI 

denoising performance.

2 Methods

In order to generate realistic fMRI data by learning from spatiotemporal fMRI data, an 

adversarial regularization together with 3D convolutional LSTM module is implemented. 

Assuming we have a 4D fMRI data X ∈ RM × N × V × T  with M × N × V voxels and T time 

points, we learn a data reconstruction model by adopting a 3D convolutional LSTM encoder 

to obtain latent factors ℎt
k = fθ Xt  for individual time point Xt ∈ RM × N × V  at time t, where 

θ denotes parameters of the encoder. The latent factor ℎt
k is then passed through a decoder 

Xt = g∅ ℎt
k  to generate a time point Xt ∈ RM × N × V . A critic network together with an 

adversarial regularizer is adopted to encourage the generated fMRI data to be realistic by 

fooling the critic network which is trained to predict a mixing factor of different time points. 

The overall algorithm and the 3D Convolutional LSTM encoder/decoder are illustrated in 

Fig. 1.

The encoder network and decoder network are trained simultaneously to minimize the cost 

function:
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Lp = Xt − Xt
2, (1)

where Xt and Xt are predicted frame point and ground truth at time t. We will give more 

details about critic network in Sect. 2.2.

2.1 3D Convolutional LSTM Structure (3DConv-LSTM)

The proposed 3D convolutional LSTM encoder is illustrated in Fig. 1(b), where the red 

arrow shows the flow of short-term memory and the blue arrow shows the flow of long-term 

information. The input to the 3DConv-LSTM encoder is denoted by Xt, the hidden state 

from the previous time stamp ℎt − 1
k , the memory state from previous time stamp ct − 1

k , and 

previous layer spatio-temporal memory mtk − 1. In order to capture the long-term time point 

relationship, we adopt a new memory RECALL mechanism [19], defined as:

Rt = σ wxr * Xt + wℎr * ℎt − 1
k + br ,

It = σ wxi * Xt + wℎi * ℎt − 1
k + bi ,

Gt = tanℎ wxg * Xt + wℎg * ℎt − 1
k + bg ,

RECALL Rt, ct − τ; t − 1
k = softmax Rt ⋅ ct − τ; t − 1

k T ⋅ ct − τ; t − 1
k ,

ctk = It ⊙ Gt + LayerNorm ct − 1
k + RECALL Rt, ct − τ; t − 1

k ,

(2)

where σ is the sigmoid function, denotes the 3D convolutional operation, ʘ is the Hadamard 

product, Rt is the recall gate, ctk is the memory states, τ denotes the number of memory states 

that are included along the temporal interval, · denotes the matrix product of Rt and 

ct − τ; t − 1
k , and wxr, whr, wxi, whi, wxg, and whg are model parameters to be optimized. The 

Recall function controls the temporal interactions to learn temporally distant states of the 

spatiotemporal information. The input gate It and the input modulation Gt, similar to a 

standard LSTM, are used to encode ct − 1
k  and ctk that connect short term changes between 

different time points. The output hidden states are defined as:

It′ = σ wxi * Xt + wmi * mtk − 1 + bi ,
Gt′ = tanℎ wxg * Xt + wmg * mtk − 1 + bg ,
Ft′ = σ wxf * Xt + wmf * mtk − 1 + bf ,

mtk = It′ ⊙ Gt′ + Ft′ ⊙ mtk − 1,
Ot = σ wxo * Xt + wℎo * ℎt − 1

k + wco * ctk + wmo * mtk + bo ,
ℎt

k = Ot ⊙ tanh w1 × 1 × 1 * ctk, mtk ,

(3)

where w1×1×1 is the 1 × 1 × 1 convolutions. It′, Gt′ and Ft′.are gate structures of the 

spatiotemporal memory.Ot is the output gate.

2.2 Adversarial Regularizer for Critic Network

In order to generate fMRI time points that are realistic, indistinguishable from the real data, 

and semantically smooth across time points, we adopted a critic network dw Xtα , similar to 
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Generative Adversarial Networks (GANs) [15, 16], to regularize a mixture of two data 

points, i.e. Xtα = g∅ αℎt1
k + 1 − α ℎt2

k , where ℎt1
k = fθ Xt1  and ℎt2

k = fθ Xt2 , are two latent 

factors at t1 and t2 (t1 < t2) respectively, and α ∈ [0, 1] is a mixing coefficient.

The critic network is trained to predict the mixing coefficient α of Xtα. We constrain α ∈ [0, 

0.5] to resolve the ambiguity between α and 1 – α. Taken together, the 3DConv-LSTM is 

behaving like the generative process with the control of α to generate a realistic time point 

from ℎt1
k  and ℎt2

k . The critic network works as a discriminator to distinguish the mixture 

coefficient α of latent factors ℎt1
k = fθ Xt1  and ℎt2

k = fθ Xt2 . Particularly, the critic network 

dw Xtα  is trained to minimize:

Ld = dw Xtα − α 2 + dw γXt + 1 − γ g∅ fθ Xt
2, (4)

where dw Xtα  denotes the critic network, Xtα = g∅ αfθ Xt1 + 1 − α fθ Xt2 , and γ is a 

scalar hyperparameter. The second term constrains the critic network to yield an output of 0 

if the input is Xt. By generating an interpolation between Xt and g∅(fθ (Xt), the second term 

also encourages the critic network to generate realistic data even if the decoder output is 

poor.

The encoder-decoder network loss is finally defined as

Lf, g = Xt − g∅ fθ Xt
2 + λ dw Xtα

2, (5)

where the scalar parameter λ controls the weight of regularization term. Similar to train a 

GAN, θ and ∅ are optimized by minimizing Lf,g and dw Xtα  is optimized by minimizing 

Ld.

3 Experimental Results

We evaluated our method on both task and resting state fMRI data and compared it with 

state-of-the-art alternatives, including a 3DConv-LSTM and an implementation of GANs. 

Particularly, the 3DConv-LSTM method was the encoder and decoder part of the proposed 

method without the critic network and adversarial regularizer, and the GAN was a 

combination of the critic network and a 3D autoencoder without the LSTM structure. The 

encoder consisted of two 3 × 3 × 3 convolutional layers followed by 2 × 2 × 2 max pooling 

layer. The convolution layer was zero-padded so that the input and output of the 

convolutional layer are of the same size. The decoder after the 3DConv-LSTM layer 

consisted of two 3 × 3 × 3 deconvolutional layers, followed by 2 × 2 × 2 × nearest neighbor 

upsampling. Models are trained with batch size 1 on a NVIDIA tesla P100 GPU with 12 GB 

memory. All the methods were implemented using TensorFlow and trained with ADAM 

optimizer based on the same training and validation data and tested on the same testing data.
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3.1 Generation of Task fMRI Data

The proposed method was evaluated on task fMRI data of the HCP to generate realistic 

fMRI volumes so that they could replace noisy time points of fMRI scans instead of 

censoring. Particularly, 490 subjects of motor task fMRI were used in this experiment. The 

motor task consists of 6 events, left foot (LF), left hand (LH), right foot (RF), right hand 

(RH), tongue (T) and additionally 1 cue event (CUE) prior to each movement event. Each 

subject’s motor task fMRI scan consists of 284 time points. We randomly selected 350 

subjects as training data, 50 subjects for validation, and the remaining 90 subjects for 

testing. For each testing subject, we split the whole time series into clips of 40 time points 

without overlapping and the trained deep learning models were used to generate fMRI data 

at 20 randomly selected time points based on the other time points within each clip.

We used structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR) and 

mean squared error (MSE) [19] to quantitatively measure difference between the real fMRI 

data and those generated by the deep learning models under comparison on the testing data. 

As summarized in Table 1, the average measures of all testing time points have 

demonstrated that our method obtained substantially better performance than both the GAN 

and 3DConv-LSTM methods.

Representative fMRI data generated by the deep learning models under comparison along 

with the real fMRI data are show in Fig. 2. Representative real motor task fMRI data (a) and 

those generated by the deep learning methods under comparison, including GANs (b), 

3DConv-LSTM (c), and our method (d), demonstrating that our method could generate 

fMRI time points visually more similar to the real data than the alternative methods under 

comparison. Figure 3 shows brain activation results obtained from real fMRI data and fMRI 

data generated by the deep learning methods under comparison. The activation results were 

thresholded at a p value 0.05 (uncorrected, two tailed). These results further demonstrated 

that the fMRI data generated by our method did not alter the brain activation patterns in that 

the activation map of fMRI data generated by our method was almost identical to that of the 

real fMRI data.

3.2 Generation of Resting State fMRI Data

The proposed method was evaluated on resting state fMRI data of the ABIDE study to 

generate noise-free fMRI data from raw fMRI scans. Particularly, we used rsfMRI data of 55 

subjects from KKI site as training (80%) and validation (20%) data and rsfMRI of 38 

subjects from Caltech site as testing data. All the training and testing data were preprocessed 

using fMRIPrep pipelines [20], and noise of the preprocessed rsfMRI data were removed 

using ICA-AROMA to generate noise-free data [11]. Based on the training data, the deep 

learning methods under comparison were used to train deep learning models to generate 

noise-free data from the preprocessed rsfMRI data with the noise-free data as supervision 

information. The deep learning models were finally applied to the preprocessed data of the 

testing dataset to generate noise-free data that were compared with those generated using 

ICA-AROMA.
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The differences between noise-free data generated by ICA-AROMA and the deep learning 

models were quantitatively measured using SSIM, PSNR and MSE [19]. As summarized in 

Table 2, the average performance measures of all testing time points have demonstrated that 

our method obtained substantially better performance than both the GAN and 3DConv-

LSTM methods. Consistent with the results summarized in Table 1, the 3DConv-LSTM 

method obtained better performance than the GAN method, and our method obtained the 

overall best performance.

We further evaluated the noise-free rsfMRI data generated by ICA-AROMA and the deep 

learning models using ICA. Particularly, MELODIC of FSL with its default parameters was 

used to compute independent components of different sets of the noise-free rsfMRI data. 

Figure 4 shows representative independent components computed from noise-free fMRI data 

generated by different methods. Compared with those computed from noise-free data 

generated by the GAN and 3DCOv-LSTM methods, the component computed from noise-

free data generated by our method was visually closer to the component computed from the 

data generated by ICA-AROMA, indicating that our method generated fMRI data more 

similar to the supervision information.

4 Discussion and Conclusions

We develop a deep learning method to generate realistic fMRI data for denoising fMRI data 

in this study. Our method is built upon encapsulated 3D convolutional LSTM networks and 

an adversarial regularizing procedure implemented by a critic network. Particularly, the 

encapsulated 3D convolutional LSTM networks facilitate effective learning of 

spatiotemporal relation of fMRI data across different time points, and the critic network 

enhances generation of realistic fMRI data. Moreover, our method is generally applicable to 

both task and resting-state fMRI data. Experimental results have demonstrated that our 

method obtained better performance in terms of data generation/reconstruction than state-of-

the-art alternative deep learning methods on both task and resting state fMRI data from 

different datasets, including HCP and ABIDE. Different from existing fMRI denoising 

methods that typically remove noise based on whole time series of individual subjects, our 

method could be used to remove noise of individual time points of fMRI data and therefore 

could be used to carry out real-time fMRI data analysis in conjunction deep brain decoding 

methods [21–23].
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Fig. 1. 
Flowchart of the proposed method, including a 3DConv-LSTM encapsulated encoder-

decoder and a critic network with adversarial regularizer. (a) the overall framework; (b) the 

3DConv-LSTM encoder.
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Fig. 2. 
Representative real motor task fMRI data (a) and those generated by the deep learning 

methods under comparison, including GANs (b), 3DConv-LSTM (c), and our method (d).
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Fig. 3. 
Representative Activation maps for motor task fMRI. (a) and those generated by the deep 

learning methods under comparison, including GANs (b), 3DConv-LSTM (c), and our 

method (d).
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Fig. 4. 
Representative independent components computed from noise-free data generated by ICA-

AROMA (a), GAN (b), 3DConv-LSTM (c), and our method (d), respectively.
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Table 1.

Quantitative performance measures obtained on the motor task fMRI data by the deep learning models under 

comparison (mean ± standard deviation).

Model PSNR SSIM MSE

GAN 36.722 ± 0.5744 0.970 ± 0.0031 25.796 ± 1.3058

3DConv-LSTM 39.084 ± 0.3957 0.989 ± 0.0014 11.036 ± 0.7625

Proposed method 42.545 ± 0.1136 0.992 ± 0.0003 5.818 ± 0.3243
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Table 2.

Quantitative performance measures obtained on the rsfMRI data by the deep learning models under 

comparison (mean ± standard deviation).

Model PSNR SSIM MSE

GANs 28.162 ± 0.8161 0.927 ± 0.0067 68.323 ± 7.5052

3DConv-LSTM 32.382 ± 0.1789 0.950 ± 0.0026 59.735 ± 6.8117

Proposed method 33.697 ± 0.0097 0.958 ± 0.0001 55.746 ± 3.8986
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