Skip to main content
. 2020 Nov 25;21:539. doi: 10.1186/s12859-020-03834-6

Table 5.

Results of using different NLP toolkits on the BC5CDR-chemical dataset

BioBERT-base BioBERT-large
F1 σ F1 σ
Baseline 93.50 0.10 93.90 0.31
 Stanford CoreNLP Toolkits
  PL (M) 93.73 0.19 94.05 0.23
  DR (M) 93.78 0.18 94.05 0.10
 spaCy
  PL (M) 93.69 0.12 94.06 0.10
  DR (M) 93.71 0.12 93.97 0.13

The experimental results [the average F1 scores and the standard deviation (σ)] of our method with KVMN (M) using different NLP toolkits (i.e., Stanford CoreNLP Toolkits and spaCy) to obtain POS labels (PL) and dependency relations (DR). The results of baseline methods without using any syntactic information are also reported for reference