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Abstract

An explosion of high-throughput DNA sequencing in the past decade has led to a surge of interest 

in population-scale inference with whole-genome data. Recent work in population genetics has 

centered on designing inference methods for relatively simple model classes, and few scalable 

general-purpose inference techniques exist for more realistic, complex models. To achieve this, 

two inferential challenges need to be addressed: (1) population data are exchangeable, calling 

for methods that efficiently exploit the symmetries of the data, and (2) computing likelihoods is 

intractable as it requires integrating over a set of correlated, extremely high-dimensional latent 

variables. These challenges are traditionally tackled by likelihood-free methods that use scientific 

simulators to generate datasets and reduce them to hand-designed, permutation-invariant summary 

statistics, often leading to inaccurate inference. In this work, we develop an exchangeable neural 

network that performs summary statistic-free, likelihood-free inference. Our framework can be 

applied in a black-box fashion across a variety of simulation-based tasks, both within and outside 

biology. We demonstrate the power of our approach on the recombination hotspot testing problem, 

outperforming the state-of-the-art.

1 Introduction

Statistical inference in population genetics aims to quantify the evolutionary events and 

parameters that led to the genetic diversity we observe today. Population genetic models are 
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typically based on the coalescent [1], a stochastic process describing the distribution over 

genealogies of a random exchangeable set of DNA sequences from a large population. 

Inference in such complex models is challenging. First, standard coalescent-based 

likelihoods require integrating over a large set of correlated, high-dimensional combinatorial 

objects, rendering classical inference techniques inapplicable. Instead, likelihoods are 

implicitly defined via scientific simulators (i.e., generative models), which draw a sample 

of correlated trees and then model mutation as Poisson point processes on the sampled 

trees to generate sequences at the leaves. Second, inference demands careful treatment of 

the exchangeable structure of the data (a set of sequences), as disregarding it leads to an 

exponential increase in the already high-dimensional state space.

Current likelihood-free methods in population genetics leverage scientific simulators to 

perform inference, handling the exchangeable-structured data by reducing it to a suite 

of low-dimensional, permutation-invariant summary statistics [2, 3]. However, these hand-

engineered statistics typically are not statistically sufficient for the parameter of interest. 

Instead, they are often based on the intuition of the user, need to be modified for each new 

task, and are not amenable to hyperparameter optimization strategies since the quality of the 

approximation is unknown.

The goal of this work is to develop a general-purpose inference framework for raw 

population genetic data that is not only likelihood-free, but also summary statistic-free. 

We achieve this by designing a neural network that exploits data exchangeability to 

learn functions that accurately approximate the posterior. While deep learning offers the 

possibility to work directly with genomic sequence data, poorly calibrated posteriors have 

limited its adoption in scientific disciplines [4]. We overcome this challenge with a training 

paradigm that leverages scientific simulators and repeatedly draws fresh samples at each 

training step. We show that this yields calibrated posteriors and argue that, under a 

likelihood-free inference setting, deep learning coupled with this ‘simulation-on-the-fly’ 

training has many advantages over the more commonly used Approximate Bayesian 

Computation (ABC) [2, 5]. To our knowledge, this is the first method that handles the 

raw exchangeable data in a likelihood-free context.

As a concrete example, we focus on the problems of recombination hotspot testing 

and estimation. Recombination is a biological process of fundamental importance, in 

which the reciprocal exchange of DNA during cell division creates new combinations 

of genetic variants. Experiments have shown that many species exhibit recombination 
hotspots, i.e., short segments of the genome with high recombination rates [6]. The task 

of recombination hotspot testing is to predict the location of recombination hotspots given 

genetic polymorphism data. Accurately localizing recombination hotspots would illuminate 

the biological mechanism that underlies recombination, and could help geneticists map 

the mutations causing genetic diseases [7]. We demonstrate through experiments that our 

proposed framework outperforms the state-of-the-art on the hotspot detection problem.

Our main contributions are:

• A novel exchangeable neural network that respects permutation invariance and 

maps from the data to the posterior distribution over the parameter of interest.
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• A simulation-on-the-fly training paradigm, which leverages scientific simulators 

to achieve calibrated posteriors.

• A general-purpose likelihood-free Bayesian inference method that combines 

the exchangeable neural network and simulation-on-the-fly training paradigm 

to both discrete and continuous settings. Our method can be applied to 

many population genetic settings by making straightforward modifications to 

the simulator and the prior, including demographic model selection, archaic 

admixture detection, and classifying modes of natural selection.

• An application to a single-population model for recombination hotspot testing 

and estimation, outperforming the model-based state-of-the-art, LDhot. Our 

approach can be seamlessly extended to more complex model classes, unlike 

LDhot and other model-based methods.

Our software package defiNETti is publicly available at https://github.com/popgenmethods/

defiNETti.

2 Related Work

Likelihood-free methods like ABC have been widely used in population genetics [2, 5, 

8, 9, 10]. In ABC the parameter of interest is simulated from its prior distribution, and 

data are subsequently simulated from the generative model and reduced to a pre-chosen set 

of summary statistics. These statistics are compared to the summary statistics of the real 

data, and the simulated parameter is weighted according to the similarity of the statistics 

to derive an empirical estimate of the posterior distribution. However, choosing summary 

statistics for ABC is challenging because there is a tradeoff between loss of sufficiency and 

computational tractability. In addition, there is no direct way to evaluate the accuracy of the 

approximation.

Other likelihood-free approaches have emerged from the machine learning community and 

have been applied to population genetics, such as support vector machines (SVMs) [11, 12], 

single-layer neural networks [13], and deep learning [3]. Recently, a (non-exchangeable) 

convolutional neural network method was proposed for raw population genetic data [14]. 

The connection between likelihood-free Bayesian inference and neural networks has also 

been studied previously [15, 16]. An attractive property of these methods is that, unlike 

ABC, they can be applied to multiple datasets without repeating the training process (i.e., 

amortized inference). However, current practice in population genetics collapses the data 

to a set of summary statistics before passing it through the machine learning models. 

Therefore, the performance still rests on the ability to laboriously hand-engineer informative 

statistics, and must be repeated from scratch for each new problem setting.

The inferential accuracy and scalability of these methods can be improved by exploiting 

symmetries in the input data. Permutation-invariant models have been previously studied in 

machine learning for SVMs [17] and recently gained a surge of interest in the deep learning 

literature. Recent work on designing architectures for exchangeable data include [18], [19], 

and [20], which exploit parameter sharing to encode invariances.
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We demonstrate these ideas on the discrete and continuous problems of recombination 

hotspot testing and estimation, respectively. To this end, several methods have been 

developed (see, e.g., [21, 22, 23] for the hotspot testing problem). However, none of these 

are scalable to the whole genome, with the exception of LDhot [24, 25], so we limit our 

comparison to this latter method. LDhot relies on a composite likelihood, which can be 

seen as an approximate likelihood for summaries of the data. It can be computed only 

for a restricted set of models (i.e., an unstructured population with piecewise constant 

population size), is unable to capture dependencies beyond those summaries, and scales at 

least cubically with the number of DNA sequences. The method we propose in this paper 

scales linearly in the number of sequences while using raw genetic data directly.

3 Methods

3.1 Problem Setup

Likelihood-free methods use coalescent simulators to draw parameters from the prior θ(i) 

~ π(θ) and then simulate data according to the coalescent x(i) ℙ x ∣ θ(i) , where i is the 

index of each simulated dataset. Each population genetic datapoint x(i) ∈ {0, 1}n×d typically 

takes the form of a binary matrix, where rows correspond to individuals and columns 

indicate the presence of a Single Nucleotide Polymorphism (SNP), a variable site in a 

DNA sequence1. Our goal is to learn the posterior ℙ θ ∣ xobs , where θ is the parameter of 

interest and xobs is the observed data. For unstructured populations the order of individuals 

carries no information, hence the rows are exchangeable. More concretely, given data X = 

(x(1), … x(N)) where x(i) ≔ x1
(i), …, xn(i) ℙ x ∣ θ(i)  and xj

(i) ∈ 0, 1 d, we call X exchangeably-

structured if, for every i, the distribution over the rows of a single datapoint is permutation-

invariant

ℙ x1
(i), …, xn(i) ∣ θ(i) = ℙ xσ(1)

(i) , …, xσ(n)
(i) ∣ θ(i) ,

for all permutations σ of the indices {1, …, n}. For inference, we propose iterating the 

following algorithm.

1. Simulation-on-the-fly: Sample a fresh minibatch of θ(i) and x(i) from the prior 

and coalescent simulator.

2. Exchangeable neural network: Learn the posterior ℙ θ(i) ∣ x(i)  via an 

exchangeable mapping with x(i) as the input and θ(i) as the label.

This framework can then be applied to learn the posterior of the evolutionary model 

parameters given xobs. The details on the two building blocks of our method, namely the 

exchangeable neural network and the simulation-on-the-fly paradigm, are given in Section 

3.2 and 3.3, respectively.

1Sites that have > 2 bases are rare and typically removed. Thus, a binary encoding can be used.
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3.2 Exchangeable Neural Network

The goal of the exchangeable neural network is to learn the function f : 0, 1 n × d PΘ, 

where Θ is the space of all parameters θ and PΘ is the space of all probability distributions 

on Θ. We parameterize the exchangeable neural network by applying the same function to 

each row of the binary matrix, then applying a symmetric function to the output of each row, 

finally followed by yet another function mapping from the output of the symmetric function 

to a posterior distribution. More concretely,

f(x): = (ℎ ∘ g) Φ x1 , …, Φ xn

where Φ: 0, 1 d ℝd1 is a function parameterized by a convolutional neural network, 

g:ℝn × d1 ℝd2 is a symmetric function, and ℎ:ℝd2 PΘ is a function parameterized by 

a fully connected neural network. A variant of this representation is proposed by [18] and 

[20]. See Figure 1 for an example. Throughout the paper, we choose g to be the mean of the 

element-wise top decile, such that d1 = d2 in order to allow for our method to be robust to 

changes in n at test time. Many other symmetric functions such as the element-wise sum, 

element-wise max, lexicographical sort, or higher-order moments can be employed.

This exchangeable neural network has many advantages. While it could be argued that 

flexible machine learning models could learn the structured exchangeability of the data, 

encoding exchangeability explicitly allows for faster per-iteration computation and improved 

learning efficiency, since data augmentation for exchangeability scales as O(n!). Enforcing 

exchangeability implicitly reduces the size of the input space from {0, 1}n×d to the quotient 

space {0, 1}n×d/Sn, where Sn is the symmetric group on n elements. A factorial reduction 

in input size leads to much more tractable inference for large n. In addition, choices of g 
where d2 is independent of n (e.g., quantile operations with output dimension independent 

of n) allows for an inference procedure which is robust to differing number of exchangeable 

variables between train and test time. This property is particularly desirable for performing 

inference with missing data.

3.3 Simulation-on-the-fly

Supervised learning methods traditionally use a fixed training set and make multiple 

passes over the data until convergence. This training paradigm typically can lead to a 

few issues: poorly calibrated posteriors and overfitting. While the latter has largely been 

tackled by regularization methods and large datasets, the former has not been sufficiently 

addressed. We say a posterior is calibrated if for Xq, A: = x ∣ p(θ ∈ A ∣ x) = q , we have 

Ex ∈ Xq, A[p(θ ∈ A ∣ x)] = q for all q, A. Poorly calibrated posteriors are particularly an issue 

in scientific disciplines as scientists often demand methods with calibrated uncertainty 

estimates in order to measure the confidence behind new scientific discoveries (often leading 

to reliance on traditional methods with asymptotic guarantees such as MCMC).

When we have access to scientific simulators, the amount of training data available is limited 

only by the amount of compute time available for simulation, so we propose simulating each 
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training datapoint afresh such that there is exactly one epoch over the training data (i.e., 

no training point is passed through the neural network more than once). We refer to this 

as simulation-on-the-fly. Note that this can be relaxed to pass each training point a small 

constant number of times in the case of computational constraints on the simulator. This 

approach guarantees properly calibrated posteriors and obviates the need for regularization 

techniques to address overfitting. Below we justify these properties through the lens of 

statistical decision theory.

More formally, define the Bayes risk for prior π(θ) as Rπ* = infTExEθ π[l(θ, T (x)], with l 

being the loss function and T an estimator. The excess risk over the Bayes risk resulting 

from an algorithm A with model class ℱ can be decomposed as

Rπ fA − Rπ* = Rπ fA − Rπ(f)
optimization error 

+ Rπ(f) − inf
f ∈ ℱ

Rπ(f)

estimation error 

+ inf
f ∈ ℱ

Rπ(f) − Rπ*

approximation error 

,

where fA and f  are the function obtained via algorithm A and the empirical risk minimizer, 

respectively. The terms on the right hand side are referred to as the optimization, estimation, 

and approximation errors, respectively. Often the goal of statistical decision theory is to 

minimize the excess risk motivating algorithmic choices to control the three sources of 

error. For example, with supervised learning, overfitting is a result of large estimation error. 

Typically, for a sufficiently expressive neural network optimized via stochastic optimization 

techniques, the excess risk is dominated by optimization and estimation errors. Simulation-

on-the-fly guarantees that the estimation error is small, and as neural networks typically 

have small approximation error, we can conclude that the main source of error remaining 

is the optimization error. It has been shown that smooth population risk surfaces can 

induce jagged empirical risk surfaces with many local minima [26, 27]. We confirmed 

this phenomenon empirically in the population genetic setting(Section 5) showing that the 

risk surface is much smoother in the on-the-fly setting than the fixed training setting. 

This reduces the number of poor local minima and, consequently, the optimization error. 

The estimator corresponding to the Bayes risk (for the cross-entropy or KL-divergence 

loss function) is the posterior. Thus, the simulation-on-the-fly training paradigm guarantees 

generalization and calibrated posteriors (assuming small optimization error).

4 Statistical Properties

The most widely-used likelihood-free inference method is ABC. In this section we briefly 

review ABC and show that our method exhibits the same theoretical guarantees together 

with a set of additional desirable properties.

Properties of ABC

Let xobs be the observed dataset, S be the summary statistic, and d be a distance metric. The 

algorithm for vanilla rejection ABC is as follows. Denoting by i each simulated dataset, for i 
= 1 … N,
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1. Simulate θ(i) ~ π(θ) and x(i) ℙ x ∣ θ(i)

2. Keep θ(i) if d(S(x(i)), S(xobs)) ≤ ϵ.

The output provides an empirical estimate of the posterior. Two key results regarding 

ABC make it an attractive method for Bayesian inference: (1) Asymptotic guarantee: 
As ϵ → 0, N → ∞, and if S is sufficient, the estimated posterior converges to the true 

posterior (2) Calibration of ABC: A variant of ABC (noisy ABC in [28]) which injects 

noise into the summary statistic function is calibrated. For detailed proofs as well as 

more sophisticated variants, see [28]. Note that ABC is notoriously difficult to perform 

diagnostics on without the ground truth posterior as many factors could contribute to a 

poor posterior approximation: poor choice of summary statistics, incorrect distance metric, 

insufficient number of samples, or large ϵ.

Properties of Our Method

Our method matches both theoretical guarantees of ABC — (1) asymptotics and (2) 

calibration — while also exhibiting additional properties: (3) amortized inference, (4) no 

dependence on user-defined summary statistics, and (5) straightforward diagnostics. While 

the independence of summary statistics and calibration are theoretically justified in Section 

3.2 and 3.3, we provide some results that justify the asymptotics, amortized inference, and 

diagnostics.

In the simulation-on-the-fly setting, convergence to a global minimum implies that a 

sufficiently large neural network architecture represents the true posterior within ϵ-error 

in the following sense: for any fixed error ϵ, there exist H0 and N0 such that the trained 

neural network produces a posterior which satisfies

min 
w

Ex KL ℙ(θ ∣ x) ∥ ℙDL
(N)(θ ∣ x; w, H) < ϵ, (1)

for all H > H0 and N > N0, where H is the minimum number of hidden units across all 

neural network layers, N is the number of training points, w the weights parameterizing the 

network, and KL the Kullback–Leibler divergence between the population risk and the risk 

of the neural network. Under these assumptions, the following proposition holds.

Proposition 1. For any x, ϵ > 0, and fixed error δ > 0, there exists an H > H0, and N > N0 

such that,

KL ℙ(θ ∣ x) ∥ ℙDL
(N) θ ∣ x; w*, H < δ (2)

with probability at least 1 − ϵ
δ , where w* is the minimizer of (1).

We can get stronger guarantees in the discrete setting common to population genetic data.

Corollary 1. Under the same conditions, if x is discrete and ℙ(x) > 0 for all x, the KL 

divergence appearing in (2) converges to 0 uniformly in x, as H, N → ∞.
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The proofs are given in the supplement. These results exhibit both the asymptotic guarantees 

of our method and show that such guarantees hold for all x (i.e. amortized inference). 

Diagnostics for the quality of the approximation can be performed via hyperparameter 

optimization to compare the relative loss of the neural network under a variety of 

optimization and architecture settings.

5 Empirical Study: Recombination Hotspot Testing

In this section, we study the accuracy of our framework to test for recombination hotspots. 

As very few hotspots have been experimentally validated, we primarily evaluate our method 

on simulated data, with parameters set to match human data. The presence of ground truth 

allows us to benchmark our method and compare against LDhot (additional details on LDhot 

in the supplement). For the posterior in this classification task (hotspot or not), we use the 

softmax probabilities. Unless otherwise specified, for all experiments we use the mutation 

rate, μ = 1.1×10−8 per generation per nucleotide, convolution patch length of 5 SNPs, 32 

and 64 convolution filters for the first two convolution layers, 128 hidden units for both 

fully connected layers, and 20-SNP length windows. The experiments comparing against 

LDhot used sample size n = 64 to construct lookup tables for LDhot quickly. All other 

experiments use n = 198, matching the size of the CEU population (i.e., Utah Residents with 

Northern and Western European ancestry) in the 1000 Genomes dataset. All simulations 

were performed using msprime [29]. Gradient updates were performed using Adam [30] 

with learning rate 1 × 10−3 × 0.9b/10000, b being the batch count. In addition, we augment 

the binary matrix, x, to include the distance information between neighboring SNPs in an 

additional channel resulting in a tensor of size n × d × 2.

5.1 Recombination Hotspot Details

Recombination hotspots are short regions of the genome with high recombination rate 

relative to the background. As the recombination rate between two DNA locations tunes 

the correlation between their corresponding genealogies, hotspots play an important role in 

complex disease inheritance patterns. In order to develop accurate methodology, a precise 

mathematical definition of a hotspot needs to be specified in accordance with the signatures 

of biological interest. We use the following:

Definition 1 (Recombination Hotspot). Let a window over the genome be subdivided into 

three subwindows w = (wl, wh, wr) with physical distances (i.e., window widths) αl, αh, 

and αr, respectively, where wl, wℎ, wr ∈ G where G is the space over all possible subwindows 

of the genome. Let a mean recombination map R:G ℝ+ be a function that maps from a 

subwindow of the genome to the mean recombination rate per base pair in the subwindow. A 

recombination hotspot for a given mean recombination map R is a window w which satisfies 

the following properties:

1. Elevated local recombination rate: R(wh) > k · max (R(wl), R(wr))

2. Large absolute recombination rate: R wℎ > kr

where r is the median (at a per base pair level) genome-wide recombination rate, and k > 1 is 

the relative hotspot intensity.
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The first property is necessary to enforce the locality of hotspots and rule out large regions 

of high recombination rate, which are typically not considered hotspots by biologists. The 

second property rules out regions of minuscule background recombination rate in which 

sharp relative spikes in recombination still remain too small to be biologically interesting. 

The median is chosen here to be robust to the right skew of the distribution of recombination 

rates. Typically, for the human genome we use αl = αr = 13 kb, αh = 2 kb, and k = 10 based 

on experimental findings.

5.2 Evaluation of Exchangeable Neural Network

We compare the behavior of an explicitly exchangeable architecture to a nonexchangeable 

architecture that takes 2D convolutions with varying patch heights. The accuracy under 

human-like population genetic parameters with varying 2D patch heights is shown in the 

left panel of Figure 2. Since each training point is simulated on-the-fly, data augmentation 

is performed implicitly in the nonexchangeable version without having to explicitly permute 

the rows of each training point. As expected, directly encoding the permutation invariance 

leads to more efficient training and higher accuracy while also benefiting from a faster 

per-batch computation time. Furthermore, the slight accuracy decrease when increasing the 

patch height confirms the difficulty of learning permutation invariance as n grows. Another 

advantage of exchangeable architectures is the robustness to the number of individuals at test 

time. As shown in right panel of Figure 2, the accuracy remains above 90% during test time 

for sample sizes roughly 0.1–20× the train sample size.

5.3 Evaluation of Simulation-on-the-fly

Next, we analyze the effect of simulation-on-the-fly in comparison to the standard fixed 

training set. A fixed training set size of 10000 was used and run for 20000 training batches 

and a test set of size 5000. For a network using simulation-on-the-fly, 20000 training batches 

were run and evaluated on the same test set. In other words, we ran both the simulation 

on-the-fly and fixed training set for the same number of iterations with a batch size of 50, 

but the simulation-on-the-fly draws a fresh datapoint from the generative model upon each 

update so that no datapoint is used more than once. The weights were initialized with a fixed 

random seed in both settings with 20 replicates. Figure 3 (left) shows that the fixed training 

set setting has both a higher bias and higher variance than simulation-on-the-fly. The bias 

can be attributed to the estimation error of a fixed training set in which the empirical risk 

surface is not a good approximation of the population risk surface. The variance can be 

attributed to an increase in the number of poor quality local optima in the fixed training set 

case.

We next investigated posterior calibration. This gives us a measure for whether there is 

any bias in the uncertainty estimates output by the neural network. We evaluated the 

calibration of simulation-on-the-fly against using a fixed training set of 10000 datapoints. 

The calibration curves were generated by evaluating 25000 datapoints at test time and 

binning their posteriors, computing the fraction of true labels for each bin. A perfectly 

calibrated curve is the dashed black line shown in Figure 3 (right). In accordance with the 

theory in Section 3.3, the simulation-on-the-fly is much better calibrated with an increasing 
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number of training examples leading to a more well calibrated function. On the other hand, 

the fixed training procedure is poorly calibrated.

5.4 Comparison to LDhot

We compared our method against LDhot in two settings: (i) sampling empirical 

recombination rates from the HapMap recombination map for CEU and YRI (i.e., Yoruba 

in Ibadan, Nigera) [31] to set the background recombination rate, and then using this 

background to simulate a flat recombination map with 10 – 100× relative hotspot intensity, 

and (ii) sampling segments of the HapMap recombination map for CEU and YRI and 

classifying them as hotspot according to our definition, then simulating from the drawn 

variable map.

The ROC curves for both settings are shown in Figure 4. Under the bivariate empirical 

background prior regime where there is a flat background rate and flat hotspot, both methods 

performed quite well as shown on the left panel of Figure 4. We note that the slight 

performance decrease for YRI when using LDhot is likely due to hyperparameters that 

require tuning for each population size. This bivariate setting is the precise likelihood 

ratio test for which LDhot tests. However, as flat background rates and hotspots are 

not realistic, we sample windows from the HapMap recombination map and label them 

according to a more suitable hotspot definition that ensures locality and rules out neglectable 

recombination spikes. The middle panel of Figure 4 uses the same hotspot definition in 

the training and test regimes, and is strongly favorable towards the deep learning method. 

Under a sensible definition of recombination hotspots and realistic recombination maps, our 

method still performs well while LDhot performs almost randomly. We believe that the true 

performance of LDhot is somewhere between the first and second settings, with performance 

dominated by the deep learning method. Importantly, this improvement is achieved without 

access to any problem-specific summary statistics.

Our approach reached 90% accuracy in fewer than 2000 iterations, taking approximately 

0.5 hours on a 64 core machine with the computational bottleneck due to the msprime 

simulation [29]. For LDhot, the two-locus lookup table for variable population size using 

the LDpop fast approximation [32] took 9.5 hours on a 64 core machine (downsampling 

n = 198 from N = 256). The lookup table has a computational complexity of O(n3) while 

per-iteration training of the neural network scales as O(n), allowing for much larger sample 

sizes. In addition, our method scales well to large local regions, being able to easily handle 

800-SNP windows.

5.5 Recombination Hotspot Intensity Estimation: The Continuous Case

To demonstrate the flexibility of our method in the continuous parameter regime, we adapted 

our method to the problem of estimating the intensity (or heat) of a hotspot. The problem 

setup fixes the background recombination rate R(wl) = R(wr) = 0.0005 and seeks to estimate 

the relative hotspot recombination intensity k. The demography is set to that of CEU. The 

hotspot intensity k was simulated with a uniform distributed prior from 1 to 100.

For continuous parameters, arbitrary posteriors cannot be simply parameterized by a vector 

with dimension in the number of classes as was done in the discrete parameter setting. 
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Instead, an approximate posterior distribution from a nice distribution family is used to 

get uncertainty estimates of our parameter of interest. This is achieved by leveraging our 

exchangeable network to output parameter estimates for the posterior distribution as done in 

[33]. For example, if we use a normal distribution as our approximate posterior, the network 

outputs estimates of the mean and precision. The corresponding loss function is the negative 

log-likelihood

−log p(k ∣ x) = − log τ(x)
2 + τ(x)(k − μ(x))2

2 + const, (3)

where μ and τ are the mean and the precision of the posterior, respectively. More 

flexible distribution families such as a Gaussian mixture model can be used for a better 

approximation to the true posterior.

We evaluate our method in terms of calibration and quality of the point estimates to check 

that our method yields valid uncertainty estimates. The right panel of Figure 4 shows 

the means and 95% credible intervals inferred by our method using log-normal as the 

approximate posterior distribution. As a measure of the calibration of the posteriors, the true 

intensity fell inside the 95% credible interval 97% of the time over a grid of 500 equally 

spaced points between k = 1 to 100. We measure the quality of the point estimates with the 

Spearman correlation between the 500 equally spaced points true heats and the estimated 

mean of the posteriors which yielded 0.697. This was improved by using a Gaussian mixture 

model with 10 components to 0.782. This illustrates that our method can be easily adapted to 

estimate the posterior distribution in the continuous regime.

6 Discussion

We have proposed the first likelihood-free inference method for exchangeable population 

genetic data that does not rely on handcrafted summary statistics. To achieve this, 

we designed a family of neural networks that learn an exchangeable representation of 

population genetic data, which is in turn mapped to the posterior distribution over the 

parameter of interest. Our simulation-on-the-fly training paradigm produced calibrated 

posterior estimates. State-of-the-art accuracy was demonstrated on the challenging problem 

of recombination hotspot testing.

The development and application of exchangeable neural networks to fully harness raw 

sequence data addresses an important challenge in applying machine learning to population 

genomics. The standard practice to reduce data to ad hoc summary statistics, which are 

then later plugged into a standard machine learning pipelines, is well recognized as a major 

shortcoming. Within the population genetic community, our method proves to be a major 

advance in likelihood-free inference in situations where ABC is too inaccurate. Several 

works have applied ABC to different contexts, and each one requires devising a new set of 

summary statistics. Our method can be extended in a black-box manner to these situations, 

which include inference on point clouds and quantifying evolutionary events.
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Figure 1: 
A cartoon schematic of the exchangeable architecture for population genetics.
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Figure 2: 
(Left)Accuracy comparison between exchangeable vs nonexchangeable architectures. 

(Right)Performance of changing the number of individuals at test time for varying training 

sample sizes.
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Figure 3: 
(Left)Comparison between the test cross entropy of a fixed training set of size 10000 

and simulation-on-the-fly. (Right)Posterior calibration. The black dashed line is a perfectly 

calibrated curve. The red and purple lines are for simulation-on-the-fly after 20k and 60k 

iterations; the blue and green lines for a fixed training set of 10k points, for 20k and 60k 

iterations.
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Figure 4: 
(Left) ROC curve in the CEU and YRI setting for the deep learning and LDhot method. The 

black line represents a random classifier. (Middle) Windows of the HapMap recombination 

map drawn based on whether they matched up with our hotspot definition. The blue and 

green line coincide almost exactly. (Right) The inferred posteriors for the continuous case. 

The circles represent the mean of the posterior and the bars represent the 95% credible 

interval. The green line shows when the true heat is equal to the inferred heat.
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