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Abstract

Introduction: UDP N-acetylglucosamine2-epimerase/N-acetylmannosamine-kinase (GNE) gene 

mutations can cause mostly autosomal-recessive myopathy with juvenile-onset known as 

hereditary inclusion-body myopathy (HIBM).

Methods: We describe a family of a patient showing an unusual HIBM with both vacuolar 

myopathy and myositis without quadriceps-sparing, hindering diagnosis. We show how genetic 
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testing with functional assays, clinical transcriptome sequencing (RNA-seq) in particular, helped 

facilitate both the diagnosis and a better understanding of the genotype-phenotype relationship.

Results: We identified a novel 7.08 kb pathogenic deletion upstream of GNE using array 

comparative genomic hybridization (aCGH) and a common Val727Met variant. Using RNA-seq, 

we found only monoallelic (Val727Met-allele) expression, leading to ~50% GNE reduction in 

muscle. Importantly, α-dystroglycan is hypoglycosylated in the patient muscle, suggesting HIBM 

could be a “dystroglycanopathy.”

Conclusions: Our study shows the importance of considering aCGH for GNE-myopathies, and 

the potential of RNA-seq for faster, definitive molecular diagnosis of unusual myopathies.

Keywords

aCGH; GNE myopathy (HIBM); molecular diagnostics; myositis; next generation sequencing; 
transcriptome sequencing (RNA-seq)

To enhance molecular diagnostic yield in neuromuscular disorders (NMDs), functional 

assays downstream of genomic DNA1–4 is recommended by the American College of 

Medical Genetics and Genomics (ACMG).5 GNE-myopathy (OMIM #605820) or hereditary 

inclusion-body myopathy (HIBM) is a vacuolar myopathy generally sparing the quadriceps. 

It is a rare, recessive, inherited degenerative skeletal muscle disorder caused by GNE gene 

(MIM# 603824; NCBI Gene ID: 10020; NC_000009.12) variants with - early-adult onset.6–8 

The GNE enzyme catalyzes the first 2 rate-limiting steps in the biosynthesis of 5-N-

acetylneuraminic acid (Neu5Ac)9,10 found as the terminal glycans on various glycoproteins/

glycolipids, such as the sarcoglycans and dystroglycan (DG), functioning in variety of 

cellular pathways.11

Our understanding of the molecular basis of GNE myopathy is unclear.12,13 Here, we 

describe the lessons learned by using functional genomic approaches to characterize an 

unusual GNE myopathy in a family with a novel deletion variant in which relative 

quadriceps sparing in association with both vacuolar myopathy and myositis made diagnosis 

challenging.

MATERIALS AND METHODS

All protocols were approved by institutional IRB with written consents and are presented 

here in chronological order. First, trio (patient and parents) exome sequencing and 

simultaneous patient muscle biopsy immunohistochemistry, and then RNA sequencing of 

the biopsy, were performed, which prompted us to do array comparative genomic 

hybridization (aCGH) to identify any deletions/duplications. Immunoblotting was then done 

using biopsy to identify any glycosylation defect related to the HIBM pathophysiology. 

Gene ontology-pathway analysis14 led to further understanding of patient muscle 

glycosylation defects. Molecular-dynamics (MD) simulation of the V727M variant on the 

GNE kinase-domain crystal-structure was performed. For methods details, see 

Supplementary Methods, which are available online.
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RESULTS

Clinical Phenotype.

The patient was a 21-year-old man, ethnically Indian-Guyanese, with progressive muscle-

weakness without any cardiac or respiratory comorbidity. Symptoms began at age 20 years 

with asymmetric leg pain and weakness, initially with bilateral-foot-drop and mild (Medical 

Research Council 4/5) weakness in the quadriceps, followed by rapidly progressive and 

severe bilateral lower extremity distal weakness, additional quadriceps weakness, and upper 

extremity weakness in the deltoids and the long-finger-flexors. There was no facial or bulbar 

weakness and tendon reflexes were reduced throughout. Needle electromyography of the 

quadriceps, tibialis anterior, iliopsoas, and medial gastrocnemius muscles demonstrated 

abnormal spontaneous activity (fibrillation potentials and positive sharp waves) and early 

motor unit potential recruitment, compatible with multiple types of myopathies. There was 

no family history of neuromuscular disease.

Quadriceps Showed Unusual HIBM: Both Vacuolar and Inflammatory Myopathy.

Quadriceps biopsy (Fig. 1) showed increased fiber-size variability with both muscle-fiber 

necrosis and perivascular inflammation. Prominent rimmed vacuoles were seen on modified 

Gomori trichrome that were positive by immunohistochemistry for both ubiquitin and 

TDP-43. There was no lipid or glycogen accumulation. Acid phosphatase stain showed 

increased lysosomal activity.

Exome and RNA Sequencing Revealed Monoallelic Expression of V727M Allele.

A known “likely pathogenic” heterozygous missense variant (c.2179C>T (p.V727M)) 

(Supplementary Fig. S1; Supplementary Table S1) was identified in GNE (rs121908627; 

allele frequency of 0.0141) prevalent in South East Asian populations.6,15–21 Exome 

analysis did not identify a second variant resulting in no molecular diagnosis. RNA 

sequencing using target muscle biopsy revealed the presence of only the GNE V727M allele 

(Fig. 2A) suggesting mono-allelic expression. Absence of transcription from the alternate 

chromosome could be due to a deletion/duplication not detected by ES. Thus, we performed 

aCGH using patient genomic DNA.

aCGH Identified Novel Deletion Encompassing Exon2 of hGNE2, Upstream of hGNE1.

Recently, a ~11.3-kb deletion encompassing exon 2 was found in a patient along with a 

single V727M variant.22 In our study, aCGH revealed a novel 7.08 kb deletion (g.36,259,402 

to g.36,266,483) (SCV000599234) upstream of the GNE gene (different from deletions 

identified in Zhu et al.23) (Fig. 2B). This reports a novel compound-heterozygous variant 

combination (Supplementary Table S1) of a large deletion upstream of GNE in trans with 

the missense V727M, which causes the mono-allelic expression.

Gene Expression Analysis Showed 50% Reduced GNE Expression.

Cluster analysis of 274 NMD-associated genes (Table S2) from next generation sequencing-

based transcriptome sequencing (RNA-seq) data showed separate clustering of the patient’s 

vastus lateralis (VL) muscle samples from the controls’ VL muscles (Supplementary Fig. 
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S2). GNE expression was reduced by ~50% (Fig. 3A). A total of 89 NMD-associated genes 

were differentially expressed and several key extracellular matrix (ECM) genes, namely 

collagen fiber and laminin genes (COL6A1/A2/A3/12A1, LAMA2) were up-regulated 

(Table S3).

Gene Ontology Pathway Analysis.

Gene ontology-based gene set enrichment (GO-Pathway) analysis on the differentially-

regulated 89 genes (Supplementary Fig. S3; Supplementary Table S4) identified major 

enriched “pathways,” “cellular compartments,” and “molecular functions.” The common 

biology is a predicted effect on of protein and lipid glycosylation affecting the cytoskeleton-

intracellular matrix and ECM cross-talk through sarcolemmal proteins, important for the 

sarcomere integrity.

α-DG Hypo-glycosylation in Muscle Resembling Congenital Muscular Dystrophy.

Using IIH6 antibody,24 we detected significant hypo-glycosylation of α-DG in the patient 

skeletal muscle compared with normal control (Fig. 3B, left; band intensity values: 182,500 

vs. 466,900) with a lighter and a broader smear from 110–180 kDa compared with a strong 

signal for normal muscle at 130–180 kDa. Using AF6868 antibody24 the normal muscle 

showed a band at 150 kDa and β-DG at ~43 kDa, similar to the patient muscle with 

equivalent β-DG fragment with the exception of a second smear at 90–100 kDa (Fig. 3B, 

right).

No Substantial Structural Change on MD Simulation of V727M on GNE Kinase-Domain

Mutation mapping and MD simulation suggests that all known missense variants in kinase 

domain are away from the active site, and there is no significant structural change due to 

only the V727M change in the kinase domain (Fig. 3C–F). But subtle fold changes can be 

observed (Fig. 3D,F) when V727 and M727 structures are overlaid. Subtle fold changes in 

concert with another variant can cause a substantial difference in functional output.

DISCUSSION

Our study provides important insights for molecular diagnostic approaches to understand the 

pathological and molecular nature of unusual myopathies. We report here a family having a 

patient with a novel upstream promoter-region large deletion in the GNE gene, which 

abolishes expression of the respective allele. Previous reports showed that patients with 

compound heterozygous variants in both epimerase and kinase GNE mdomains manifest 

more severe phenotypes than those with both variants in 1 domain,25 suggesting that mild 

pathogenicity of missense variants in each domain needed for more disease severity. 

Although V727M pathogenicity is uncertain given its relatively high prevalence in South 

Asians, the most parsimonious conclusion given many other similar reports is that this 

compound heterozygous state contributes to the pathology.

Generally, inflammation is not associated with HIBM, in which quadriceps muscles are 

relatively spared of any rimmed vacuolar pathology compared with other muscle types, as 

seen in studies of smaller numbers of individuals with inclusion-body myositis (IBM)22 and 
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in larger study cohorts.25 The presence of both inflammation and rimmed vacuoles in the 

quadriceps muscle of this patient is not characteristic of either primary inflammatory or 

rimmed vacuolar myopathies. The second causal variant was inferred from the combination 

of aCGH and RNA-seq that definitively diagnosed the case as GNE-related myopathy, and 

led to identification of multiple gene expression perturbations. This study shows the 

involvement of quadriceps muscle directly with both rimmed vacuoles and inflammation, 

unlike previous reports of individual cases and cohorts,22,23,26,27 enhancing the molecular-

pathological spectrum of GNE-myopathy that is important to understand for patient 

stratification in clinical trials.

Previously, Zhu et al.23 showed that large promoter region deletions in GNE are common in 

already clinically diagnosed GNE-myopathy patients, and Garland et al.22 showed that a 

combination of such deletions and a V727M missense variant causes wa more severe 

reduction in GNE expression than the combination of V727M and another missense variant. 

Here, we show that such variant combinations are associated with unique GNE-related 

myopathy pathology and the clinical/molecular diagnostic hurdles faced. Consequently, it is 

likely that the combination of reduced transcription due to promoter region deletion and 

possible V727M-induced subtle altered kinase activity is required for the unique HIBM-like 

symptoms. Further functional studies are needed to classify the pathogenicity of V727M.

As per ACMG guidelines,5 because the deletion variant causes a 50% reduction in GNE 
gene expression, we clinically classify the variant as “pathogenic.” This potentially results in 

a significant reduction in key sarcolemmal protein α-DG glycosylation and aberrant 

expression of core α-DG and β-DG (Fig. 3B), which along with altered expression of genes 

and pathways found in GO-pathway analysis could explain the muscle wasting and 

weakness. Disrupted glycan metabolism and glycosyl transferase likely explains 

hypoglycosylation of α-DG, potentially causing de-regulation of the actin cytoskeleton, cell 

cortex, sarcolemma, T-tubule, and ECM (Supplementary Fig. S3).

The nature of reduced α-DG glycosylation and overexpression of β-DG fragment is a 

hallmark of congenital muscular dystrophies (CMDs),28 found also by Huizing et al.29 in 

GNE-related HIBM. Our study contributes to an emerging literature suggesting that GNE-

related myopathy shares molecular signatures of “dystroglycanopathy” similar to CMDs, 

with glycosylation-defect-related muscle wasting and weakness as the primary cause and an 

inflammatory response as a secondary effect. The muscle structural degeneration in HIBM 

resembling CMD is possibly due to inability of the sarcolemmal machinery to protect the 

sarcomere from the load of ECM proteome dysregulation. Overall, functional assays suggest 

a GNE-associated inherent core muscle glycosylation defect as the cause for this unusual 

GNE-related myopathy.

Importantly, this study shows the power of using aCGH, RNA-seq and focused functional 

assays on target muscle tissue following clinical/pathological clues for improving diagnostic 

efficiency and timeliness in the evaluation of undiagnosed myopathies. We believe that this 

approach will be broadly applicable to the diagnosis of NMDs, and will thus harness the 

advances in clinical genomics and developing precision therapies.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Muscle biopsy showing central and sub-sarcolemmal vacuoles in hemotoxylin and eosin 

(H&E) (top panel left), which demonstrates red “rimming” with modified Gomori trichrome 

(top center panel). An example of inflammation is seen in the top right panel (circled). 

Bottom panel: Acid phosphatase (left) and NADH (center) showing positive material within 

the vacuoles and vacuoles are stained positive for ubiquitin (black arrows) (right). Scale bar 

= 50 μm. Additionally, the connective tissue was mildly increased. Atrophic fibers were 

round and pyknotic nuclear clumps were not seen, and the biopsy showed a moderate 

number of fibers with internalized nuclei. Regenerating fibers were not seen. The following 

stains were normal: cytochrome oxidase (COX), myosin ATPase (normal distribution of 

fiber types), Oil red O, periodic acid–Schiff (PAS), phosphorylase, Congo red. Neither 

muscle fiber-type grouping, nor type specific atrophy was seen.
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FIGURE 2. 
(A) Integrated Genomics Viewer (IGV) pile up of RNA-sequencing showing monoallelic 

expression of GNE gene with only the allele harboring c.2179C>T:G>A (p.V727M) 

missense “likely pathogenic” variant expressed. The red arrow indicates the position of the 

V727M variant in exon 13 of the GNE gene. Sanger sequencing confirmation was performed 

on cDNA showing monoallelic expression as shown below. (B) aCGH signal showing a 

deletion upstream of the GNE gene with genomic breakpoints at nucleotide positions 

g.36,259,402 and 36,266,483 was detected in this individual (SCV000599234). This deletion 

is 7.08 kb in size and encompasses the untranslated exon 2 of the hGNE2 transcript but 

upstream of the hGNE1 transcript of the GNE gene. (C,D) Exome sequencing and later 
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aCGH of trios reveal that monoallelic expression was due to expression of only the paternal 

allele of GNE in the proband.
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FIGURE 3. 
(A) Approximately 50% lower-expression (P < 0.05) of GNE in GNE myopathy patient 

muscle compared with that in 6 control normal muscle biopsies. (B) IIH6-antibody against 

glycosylated-α-DG shows hypoglycosylation (lighter signal, broader smear) of α-DG in 

patient muscle compared with control. AF6868 against core α-DG, β-DG shows different α-

DG smearing patterns in patient muscle compared with control. Two predominant staining 

areas are 150 kDa and 100 kDa in patient sample. Roughly same β-DG-fragment expression 

at ~43 kDa is seen in both patient and control muscles. (C) HIBM-causing point mutations 
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(blue, purple sticks) mapped onto GNE-N-acetylmannosamine-kinase-domain (PDB ID: 

2YHY); N-acetylmannosamine-kinase-dimer backbone shown as cartoon. Protomers are 

colored white and cyan, associated divalent ions as spheres (chloride ions: green, zinc ion: 

lavender). Active site bound ADP and N-acetylmannosamine are shown as sticks on the 

right hand side GNE protomer. HIBM-causing residues are mapped on the left hand side 

GNE protomer. The V727M (V696M) mutation (purple sticks), other HIBM mutations (blue 

sticks). (D) Valine-727, and other HIBM mutations, are shown on both dimer subunits. (E) 
The Valine-727 sidechain is replaced by a Methionine residue on both dimer subunits and 

colored in Corey, Pauling, Koltun scheme (oxygen in red and sulfur in yellow). (F) The 

rotamer is changed upon replacing V727 (green sticks) by a methionine (red sticks) in MD 

simulations.
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