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ABSTRACT Campylobacter is among the most common causes of gastroenteritis
worldwide. Campylobacter jejuni and Campylobacter coli are the most common spe-
cies causing human disease. DNA sequence-based methods for strain characteriza-
tion have focused largely on C. jejuni, responsible for 80 to 90% of infections, mean-
ing that C. coli epidemiology has lagged behind. Here, we have analyzed the
genome of 450 C. coli isolates to determine genetic markers that can discriminate
isolates sampled from 3 major reservoir hosts (chickens, cattle, and pigs). These markers
then were applied to identify the source of infection of 147 C. coli strains from French
clinical cases. Using STRUCTURE software, 259 potential host-segregating markers were
revealed by probabilistic characterization of single-nucleotide polymorphism (SNP) fre-
quency variation in strain collections from three different hosts. These SNPs were found
in 41 genes or intergenic regions, mostly coding for proteins involved in motility and
membrane functions. Source attribution of clinical isolates based on the differential pres-
ence of these markers confirmed chickens as the most common source of C. coli infec-
tion in France.

IMPORTANCE Genome-wide and source attribution studies based on Campylobacter
species have shown their importance for the understanding of foodborne infections.
Although the use of multilocus sequence typing based on 7 genes from C. jejuni is a
powerful method to structure populations, when applied to C. coli, results have not
clearly demonstrated its robustness. Therefore, we aim to provide more accurate
data based on the identification of single-nucleotide polymorphisms. Results from
this study reveal an important number of host-segregating SNPs, found in proteins
involved in motility, membrane functions, or DNA repair systems. These findings of-
fer new, interesting opportunities for further study of C. coli adaptation to its envi-
ronment. Additionally, the results demonstrate that poultry is potentially the main
reservoir of C. coli in France.
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Campylobacter is the leading cause of bacterial gastroenteritis worldwide (1), with
around 800,000 campylobacteriosis cases in the United States (2) and 200,000 in

the European Union (3) each year. Demographic, dietary, and surveillance program
variations have made it difficult to generalize the understanding of Campylobacter
epidemiology to all countries. For example, while there are an estimated 68,000
foodborne infections every year in France (4), the number attributable to Campylobac-
ter is not clearly defined, and there are questions about the relative importance of
different Campylobacter species (5–7).
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C. jejuni and C. coli are part of the commensal microbiota of many bird and animal
species (8). Human infection typically occurs via consumption of contaminated water or
meat, especially chicken (9–11), or direct contact with animals (livestock farming).
Infection is usually self-limiting with mild symptoms, including abdominal cramps,
diarrhea, and fever. However, more severe symptoms, such as bloodstream infections
and vascular disease, can occur, particularly at extreme ages, in immunosuppressed,
diabetic, or cancer patients, and, in rare cases, postinfectious complications include
Guillain-Barré syndrome (12) and irritable bowel syndrome (13). Prolonged or severe
campylobacteriosis can require the administration of macrolide (azithromycin) or quin-
olone (ciprofloxacin) (14, 15) antibiotics, but increasing resistance, particularly among C.
coli isolates (16), is reducing treatment options.

C. coli is responsible for an increasing number of infections, accounting for approx-
imately 15% of all campylobacteriosis cases (6). While much research focuses on C.
jejuni, accounting for about 85% of cases, there are proportional differences between
countries, potentially reflecting variations in diet (17) and host source (18, 19). European
studies typically have associated C. coli with pigs and sheep (5, 20, 21). However,
intensive agricultural practices in recent decades have dramatically changed the dis-
tribution of livestock species on earth, creating opportunities for host transitions (22).
This has likely driven changes to the natural host associations of both C. jejuni and C.
coli, which are regularly isolated from cattle and chickens (9). This host melting pot has
also dramatically affected the evolution of livestock-associated C. coli, leading to the
emergence of a dominant disease-causing C. coli lineage, the ST-828 clonal complex
(CC-828) (23), which has a mosaic genome, with over 10% of the genes having been
acquired from C. jejuni by horizontal gene transfer (24–26). This genome plasticity is
particularly of concern for C. coli, which acquires antimicrobial resistance genes more
easily than C. jejuni (14, 16).

Genotyping methods, such as multilocus sequence typing (MLST) (27, 28), have
improved our understanding of Campylobacter population structure, revealing host-
specialist and host-generalist lineages (29). This host association has underpinned the
development of methods that quantitatively attribute the source of human infections
(9, 11). However, rapid host switching by host generalist Campylobacter, including C.
coli CC-828, often can confound these methods, because, for some lineages, strains
associated with one host source can be found in another (22, 30). The adoption of
whole-genome sequencing techniques and the availability of curated genome data-
bases (31) have allowed the incorporation of a broader number of host-segregating
epidemiological markers in source attribution methods (32, 33). This additional genome
information has increased the resolution, allowing the attribution of invasive/noninva-
sive strains from poultry (34) as well as geographical attribution of UK/U.S. isolates (19).
However, almost all studies focused exclusively on C. jejuni (35), and no study aimed to
specifically identify host-segregating markers in C. coli genomes.

In this study, we analyzed 450 C. coli genomes from public databases with defined
sampling sources, including chickens, cattle, and pigs. Using comparative genomics
approaches, we (i) tested the ability of traditional MLST-based methods to determine
the source of C. coli with isolates from known source reservoirs; (ii) identified host-
segregating SNPs in C. coli genomes; and (iii) determined the relative contribution of
different C. coli infection sources in France. MLST was found to be a good proxy for
more complex whole-genome SNP-based analysis, showing similar power for segre-
gating isolates from the cattle host. However, additional discrimination of isolates from
chicken and pig hosts was achieved by identifying genome-wide host-segregating
SNPs. In the final probabilistic model, using 259 host-segregating SNPs, chicken was
found to be the most common source of C. coli infection in France.

RESULTS
CC-828 isolates segregate by host. From all 3 data sets, Data Sets S1, S2, and S3

in the supplemental material (see also Materials and Methods), nearly all isolates
belonged to clonal complex 828 (CC-828; 780 isolates out of 900). The second most
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common clonal complex identified was ST-1150 (26), with four isolates, sampled from
chicken. From the allelic profile minimum spanning tree, 3 clusters can be identified
corresponding to the source of isolation (Fig. 1). Cattle isolates clustered together, with
162 isolates (64.8% of all cattle isolates) assigned to ST-1068 (36). Chicken and pig
isolates belonged to 78 and 83 sequence types, respectively (contrary to cattle, with 27
different sequence types), with 24.2% of isolates belonging to ST-828, ST-829, ST-825,
ST-854, and ST-1119. Furthermore, 40.1% of all clinical isolates belonged to ST-825,
ST-827, ST-832, and ST-860. Initial evidence for a role of chicken as a reservoir for
human infection was provided by the clustering of clinical isolates together with
isolates from chicken on the phylogenetic tree. The second tree, constructed using the
maximum-likelihood approach from concatenated SNP sequences, revealed distinctive
partitioning of isolates according to source (Fig. 2). C. coli strains isolated from cattle
constitute a very distinct cluster; 168 isolates (67.2% of all cattle isolates) are located at
the bottom of the tree and belonged to ST-1068. Distances were also shorter within
cattle populations than chicken and pig isolates, where more variability was observed
in both clades. While many clinical isolates clustered among chicken isolates, six clinical
isolates were found along a long branch of the chicken’s clade; interestingly, these
isolates were attributed to pig using STRUCTURE (described below).

Host-segregating SNPs differentiate C. coli strains isolated from different
hosts. Putative host-segregating SNPs were identified by aligning all 450 isolates
selected for marker determination against three C. coli reference genomes. The align-
ment of isolates against the OR12 C. coli reference strain identified 283,320 variant sites.
To remove weakly discriminating polymorphisms, SNP versions represented in more
than two-thirds of all isolates were filtered, leaving 26,131 variant sites. Similar align-
ment and filtering performed against the HC2-48 strain resulted in 202,111 variants,
filtered to 24,395, and alignment against the ZV1224 reference identified 242,574 SNPs,
which were filtered to 20,827. Host-segregating SNPs were identified by performing
source attribution tests using each variant individually and all 450 isolates. SNPs with
at least 70% accuracy for at least one source in the self-attribution test included 43, 183,
and 33 from each alignment with the OR12, HC2-48, and ZV1224 reference strains,

FIG 1 Phylogenic tree based on MLST analysis. The minimum spanning tree was generated using GrapeTree from
the sequence types of all 896 C. coli isolates, based on 7 MLST genes (aspA, glnA, gltA, glyA, pgm, tkt, and uncA)
extracted using the PubMLST platform. Orange represents isolates isolated from chickens, green from cattle, and
magenta from pigs. Red is for clinical isolates. Circle sizes are proportional to the number of isolates, and the scale
bar represents a genetic distance of 1.
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respectively (Table 1). Most of the self-attribution tests showed rates fluctuating
between 30% and 40% (51.2%, 50.5%, and 48% of all variants for the chicken, cattle,
and pig variants, respectively); 33% indicates a complete inability to differentiate 3
individuals (Fig. 3). In total, 259 host-segregating SNPs from 41 nucleotide sequences
were carried forward for further analyses.

To contextualize host-segregating SNPs within genes, BLAST-x annotation identified
32 coding regions for known proteins, 5 hypothetical proteins, and 4 intergenic regions
(Table S1). Several SNPs (n � 27) were found in proteins involved in motility, which
plays an important role in bacterial host adaptation: 12 and 4 SNPs in flagellar proteins
FliK (with 2 SNPs in its basal body rod modification protein FlgD) and FliD, respectively,
known to modulate flagellar hook length (37) and to act as immunodominant proteins
(38); 5 SNPs from methyl-accepting chemotaxis proteins (TLP-like protein [39]) or
intergenic regions before methyl-accepting chemotaxis proteins; and 4 SNPs in one
aerotaxis receptor belonging to CetC, a protein involved in regulating energy taxis (40).
Another protein involved in bacterial adaptation to its environment has also been
identified from the OR12 chicken reference (3 SNPs), SbmA (41), a peptide antibiotic
transporter described in many Gram-negative bacteria. SNPs were also found in pro-
teins involved in metabolism and membrane functions: 3 SNPs from a histidine kinase,
5 SNPs from a single-domain globin protein, known to play a role against NO and
nitrosative stress (42), and a LamB/YcsF family protein with 5 SNPs. Two phosphate-

FIG 2 Phylogenic tree built from concatenated selected SNPs. The tree was designed using maximum-
likelihood phylogeny between 896 isolate sequences built from the concatenation of all genotypes of the
selected SNPs (n � 259). Orange nodes are the chicken population isolates, green nodes are cattle
isolates, pink nodes are pig isolates, and red nodes are clinical isolates. The orange circle shows an
estimation of the chicken cluster, the green circle shows the cattle cluster, and the pink circle shows the
pig cluster. The scale bar represents a genetic distance of 0.24. Clinical isolates are located mostly within
the chicken cluster, which is consistent with the probabilistic attribution model.

TABLE 1 Variant-calling comparison between three references of Campylobacter coli

Reference Variant callinga (raw) Filtrationb Selected SNPsc

OR12 (chicken) 283,320 26,131 43
HC2-48 (cattle) 202,111 24,395 183
ZV1224 (pig) 242,574 20,827 33
aNumber of SNPs determined after aligning all isolates from the marker determination (n � 450) data set to
3 different C. coli references: OR12 isolated from chicken, HC2-48 from cattle, and ZV1224 from pig.

bNumber of SNPs after the filtration of genotypes that represent more than two-thirds of all isolates.
cSelected SNPs with 70% or greater total correct self-attributions.
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binding proteins showed the presence of one SNP from the OR12 chicken reference
variant calling as well as one SNP from the ZV1224 pig reference. Proteins involved in
DNA activities have also been identified, with a total of 56 SNPs: DNA recombination/
repair protein RecA, excinuclease ABC subunit C (UvrC) (43), two restriction endonu-
cleases from HC2-48 and ZV1224 references, and one transcriptional regulator. Two
hypothetical proteins from OR12 and ZV1224 with 11 and 8 host-segregating SNPs,
respectively, have been found to be the same protein; its domains and amino acid
sequence, depending on the source, should be further investigated. Finally, a total of
110 SNPs were within 2 hypothetical proteins (from the HC2-48 cattle reference), which
reflected highly variable and isolate-specific regions and should not be taken into
account.

FIG 3 Host-segregating rate of all variants obtained from the alignment of 450 marker determination isolates
against 3 references. Source attribution rates (y axes) were obtained by testing 26,131, 24,395, and 20,827 SNPs
from OR12 (a), HC2-48 (b), and ZV1224 (c) references, respectively, and are shown here according to their genome
position (left, x axis) and variant proportions (right, x axis). STRUCTURE software was run 3 times for each SNP
(average attribution rates are shown here), using 390 randomly selected C. coli isolates as the training data set and
60 randomly selected isolates as the test data set. Orange represents attribution rates and the number of SNPs for
chicken source, green for cattle source, and magenta for pig source. A total of 259 SNPs showed attribution rates
greater than 70% (red line) for one or more sources and were carried forward for further analyses: 43, 183, and 33
SNPs from chicken, cattle, and pig references, respectively. Scores fluctuated between 30% and 40%, and the
highest attribution rates for each host reservoir were found in the corresponding source reference. However, the
OR12 reference showed two distinct regions of the genome, one part containing variants discriminating the
chicken source and another part the pig source. Two low-variability regions (blanks), where no SNPs from the
variant calling step were selected, are also visible.
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Genome-wide host-segregating SNPs provide more accurate source attribution
than MLST alleles. The degree of SNP segregation among isolates from different hosts
and, hence, the potential as a marker for source attribution using STRUCTURE, was
quantified. Self-attributions of chicken and pig isolates within the marker determination
data set were consistently correct (Table 2). Using 43 SNPs detected from OR12
alignment as host-segregating markers allowed an average (� standard deviation [SD])
correct self-attribution of 88.35% (�6.2%), 63.75% (�9.2%), and 96.2% (�4.1%) for
chickens, cattle, and pigs, respectively. Using 183 SNPs from the HC2-48 alignment,
correct self-attribution was achieved for chicken, cattle, and pig isolates with 91.05%
(�5.7%), 75% (�9.7%), and 42.45% (�18.7%) accuracy, respectively, and 74.95%
(�13.9%), 19.65% (�10.1%), and 94.65% (�5.2%) for the 33 SNPs from ZV1224 align-
ment. A low self-attribution rate of cattle isolates using SNPs from the pig reference was
observed. These isolates were not correctly attributed and were considered 50%
chicken and 50% pig. When using all the SNPs simultaneously (n � 259), correct
self-attribution showed average scores of 91.95% (�5.86%), 77% (�8.65%), and 95.25%
(�4.4%) for chickens, cattle, and pigs, respectively. This is a considerable improvement
of self-attribution using the 7 MLST genes, which returned average scores of 73.6%
(�9.1%), 76.8% (�9.4%), and 74.4% (�9.5%) for chickens, cattle, and pigs, respectively.
Source attribution of cattle C. coli isolates of the marker determination data set was
similar between the two types of markers (genotype or allele), whereas SNPs performed
significantly better for chicken and pig populations than the 7 MLST genes. Finally, the
discriminatory power of host-segregating SNPs and MLST genes was evaluated by
performing source reattribution of 299 C. coli isolates from the validation data set. SNPs
showed correct reattribution proportions of 96.2% (�1.03%), 84% (�0%), and 89%
(�0%) and MLST gene scores of 87% (�0%), 81% (�0%), and 65% (�0%) for chicken,
cattle, and pig populations, respectively (Fig. 4). Overall, SNPs were able to better
reattribute C. coli marker determination and validation isolates to their source than
MLST genes, especially for chicken and pig populations.

Chickens are a major source of C. coli infection in France. Source attribution of
clinical isolates was performed using MLST alleles and all host-segregating SNPs with
correct self-attribution �70% (n � 259) in the marker determination and training data
set using STRUCTURE (Fig. 5). Using MLST genes, 89 clinical isolates (60.5%) were
attributed to chickens, 13 to cattle (9%), and 6 to pigs (4%), and 39 clinical isolates
(26.5%) showed attribution scores lower than 70% and, therefore, were considered
inconclusive attributions. Inconclusive attributions specifically concern 3 commonly
found sequence types, ST-827, ST-1055, and ST-1595, representing 48.7% of inconclu-
sive attributions (n � 19). In contrast, using the 259 SNPs, 138 isolates (94%) were
attributed to chickens, 9 to pigs (6%) (with an average source probability equal to
100%), and none to the cattle population. Therefore, whatever the approach (MLST or
SNPs), a large proportion of C. coli clinical isolates were attributed to chickens. However,
the attribution scores were more variable with MLST (on average, around 80%),

TABLE 2 Rates of correct self-attributions of marker determination isolates using 5 different sets of markersa

Set of markers

Value (%) for self-attributed isolates of:

Chicken (n � 150) Cattle (n � 150) Pig (n � 150)

Rate of correct attribution SD Rate of correct attribution SD Rate of correct attribution SD

43 SNPs (OR12) 88.4 �6.24 63.8 �9.22 96.2 �4.09
183 SNPs (HC2-48) 91.1 �5.74 75.0 �9.69 42.5 �18.74
33 SNPs (ZV1224) 75.0 �13.9 19.7 �10.08 94.7 �5.23
259 SNPs (all) 92.0 �5.86 77.0 �8.65 95.3 �4.4
7 genes (MLST) 73.6 �9.06 76.8 �9.42 74.4 �9.50
aDiscriminating strengths of selected SNPs and MLST genes were estimated using marker determination isolates. From 450 initial isolates, random selections of 390
and 60 isolates were used for training and self-attribution (sources set to “unknown”), respectively. Self-attributions were performed 100 times using selected SNPs
from chicken alignment (n � 43), cattle alignment (n � 183), pig alignment (n � 33), and all alignments (n � 259) and 50 times using MLST genes (n � 7). Since
multiple tests were performed for each set of markers using 60 randomly selected isolates, standard deviations were calculated.
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whereas for the genome-wide host-segregating SNPs, the clinical isolates were more
efficiently attributed to their infection source (Table 3).

DISCUSSION

The increasing availability of bacterial isolate genome collections and bioinformatics
tools for large-scale analysis provides significant opportunities for understanding the
genetic basis of phenotype variation in bacteria. Host adaptation is a key feature in the
epidemiology of zoonotic pathogens (44), such as Campylobacter, and there has been
considerable effort to identify host-associated genetic variation that can improve our
understanding of the evolution and origin of infecting strains. Comparative genomic
analyses have revealed core and accessory genome variation within C. jejuni that is
associated with a given host/environment (45, 46), and this has been used to identify
genome-wide host-segregating markers for source attribution (32). However, little
comparable work has focused on C. coli.

Genetic variation in bacterial genomes reflects not only adaptation to different
hosts/sources but also temporal and geographic variation among sample collections
(19). Some studies avoid the potential confounding effect of phylogeographic variation
by using national isolate collections, for example, Campylobacter attribution studies
performed in Scotland (24, 47), Switzerland (48), New Zealand (49), and Germany (17).
This has been informative for understanding the source of human infection; however,
because of the strong segregation of genetic variation by host (18), it remains possible
that collections from multiple countries could be combined to create international
isolate collections. This would consolidate research effort and provide the large ge-
nome collections necessary for probabilistic attribution models and potential to identify
universal host-segregating markers.

Here, we analyzed C. coli isolates from Europe and the United States using the

FIG 4 Correct reattribution proportions of 299 validation isolates using determined SNPs and MLST genes. (a and
b) Source attribution strength of selected SNPs (a) and MLST genes (b) estimated using STRUCTURE software. A
total of 299 isolates were tested (from the validation data set) using marker determination isolates for training
(n � 450). Source attributions were performed 10 times using all selected SNPs (n � 259) and MLST genes (n � 7).
Gray bars represent the rate of correct source attribution for chicken population isolates, black bars for cattle
isolates, and white bars for pig isolates. An isolate was considered correctly source reattributed with a STRUCTURE
score greater than 70%.
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conventional MLST method established by Dingle et al. in 2001 (27) and specific
host-segregating SNPs. A single clonal complex (CC-828) dominated among the isolates
independently of source and geographical location, representing 780 isolates out of
900. The predominance of CC-828 isolates in C. coli (66% to 81% of all isolates [17, 24,
36]), with the ST-1150 complex accounting for most of the remaining isolates (26),
confounds efforts to identify host association at the clonal complex level that is
possible for C. jejuni (18). However, within CC-828 there was evidence for sequence

FIG 5 Population proportions of clinical isolates from source attribution. (a and b) Source attribution of
the clinical data set using selected SNPs (n � 259) (a) and MLST genes (n � 7) (b). Clinical isolates
(n � 147) are represented on the x axis and their attribution probabilities on the y axis in orange for
chicken source, green for cattle source, and pink for pig source. The poultry reservoir was estimated as
the main source of C. coli contamination in France, with 138 isolates (94%) attributed using host-
segregating SNPs and 89 isolates (61%) using MLST (isolates selected with source probabilities of greater
than 70%).

TABLE 3 Source attribution scores of French clinical isolatesa

Set of markers

% (avg score) of clinical isolates from:

Chicken Cattle Pig Inconclusive

259 SNPs 93.88 (100.0) 0.0 (0.0) 6.12 (100.0) 0.0 (0.0)
7 MLST genes 60.54 (88.35) 8.84 (86.91) 4.08 (83.22) 26.53 (50.59)
aData for source attribution of French clinical isolate data set using selected SNPs (n � 259) and MLST genes
(n � 7). Shown are the distributions of estimated sources among clinical isolates, with average score as the
average individual attribution rate. Using determined SNPs, source attribution rates for clinical isolates were
constant, whereas using MLST genes, source attribution showed variable results.
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types that were more commonly isolated from particular hosts. For example, ST-829,
ST-832, ST-825, and ST-860 predominated among chicken isolates, ST-827 was more
common in pigs, and ST-1068 was nearly exclusive to cattle, consistent with previous
studies (36, 50). Similar low diversity in cattle C. coli isolates was previously described
among ruminant isolates from Scotland (47). A weaker host association signal, based
upon MLST alleles, compared to that of C. jejuni has made it difficult to distinctively
partition C. coli by source (49). However, genotype segregation in C. coli provided initial
evidence that the genomes of these isolates would contain host-segregating genetic
signatures.

Estimating the discriminating power of genetic markers can be performed by
determining the probability that a given genetic element, such as a single mutation,
will be found among isolates from a given host (self-attribution). As in previous studies
(32, 33), we used STRUCTURE software and self-attribution to determine the predictive
power of putative host-segregating markers. Moreover, a recent review (35) mentioned
that MLST genes were used for self-attribution tests in 6 studies for both C. coli and C.
jejuni (11, 24, 32, 33, 48, 51). However, correct attribution rates for C. coli showed
inconsistent results for chickens (63 to 95%), cattle (26 to 89%), and pigs (70 to 94%),
suggesting that an SNP-based approach is advantageous for source attribution of C.
coli. In fact, we showed here that SNPs as host-segregating markers provided more
accurate results for chickens, cattle, and pigs, with 92% (�5.9%), 77% (�8.7%), and
95.3% (�4.4%) correct attribution rates, respectively. While the difficulty in precise
self-attribution using MLST genes is undoubtedly linked to reduced resolution, as
CC-828 isolates dominate among C. coli populations (23), the transmission of C. coli
between different host species would also reduce the discriminatory power of source-
specific markers, potentially leading to incorrect source attribution (22). Thus, adjusting
for single mutation determination provided promising candidates for accurate source
attribution of human C. coli isolates. Of 669,019 SNPs from the alignment of 450
genomes against 3 references, 259 SNPs in genes associated with cell membrane
(transporters and binding proteins), chemotaxis (FliK, FliD, and TLP-like protein), DNA
activities (RecA, UvrC), or energy (CetC) functions were chosen for attributing 147
clinical C. coli isolates to sources.

It is known that poultry are a major reservoir for human C. jejuni infection (8), with
a ratio of 9:1 for C. jejuni and C. coli, respectively (36). Previous studies focusing on the
source of C. coli infection have come to contrasting conclusions. In France, Sweden,
the United Kingdom, and the United States, the high prevalence of C. coli in pigs led to
the assumption of the role of this reservoir in human infection (5, 20, 21), up to a ratio
of 9:1 in favor of C. coli (36). However, in New Zealand, where human C. coli infection
is also common, there is a low prevalence in pigs (49). Estimates of the relative
contribution of different host sources to human infection varies among studies (11, 17,
24, 47–49, 52), with attribution to poultry (38 to 86%), ruminants (0 to 55%), and pigs
(1 to 32%) all being implicated. With the exception of two studies, examining rural
populations in Scotland and New Zealand, that largely attribute human C. coli infec-
tions to sheep (47) and ruminants (49), source attribution studies typically assign a
principal role for poultry in human infection.

It is likely that there are differences in the major reservoirs of C. coli infection in
different countries, but quantifying this requires accurate estimation. Estimates based
on MLST loci provided source probabilities with some uncertainty. Specifically, al-
though approximately 40% of the 147 French clinical isolates sampled in this study
were clearly attributed (�90% probability) (Fig. 5), the remaining isolates showed
variable scores, with many attributed �60% probability. Overall, MLST allele-based
analyses did assign chicken as a major reservoir for C. coli, with 89 isolates (61%)
attributed with a score equal to or greater than 70%. However, this proportion was
greatly increased with more accurate attribution scores when using host-segregating
SNPs in the attribution model. Specifically, chicken was predicted to be the source of
C. coli infection for 138 isolates, constituting 94% of the clinical samples. In comparison,
two recent studies showed that sources of infection of C. jejuni are more evenly shared
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between chicken and cattle populations in France, with approximately 50% for chicken
and 40% for cattle, respectively (33, 34). To draw source attribution comparisons
between North America and France, additional analyses were performed using 265
clinical isolates exclusively from the United States (see Fig. S2 and Table S2 in the
supplemental material). The chicken source again was estimated as the main source of
C. coli contamination in the United States, as well as in France, but in a lower proportion
(67.9% against 94%), followed by cattle (11.7%) and pig (20.4%). It would be interesting,
in a complementary study, to compare the eating habits of animals in these two
countries.

In conclusion, the added resolution provided by genome-wide host-segregating
markers not only improves source attribution for C. coli but also provides important
information about the major infection reservoirs that had been missed in some
previous studies (21). By combining whole-genome analysis with national surveillance
programs and source attribution modeling, it was possible to identify the chicken
reservoir as a major source of C. coli infection in France and abroad. These findings will
support ongoing surveillance and the development of targeted interventions aimed at
reducing the burden of human campylobacteriosis.

MATERIALS AND METHODS
Campylobacter coli isolate data sets. A total of 450 C. coli isolate genomes from two major regions

where campylobacters are a leading cause of foodborne infections, North America and Europe, were
selected for the determination of host-segregating markers (see Data Set S1 in the supplemental
material). To reduce the detection of region-specific markers, these genomes were randomly selected
from multiple countries within these two regions. This included even numbers (n � 150) of chicken,
cattle, and pig C. coli genomes to avoid bias in the identification of host-specific markers. This first data
set was comprised of 151 isolates from PubMLST databases (31) and 299 isolates from the U.S. National
Antimicrobial Resistance Monitoring System (NARMS) project (53). PubMLST genomes comprised 34% of
that first data set and included 47%, 7%, and 47% of all chicken, cattle, and pig marker determination
isolates, respectively. NARMS genomes comprised 66% of the data set and included 53%, 93%, and 53%
of all chicken, cattle, and pig marker determination isolates. These data sets were entirely composed of
European and North American genomes. European isolates represented 29% of the data set, including
41%, 1%, and 45% of all chicken, cattle, and pig isolates, respectively, while North American isolates
comprised 71% of the data set, including 59%, 99%, and 55% of all chicken, cattle, and pigs isolates.
North American isolates were mostly selected from the United States (n � 315). The remaining isolates
(n � 4) were selected from Canada. A total of 424 isolates (94%) were obtained from 2005 to 2019.

A second data set (validation data set), comprised of 300 supplementary C. coli isolates of known
source reservoirs, was used to test the discriminatory strength of the host-segregating SNPs previously
obtained (Data Set S2). This data set comprised North American C. coli isolates from the NARMS project,
100 for each source. Finally, 150 French clinical isolates comprised a last set of genomes (clinical data set)
and were used to attribute the putative source reservoir of clinical isolates (Data Set S3). This comprised
150 clinical isolates from French laboratories and a hospital surveillance network, sampled from stools
between 2015 and 2017. Clinical isolates were chosen to represent patients from diverse geographic
regions in France, with a sex ratio of 1.03 and a mean age of 39.4 � 2.8 years.

Clinical isolate genomes had an average genome length of 1.7 Mbp (�69.7 kbp) and an average
number of contigs of 43. C. coli marker determination isolates were, on average, 1.76 Mbp (�81.2 kbp)
in length and comprised 83 contigs, and C. coli validation isolates were, on average, 1.78 Mbp (�74.7
kbp) in length over 78 contigs (Fig. S1). This is consistent with other published C. coli genomes, estimated
to �1.7 Mbp in length (54). Furthermore, no significant difference in C. coli genome sizes from different
hosts has been observed. C. coli strains isolated from chickens were, on average, 1.78 Mbp in length
(�106 kbp), 1.77 Mbp (�61.6 kbp) for cattle isolates and 1.77 Mbp (�61 kbp) for pig isolates.

DNA extraction, genome sequencing, and assembly. DNA from clinical isolates was extracted
using the MagNA Pure 6 DNA and viral NA SV kit, and DNA purification was performed from bacterial lysis
on a MagNA Pure 96 system (Roche Applied Science, Manheim, Germany). Quantification and purity
checks (260/280 and 260/230 ratios) were determined by spectrophotometry (NanoDrop Technologies,
Wilmington, DE) before sequencing. Paired-end next-generation sequencing was performed on DNA
samples using Illumina HiSeq 4000 technology (Integragen, Evry, France). Additionally, FastQC v0.11.8
(55) was used to run data quality tests. Genomic data were cleaned and genomes were assembled using
Sickle v1.33 (56) and SPAdes v3.10.1 (57), respectively. Genomes then were filtered to remove poor-
quality contigs: sequences with a length smaller than 160 nucleotides and a k-mer coverage of less than
20� were removed. One isolate (2015_0475) showed an abnormal genome size of 2.5 Mbp after filtration
and was excluded from subsequent analyses.

Characterization of genomic variation. In silico, MLST was performed for a comparative analysis
with host-segregating SNPs. Profiles were obtained for all 900 isolates using 7 housekeeping genes (aspA,
glnA, gltA, glyA, pgm, tkt, and uncA) determined for Campylobacter species (27). Sequence types (STs) and
clonal complexes (CC; groups of isolates with a sequence type that share four or more loci [27]) were
defined using the sequence tag tool of PubMLST (58). Using this method, two clinical isolates (2016_1990

Jehanne et al. Applied and Environmental Microbiology

December 2020 Volume 86 Issue 24 e01787-20 aem.asm.org 10

https://aem.asm.org


and 2017_2288) and one validation isolate (FSIS11705596) were misidentified as C. coli and were actually
C. jejuni and, thus, were removed from the data set. The updated validation and clinical data sets then
were comprised of 299 and 147 isolates, respectively. A phylogenetic tree was constructed according to
all sequence types using GrapeTree (59). A second tree was built based on every host-segregating marker
determined in this study to make a direct comparison with the MLST tree. A multi-fasta file containing
sequences from concatenated SNPs of all isolates (n � 896) was created. Sequences were aligned using
Muscle v3.8.1551 (60), and a Newick format tree from the maximum-likelihood method was generated
using Fasttree v2.1.11 (61). The Microreact online platform was used to visualize the tree (62).

To identify candidate SNPs, genome-wide variant calling was performed primarily by aligning all
isolates from the marker determination data set (n � 450) to C. coli reference genomes. Three references
from each source were chosen to target source-specific genomic regions and capture all potential
markers, including the OR12 strain isolated from a chicken (NZ_CP019977.1) (63), HC2-48 strain isolated
from a cow (NZ_CP013034.1) (64), and ZV1224 strain isolated from a pig (NZ_CP017875.1) (65). The bwa
v0.7.17 (66) tool, developed for mapping sequences against given genomes, was used here to align each
isolate to OR12, HC2-48, and ZV1224 references. Alignment files were sorted using SAMtools v1.9 (67).
Genotypes were determined with bcftools v1.9 “mpileup” variant-calling tool (67), and 3 variant-calling
files (vcf) were generated (one for each reference). A script was written in Python (see “Data availability,”
below) to filter all SNP variations found in more than 2 out of 3 isolates. Since a source represents 33%
of the total data set (150 isolates out of 450), a proportion greater than 66% means that the same SNP
variation is likely to be found in each of the 3 selected sources. Therefore, this step enabled the removal
of weakly discriminating polymorphisms and reduced the computational time of subsequent analyses.

Identification of host-segregating markers. To identify host-segregating markers, source attribu-
tion tests of marker determination isolates (of known sources) were performed using all previously
selected SNPs individually to identify host-segregating markers. A matrix was constructed of all geno-
types in the 450-marker determination isolate data set (nucleotides were translated into numbers: 1 for
A, 2 for T, etc.). Source attribution tests were performed in triplicate for each SNP using STRUCTURE (68),
with the no admixture model, 3 putative populations (K � 3), 10,000 iterations, and a burn-in period of
10,000 iterations. For each STRUCTURE test, 60 different random isolates (20 from each population) were
set to “unknown source” (POPFLAG � 0) to estimate the probability of correct self-attribution and then
to evaluate the SNP host-segregating strength. Each SNP with 70% or more total correct self-attributions
for at least one source was selected; a minimum source attribution rate of 66% (here rounded up to 70%)
indicates that a variant is discriminating between at least 1 out of 3 sources. Additionally, genomic
sequences containing the selected SNPs were extracted from the corresponding reference (OR12,
HC2-48, or ZV1224) and annotated using the blast-x online tool (69).

Validation of the discriminatory power of host-segregating markers. To validate the capability
of the selected SNPs to discriminate isolates from different populations, STRUCTURE tests were run again
using the marker determination data set and different sets of markers: SNPs contained in the same
coding DNA sequence, all SNPs determined from OR12, HC2-48, and ZV1224 alignments, and all SNPs
from all alignments. One hundred tests were then performed using each set of SNPs and 60 random
isolates per test for self-attribution (POPFLAG � 0) (“no admixture model,” K � 3, 10,000 iterations, and
a burn-in period of 10,000 iterations). Additionally, source attribution of 299 validation isolates of known
source reservoirs, which were not used for SNP determination, was performed. Specifically, each SNP was
obtained using the SAMtools mpileup option. STRUCTURE was run 10 times using marker determination
isolates as the training data set (n � 450) and validation data set as unknown source isolates (POP-
FLAG � 0). STRUCTURE model parameters remained unchanged. Each validation isolate was attributed to
its source based on the average attribution rate of all 10 tests. An isolate was considered correctly source
reattributed with a STRUCTURE score greater than 70%. In each case, the same method was performed
simultaneously with MLST alleles to compare the discriminating strength of both types of marker (SNP
or allele).

Source attribution of clinical isolates. Similar to validation analysis, source attribution of C. coli
clinical isolates was performed using determined host-segregating markers to identify the main source
of infection in France. For each SNP (n � 259), every genotype was extracted from all clinical isolates
using the SAMtools mpileup option. STRUCTURE was run 10 times using marker determination isolates
as the training data set (n � 450) and clinical data set (n � 147) as unknown source isolates (POP-
FLAG � 0) (K � 3, 10,000 iterations, and a burn-in period of 10,000 iterations). Each clinical isolate was
attributed to a source based on the average attribution rate of all 10 tests. Source attribution of clinical
isolates was performed simultaneously with MLST alleles to compare proportions of each source
between both types of markers (SNP or allele).

Data availability. All 900 C. coli genomes are available using identifiers (IDs) listed in Data Sets S1,
S2, and S3, which provide BioSample and PubMLST IDs for NCBI and PubMLST databases, respectively.

The personal vcf filter Python script is available on GitHub under QuentinJehanne (2020, April 8),
QuentinJehanne/ccoli_2020: v1 of a personal vcf filter (v1.0.0) (https://doi.org/10.5281/zenodo.3744758).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.2 MB.
SUPPLEMENTAL FILE 2, XLS file, 0.1 MB.
SUPPLEMENTAL FILE 3, XLS file, 0.1 MB.
SUPPLEMENTAL FILE 4, XLS file, 0.04 MB.
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