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Abstract

Pupil size is an easily accessible, noninvasive online indicator of various perceptual and cognitive 

processes. Pupil measurements have the potential to reveal continuous processing dynamics 

throughout an experimental trial, including anticipatory responses. However, the relatively 

sluggish (~2 s) response dynamics of pupil dilation make it challenging to connect changes in 

pupil size to events occurring close together in time. Researchers have used models to link changes 

in pupil size to specific trial events, but such methods have not been systematically evaluated. Here 

we developed and evaluated a general linear model (GLM) pipeline that estimates pupillary 

responses to multiple rapid events within an experimental trial. We evaluated the modeling 

approach using a sample dataset in which multiple sequential stimuli were presented within 2-s 

trials. We found: (1) Model fits improved when the pupil impulse response function (puRF) was fit 

for each observer. PuRFs varied substantially across individuals but were consistent for each 

individual. (2) Model fits also improved when pupil responses were not assumed to occur 

simultaneously with their associated trial events, but could have non-zero latencies. For example, 

pupil responses could anticipate predictable trial events. (3) Parameter recovery confirmed the 

validity of the fitting procedures, and we quantified the reliability of the parameter estimates for 

our sample dataset. (4) A cognitive task manipulation modulated pupil response amplitude. We 

provide our pupil analysis pipeline as open-source software (Pupil Response Estimation Toolbox: 

PRET) to facilitate the estimation of pupil responses and the evaluation of the estimates in other 

datasets.

Introduction

Pupil size depends strongly on light levels, but it also covaries with an array of perceptual 

and cognitive processes - from attention to memory to decision making (for recent reviews, 

see Binda & Gamlin, 2017; Ebitz & Moore, 2018; Mathôt, 2018; Wang & Munoz, 2015). 
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Pupil size can be measured noninvasively and continuously, making pupillometry a 

promising tool for probing the ongoing dynamics linked to these processes. The pupil dilates 

in response to task-relevant stimuli (Hoeks & Levelt, 1993; Kang, Huffer, & Wheatley, 

2014; Wierda, van Rijn, Taatgen, & Martens, 2012; Willems, Damsma, Wierda, Taatgen, & 

Martens, 2015; Willems, Herdzin, & Martens, 2015; Zylberberg, Oliva, & Sigman, 2012) 

and arousing, interesting, or surprising stimuli (Allen et al., 2016; Hess & Polt, 1960; 

Kloosterman et al., 2015; Knapen et al., 2016; Libby, Lacey, & Lacey, 1973; Nassar et al., 

2012; Preuschoff, ‘t Hart, & Einhäuser, 2011), as well as in concert with internally-driven 

cognitive events, like mental calculation (Hess & Polt, 1964; Kahneman, Beatty, & Pollack, 

1967), memorization (Kahneman & Beatty, 1966; Kang et al., 2014), and decision formation 

(Cheadle et al., 2014; de Gee et al., 2017; de Gee, Knapen, & Donner, 2014; Lempert, Chen, 

& Fleming, 2015; Murphy, Boonstra, & Nieuwenhuis, 2016; Murphy, Vandekerckhove, & 

Nieuwenhuis, 2014; Urai, Braun, & Donner, 2017; van Kempen et al., 2019). Pupil dilation 

is mediated by activity in the locus coeruleus (LC), hypothalamus, and superior colliculus, 

which interact with the pathways that control pupillary dilation and constriction (Mathôt, 

2018; Wang & Munoz, 2015). The pupil time series may therefore carry information about 

multiple events within an experimental trial, as well as about anticipatory neural responses 

not available from behavioral reports alone, which provide retrospective rather than online 

measures.

A critical challenge in relating pupillary changes to specific perceptual and cognitive 

processes is that pupillary dynamics are relatively slow. Whereas perception and cognition 

unfold over timescales of a few hundred milliseconds, the pupil takes about 2 s to dilate and 

return to baseline in response to a single, brief stimulus (Hoeks & Levelt, 1993). However, 

the limiting factor in the speed of pupil dilation does not appear to be the dynamics of the 

neural responses that drive the pupil. For example, LC activity is tightly linked to pupil 

dilation (Aston-Jones & Cohen, 2005; de Gee et al., 2017; Joshi, Li, Kalwani, & Gold, 2016; 

Murphy, O’Connell, O’Sullivan, Robertson, & Balsters, 2014; Reimer et al., 2016; 

Varazzani, San-Galli, Gilardeau, & Bouret, 2015) and has much faster dynamics. LC 

neurons fire with a latency of ≤100 ms after a task-relevant stimulus, with a brief, phasic 

response (Aston-Jones & Cohen, 2005; Foote, Aston-Jones, & Bloom, 1980; Sara & Bouret, 

2012). Therefore, the pupil size at a given time may reflect the influence of multiple 

preceding or ongoing internal signals related to distinct perceptual and cognitive processes. 

The standard approach to pupillometry, namely measuring the pupil size time series, cannot 

disentangle the influences of these various signals on the pupil size.

To address this challenge, researchers have begun to use models to link changes in pupil size 

to the distinct internal signals elicited by specific trial events (de Gee et al., 2017; de Gee et 

al., 2014; Hoeks & Levelt, 1993; Johansson & Balkenius, 2017; Kang et al., 2014; Kang & 

Wheatley, 2015; Knapen et al., 2016; Korn & Bach, 2016; Korn et al., 2017; Lempert et al., 

2015; Murphy et al., 2016; Urai et al., 2017; van den Brink, Murphy, & Nieuwenhuis, 2016; 

van Kempen et al., 2019; Wierda et al., 2012; Willems, Damsma, et al., 2015; Willems, 

Herdzin, et al., 2015; Zylberberg et al., 2012). These signals can be thought of as the internal 

responses to trial events that drive pupil dilation, and the goal of modeling is to infer the 

properties of these internal signals, such as their amplitudes, from the pupil time series. 

Under constant luminance conditions, it is typical to model pupil dilations only, which are 
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considered to be linked to internal signals that drive the sympathetic pupillary pathway 

(Mathôt, 2018).

Pupil response models typically incorporate two principles based on the work of Hoeks and 

Levelt (1993). First, the models assume a stereotyped pupil response function (puRF), which 

describes the time series of pupil dilation in response to a brief event. These authors found 

that the puRF is well described by a gamma function, and they reported average parameters 

for that function, which have been used in many studies (de Gee et al., 2017; de Gee et al., 

2014; Kang et al., 2014; Kang & Wheatley, 2015; Lempert et al., 2015; Murphy et al., 2016; 

van Kempen et al., 2019; Wierda et al., 2012; Willems, Damsma, et al., 2015; Willems, 

Herdzin, et al., 2015; Zylberberg et al., 2012) - we refer to this specific form of the puRF as 

the “canonical puRF”. Second, the models assume that pupil responses to different trial 

events sum linearly to generate the pupil size time series; that is, they are general linear 

models (GLMs). This assumption is based on Hoeks and Levelt’s (1993) finding that, for the 

tested stimulus parameters, the pupil responded like a linear system. Incorporating these two 

principles, the pupil response to sequential trial events has been modeled as the sum of 

component pupil responses, where each component response is the internal signal time 

series associated with a single trial event convolved with the puRF. Using this approach, the 

pupil has been found to track decision periods (de Gee et al., 2017; de Gee et al., 2014; 

Lempert et al., 2015; Murphy et al., 2016; Murphy, Vandekerckhove, et al., 2014; van 

Kempen et al., 2019) and fluctuations in target identification during a rapid stimulus 

sequence (Wierda et al., 2012; Zylberberg et al., 2012) - findings that reveal the faster 

internal dynamics underlying the measured pupil time series.

Despite the promise of using such models to link distinct pupillary responses to specific trial 

events, there is currently no standard procedure for modeling the pupil time series. Hoeks 

and Levelt (1993) estimated the number, timing, and amplitudes of impulse signals that 

drove pupil dilations. Later studies assumed that every stimulus presentation was associated 

with a concurrent impulse signal and estimated only their amplitudes. Some studies have 

also included longer, cognitive events, like a decision period (de Gee et al., 2017; de Gee et 

al., 2014; Lempert et al., 2015; Murphy et al., 2016; van Kempen et al., 2019), or extra 

parameters to account for slow drifts in pupil size across the trial (Kang et al., 2014; Kang & 

Wheatley, 2015; Wierda et al., 2012; Willems, Damsma, et al., 2015; Willems, Herdzin, et 

al., 2015; Zylberberg et al., 2012). Most studies have used the canonical puRF (de Gee et al., 

2017; de Gee et al., 2014; Kang et al., 2014; Kang & Wheatley, 2015; Lempert et al., 2015; 

Murphy et al., 2016; van Kempen et al., 2019; Wierda et al., 2012; Willems, Damsma, et al., 

2015; Willems, Herdzin, et al., 2015; Zylberberg et al., 2012), but others used more 

complicated puRFs that could also capture pupil dilations and constrictions in response to 

changes in illumination (Korn & Bach, 2016; Korn et al., 2017), or that separately modeled 

transient and sustained components of the pupil dilation (Spitschan et al., 2017). 

Importantly, these pupil-modeling methods have not been systematically evaluated or 

compared, hindering the adoption of a field-wide standard.

Here we evaluate GLM procedures for modeling the pupil time series for trials with multiple 

rapid sequential events, under constant illumination. We conduct factorial model comparison 

to determine which parameters should be included, and we perform several validation and 
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reliability tests using the best model. Based on the results, we recommend a specific model 

structure and fitting procedure for more general adoption and future testing. Critically, we 

found that timing parameters not typically included in pupil GLMs substantially improve 

model fits. Our findings indicate that puRF timing should be estimated for each observer, 

rather than assuming the canonical puRF, and that the internal signals driving the pupil 

response are not necessarily concurrent with stimulus onsets. We provide an open-source 

MATLAB toolbox, the Pupil Response Estimation Toolbox (PRET), which fits pupil GLMs 

to obtain event-related amplitudes and latencies, estimates parameter reliabilities, and 

compares models.

As a case study, here we analyzed data for a study on temporal attention - the prioritization 

of sensory information at specific points in time (Denison, Heeger, & Carrasco, 2017). 

Combining information about the expected timing of sensory events with ongoing task goals 

improves our perception and behavior (review by Nobre & van Ede, 2018). By studying the 

effects of temporal attention on perception, we can better understand the dynamics of visual 

perception. To understand these dynamics, a critical distinction must be made between 

temporal attention—prioritization of task-relevant time points—and temporal expectation—

prediction of stimulus timing regardless of task relevance. Here, we manipulated temporal 

attention while equating expectation by using precues to direct voluntary temporal attention 

to specific stimuli in predictably timed sequences of brief visual targets (Denison et al., 

2017; Denison, Yuval-Greenberg, & Carrasco, 2019; Fernandez, Denison, & Carrasco, 

2019). Within the temporal attention dataset, we also compared two kinds of tasks—

orientation discrimination and orientation estimation—which involved identical stimulus 

sequences and only differed in the required report. It is likely that estimation has a higher 

cognitive demand than discrimination, as it requires a precise response, as opposed to a two-

alternative forced choice. Thus the physical stimuli were fixed while the cognitive demand 

varied between tasks. This dataset provided a good case study to evaluate GLM procedures 

for modeling the pupil time series as it had multiple rapid sequential events, required 

temporally precise cognitive control to attend to a relevant time point that varied from trial to 

trial, and included an orthogonal task manipulation that involved different cognitive 

demands for identical stimuli.

Methods

Data set

We reanalyzed eye-tracking data collected in a recent study on temporal attention by 

Denison, Heeger and Carrasco (2017). Thus behavioral procedures were identical to those 

previously reported (Denison et al., 2017; Denison et al., 2019). To maximize power of the 

pupil analysis, we combined the data from the two experiments in that study with identical 

stimulus sequences (Experiments 1 and 3). Experiment 1 used an orientation discrimination 

task, so we refer to it here as the Discrimination experiment. Experiment 3 used an 

orientation estimation task, so we refer to it here as the Estimation experiment. The stimuli 

were similar across experiments: on each trial, human observers were presented with a 

predictably timed sequence of two target gratings-which we refer to as T1 and T2-and 

judged the orientation of one of these gratings. An auditory precue before each sequence 
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directed temporal attention to one or both grating times, and an auditory response cue after 

each sequence instructed observers which grating’s orientation to report.

Observers

The observers were the same as in Denison et al. (2017), except that eye-tracking data from 

four observers in the Discrimination experiment could not be used for pupil analysis for 

technical reasons (e.g., excessive blinking: blink overlapped with response cue in >20% of 

trials). To better equate the number of observers in each experiment for the present study, we 

collected data from three new observers for the Discrimination experiment (as also reported 

in Denison et al., 2019). This gave 21 total observer data sets: 9 in Discrimination and 12 in 

Estimation. Three observers participated in both experiments, including author R.N.D. 

Therefore, 18 unique observers (10 female, 8 male; aged 19–43 years) are included in the 

present study. All observers provided informed consent, and the University Committee on 

Activities involving Human Subjects at New York University approved the experimental 

protocols. All observers had normal or corrected-to-normal vision.

Stimuli

Stimuli were generated on an Apple iMac using Matlab and Psychophysics Toolbox 

(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997). They were displayed on a 

gamma-corrected Sony Trinitron G520 CRT monitor with a refresh rate of 100 Hz at a 

viewing distance of 56 cm. Observers’ heads were stabilized by a head rest. A central white 

fixation “x” subtended 0.5° visual angle. Visual target stimuli were 4 cpd sinusoidal gratings 

with a 2D Gaussian spatial envelope (standard deviation 0.7°), presented in the lower right 

quadrant of the display centered at 5.7° eccentricity (Figure 1a). Stimuli were high contrast 

(64% or 100%, which we combined as there were no behavioral differences). Placeholders, 

corners of a 4.25° × 4.25° white square outline (line width 0.08°) centered on the target 

location, were present throughout the display to minimize spatial uncertainty. The stimuli 

were presented on a medium gray background (57 cd/m2). Auditory precues were high 

(precue T1: 784 Hz; G5) or low (precue T2: 523 Hz; C5) pure sine wave tones, or their 

combination (neutral precue). Auditory stimuli were presented on the computer speakers.

Behavioral procedures

Basic task and trial sequence.—Observers judged the orientation of grating patches 

that appeared in short sequences of two target stimuli per trial (T1 and T2). Targets were 

presented for 30 ms each at the same spatial location, separated by stimulus onset 

asynchronies (SOAs) of 250 ms (Figure 1b). An auditory precue 1000 ms before the first 

target instructed observers to attend to one or both of the targets. Thus there were three 

precue types: attend to T1, attend to T2, or attend to both targets. Observers were asked to 

report the orientation of one of the targets, which was indicated by an auditory response cue 

500 ms after the last target. The duration of the precue and response cue tones was 200 ms. 

The timing of auditory and visual events was the same on every trial.

Discrimination task.—In the Discrimination experiment, observers performed an 

orientation discrimination task (Figure 1b). Each target was tilted slightly clockwise (CW) 

or counterclockwise (CCW) from either the vertical or horizontal axis, with independent tilts 
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and axes for each target, and observers pressed a key to report the tilt (CW or CCW) of the 

target indicated by the response cue, with unlimited time to respond. Tilt magnitudes were 

determined separately for each observer by a thresholding procedure before the main 

experiment. Observers received feedback at fixation (correct: green “+”; incorrect: red “−”) 

after each trial, as well as feedback about performance accuracy (percent correct) following 

each experimental block.

Estimation task.—In the Estimation experiment, observers performed an orientation 

estimation task (Figure 1b). Target orientations were selected randomly and uniformly from 

0–180°, with independent orientations for each target. Observers estimated the orientation of 

the target indicated by the response cue by adjusting a grating probe to match the perceived 

target orientation. The probe was identical to the target but appeared in a new random 

orientation. Observers moved the mouse horizontally to adjust the orientation of the probe 

and clicked the mouse to submit the response, with unlimited time to respond. The absolute 

difference between the reported and presented target orientation was the error for that trial. 

Observers received feedback at fixation after each trial (error <5°, green “+”; 5–10°, yellow 

“+”; ≥10°, red “−”). Additional feedback after each block showed the percent of trials with 

<5° errors, which were defined to observers as “correct”.

Training and testing sessions.—All observers completed one session of training prior 

to the experiment to familiarize them with the task and, in the Discrimination experiment, 

determine their tilt thresholds. Thresholds were selected to achieve ~79% performance on 

neutral trials. Observers completed 640 trials across 2 one-hour sessions. All experimental 

conditions were randomly interleaved across trials.

Eye data collection

Pupil size was continuously recorded during the task at a sampling frequency of 1000 Hz 

using an EyeLink 1000 eye tracker (SR Research). Raw gaze positions were converted into 

degrees of visual angle using the 5-point-grid calibration, which was performed at the start 

of each experimental run. Online streaming of gaze positions was used to ensure central 

fixation (<1.5° from the fixation cross center) throughout the experiment. Initiation of each 

trial was contingent on fixation, with a 750 ms minimum inter-trial interval. Observers were 

required to maintain fixation, without blinking, from the onset of the precue until 120 ms 

before the onset of the response cue. If observers broke fixation during this period, the trial 

was stopped and repeated at the end of the block.

Preprocessing

Data files from the eye tracker were imported to Matlab to perform all preprocessing and 

modeling with custom software. The raw time series from each session was epoched into 

trials spanning from −500 to 3500 ms, relative to the precue at 0 ms. Blinks were 

interpolated trial by trial using a cubic spline interpolation method (Mathôt, 2013). All trials 

were individually baseline normalized by calculating the average pupil size over the region 

from −200 to 0 ms, then calculating the percent difference from this baseline at each point 

along the time series:
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xnorm = x − baseline
baseline × 100%, (1)

where xnorm is the normalized data and x is the raw data. We normalized the time series in 

this way to obtain meaningful units of percent change from baseline, but we note there are 

also arguments for a purely subtractive baseline correction procedure (Mathôt, Fabius, 

Heusden, & Stigchel, 2018; Reilly, Kelly, Kim, Jett, & Zuckerman, 2018). Trials were 

grouped into conditions depending on the precue (T1, T2, neutral), and the mean time series 

was calculated across trials in each condition for each observer.

Pupil modeling

GLM modeling framework.—Measured pupil size time series were modeled as a linear 

combination of component pupil responses (Figure 2). A component pupil response is the 

predicted pupil size time series associated with a single internal (neural) signal that leads to 

pupil dilation. Mathematically, an internal signal was represented as a time series concurrent 

with the measured pupil size time series. The component pupil response for a given internal 

signal was calculated by convolving the signal time series with a pupil response function. 

The general pupil response function takes the form

ℎ t = tne−nt/tmax, (2)

where h is the pupil size, t is the time in ms, n controls the shape of the function, and tmax 

controls the temporal scale of the function and is the time of the maximum (Hoeks and 

Levelt 1993) (Figure 2a). For a given measured pupil size time series, each internal signal 

was convolved with the same pupil response function. Each component pupil response was 

assumed to be dilatory.

We assumed there was a transient internal signal (de Gee et al., 2014; Hoeks & Levelt, 1993; 

Wierda et al., 2012) associated with each event in the trial sequence: the precue, T1, T2, and 

the response cue. Each of these event-related signals took the form of a Dirac delta function. 

An additional internal signal could be included to model a constant, sustained signal 

associated with task engagement (de Gee et al. 2014). This task-related signal took the form 

of a boxcar function, with nonzero values starting at the precue and ending at the median 

response time of the observer being modeled. Thus, we modeled our measured pupil size 

time series as the linear combination of up to four event-related and one task-related 

component pupil responses.

Model parameters.—We fit models of up to eleven parameters to a given pupil size time 

series. The possible parameters were: internal signal amplitudes and latencies for each trial 

event; internal signal amplitude for the task-related response or alternatively a slope 

parameter specifying a linear drift across the trial; one parameter specifying the timing of 

the pupil response function; and one baseline shift parameter.

Each event-related signal had an amplitude parameter and a latency parameter associated 

with it. The amplitude parameter was the value of the nonzero point of the delta function and 
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indicated the magnitude of the internal signal, and thus determined the magnitude of the 

component pupil response associated with it. The latency parameter was the time (in ms) of 

the nonzero value, relative to the time of its corresponding event. The pupil latency could be 

positive, after the event, or negative, before the event. As the timing of the stimuli was 

perfectly predictable -observers knew in advance when the stimuli would appear- we 

allowed for the possibility that observers could start attending before the stimulus appeared, 

driving pupil dilation in advance of the stimulus. The task-related signal only had an 

amplitude parameter associated with it because it was assumed to start at the beginning of 

the trial.

The pupil response function that was convolved with each signal had two parameters: tmax, 

which controls the temporal scale and time of the peak, and n, which controls the shape of 

the function. Only tmax was estimated while n was set to the canonical value of 10.1 (Hoeks 

& Levelt, 1993). The tmax parameter can be interpreted as the time it takes an observer’s 

pupil to dilate maximally in response to an internal signal. The pupil response function was 

normalized such that the event-related and task-related amplitude parameters indicated the 

percentage increase in pupil size attributable to the corresponding signal. The pupil response 

function was normalized to a maximum value of 1, so that an amplitude value of 1 

corresponded to a 1% increase in pupil size from baseline. For the task-related amplitude, 

the puRF was normalized such that the puRF convolved with the boxcar had a maximum 

value of 1. Thus, a task-related amplitude of 1 also corresponded to a 1% increase in pupil 

size from baseline to peak size.

The final parameter was a baseline shift parameter we termed the y-intercept (y-int). The y-

int parameter was simply a shift along the y-axis of the entire predicted pupil size time 

series. We included this in the model because we noticed that for some observers, although 

all trials were baseline-normalized during preprocessing based on a time window before the 

precue, pupil size was decreasing during this window and continued to decrease until shortly 

after the precue. This meant that pupil dilations during the trial sequence started from a 

value below the calculated baseline. Without accounting for this shift in baseline with the y-

int parameter, the model would underestimate the amplitude of the component pupil 

responses.

Model comparison and selection.—Previous linear models based on the pupil 

response function only estimated the amplitude of component pupil responses (e.g., de Gee 

et al., 2014; Wierda et al., 2012). The component responses were assumed to onset at the 

time of the corresponding trial event, and pupil response functions were assumed to be 

identical across observers. However, these assumptions have never been systematically 

evaluated. Here, we asked whether introducing additional timing parameters would allow 

more accurate modeling of the pupil response. In addition, the characteristic slow pupil 

dilation throughout a trial has been modeled in different ways, as either a linear drift (Wierda 

et al., 2012) or a sustained task-related response convolved with the pupil response function 

(de Gee et al., 2014). We compared these two possibilities.

We compared 24 different models (Table 1). These models included all permutations of 

latency, tmax, and y-int as fixed vs. free parameters and three different forms of the task-
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related component. Fixed values are reported in Table 1. The three task-related components 

tested were a boxcar function convolved with the pupil response function, a linear function, 

and no task-related component. The boxcar function was nonzero from 0 ms (the onset of 

the precue) to the median response time for a given observer and had one amplitude 

parameter for the height of the boxcar. The linear function had a slope parameter and a fixed 

intercept of 0%. It represented a linear drift throughout the whole trial and did not depend on 

response time.

Amplitude parameters for each trial event were always estimated. Each model was fit to the 

mean time series for each condition and observer. We also checked that the results held 

when fitting to the single trial time series; in this case, baseline-corrected single trial time 

series were concatenated and fit to concatenated model time series.

To compare models, the Bayesian Information Criterion (BIC) was calculated for each 

model and observer across conditions and averaged at the group level to get one metric per 

model. The model with the lowest metric for most observers was selected as the best model 

and used for further analysis. The BIC was chosen as the comparison metric to account for 

the differing numbers of parameters among models.

We also assessed cross-validated R2 for each model using a 4-fold cross-validation 

procedure, in which models were fit to 75% of the data and tested on the remaining 25%. 

Cross-validated R2 was calculated by comparing the model prediction to the mean across 

trials of the held-out data for each fold and averaging across folds. A noise ceiling for R2 

was calculated by comparing the mean across trials of the fitted data to the mean across 

trials of the held-out data for each fold and averaging across folds. R2 values were computed 

for each model for each observer and then averaged across observers.

Parameter estimation.—Model parameters were estimated for the mean pupil time series 

for each condition and observer using a two-phase procedure. In both phases, the cost 

function for determining goodness of fit was defined as the sum of the squared errors 

between the measured pupil time series and the predicted (model-generated) pupil time 

series in the time window from 0 to 3500 ms. First, the cost function was evaluated at 2000 

sets of parameter values sampled from independent uniform distributions of each parameter. 

These distributions were bounded by the parameter constraints described below. Second, 

constrained optimizations (MATLAB fmincon) were performed starting from the 40 sets of 

parameter values with the lowest cost from the first phase. The set of optimized parameter 

values minimizing the cost function was selected as the best estimate.

Parameter constraints were selected to ensure parameters could vary meaningfully within 

physiologically feasible ranges. Event and task-related amplitudes were constrained to the 

range of 0 to 100, meaning that any single internal signal could not evoke a pupil response in 

excess of 100 percent change from baseline. This range also enforces that pupil responses 

refer to dilation as opposed to constriction. Event-related latencies were constrained to a 

range of −500 to 500 ms. The tmax value was constrained to a range of 0 to 2000 ms. The y-

int parameter was constrained to a range of -20 to 20 percent change from baseline. The 
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slope parameter during model comparison was constrained to a range of 0 to 50 percent 

change over the trial window of 3500 ms.

Bootstrapping procedure for parameter estimation.—To obtain robust parameter 

estimates, and to quantify the uncertainty in the parameter estimates due to both noise in the 

data and variability in the fitting procedure, we used bootstrapping. Parameter estimation 

was performed on 100 bootstrapped mean time series for each condition and observer. Each 

bootstrapped time series was formed by randomly resampling the underlying set of trials 

with replacement, with the number of trials per sample equal to the original number of trials. 

This produced 100-element distributions of each model parameter for each condition and 

observer. The median of a given parameter distribution was taken as the bootstrapped 

estimate of that parameter. The uncertainty of this estimate was quantified as the 95 percent 

confidence interval.

Parameter recovery.—To evaluate the parameter estimation procedure, we fit the model 

to artificial data generated by the model, with no noise. Because the form of the noise in 

pupil data is unknown, we relied on the bootstrapping procedure (in which the noise comes 

from the data itself) to quantify the uncertainty of parameter estimates and performed 

parameter recovery only to verify the accuracy of the fitting procedure and check for 

redundancies within the model structure. A set of 100 artificial time series was simulated by 

generating 100 sets of model parameters independently sampled from uniform distributions 

and calculating the resulting time series for each. Event and task-related amplitude values 

were sampled from a range of 0 to 10%, latency values were sampled from −500 to 500 ms, 

tmax values were sampled from 500 to 1500 ms, and y-int values were sampled from −4 to 

4%. Response time values used in the boxcar function for the task-related component varied 

from 2350 to 3350 ms. The parameter estimation procedure was performed on each artificial 

time series (without bootstrapping), producing an output set of parameters for each input set 

of parameters. To evaluate the parameter recovery, input parameters were plotted against 

output parameters and the Pearson correlation coefficient was calculated.

Statistical testing

Hypothesis testing was performed using the median of the parameter estimates from the 

bootstrapping procedure. A linear mixed effects model was used to analyze the combined 

data across two experiments, each with a within-observer design, and in which three 

observers completed both experiments. A linear mixed effects model was created using the 

lme4 package in R, with experiment and precue condition as fixed effects and observer as a 

random effect. We tested for main effects and interactions by approximating likelihood ratio 

tests to compare models with and without the effect of interest.

Results

We evaluated the ability of general linear models (GLMs) to capture pupil area time series 

during experimental trials with rapid sequences of events. We tested the model on a sample 

data set in which four sequential stimuli were presented within 2.25 s on each trial (Figure 

1a,b, see Methods). Given that 2 s is the approximate length of a typical pupil impulse 
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response function (Hoeks & Levelt, 1993), we asked whether pupil responses to the 

successive events within a trial can be meaningfully recovered and what model form would 

best describe the pupil area time series over the course of a trial.

The data set included two experiments with the same stimulus sequence but different types 

of behavioral reports (orientation discrimination or orientation estimation) at the end of each 

trial. The experiments were previously reported with only the behavioral analysis (Denison 

et al., 2017) and with microsaccade analysis (Denison et al., 2019). Pupil area time series, 

averaged across trials for each experimental condition, were highly consistent within 

individual observers but varied considerably across observers (Figure 1c), motivating an 

individual-level modeling approach.

The modeling framework assumed that the pupil response time series is a linear combination 

of component responses to various trial events, along with a task-related pupil response in 

each trial (Figure 2) (de Gee et al., 2014; Hoeks & Levelt, 1993; Wierda et al., 2012). Each 

trial event was modeled as an impulse of variable amplitude (Figure 2b), which was 

convolved with a pupil response function (Figure 2a) to generate the corresponding 

component response (Figure 2c). The sum of all component responses was the predicted 

pupil time series (Figure 2c).

Model comparison: Timing parameters improve fits

We compared 24 alternative models to determine what model structure would allow the best 

prediction of the pupil response time series. In particular, we asked whether the addition of 

two timing parameters would improve model fits over that of the standard model. The first 

timing parameter was event latency: a trial event impulse could have a non-zero latency with 

respect to its corresponding event, rather than being locked to the event onset. The second 

timing parameter was tmax: the time-to-peak of the pupil impulse response function could 

vary across individuals. We also tested different forms of the sustained, task-related pupil 

response and the inclusion of a baseline parameter (y-int) to account for differences not 

removed by pre-trial baseline normalization. We used factorial model comparison (Keshvari, 

van den Berg, & Ma, 2012; Ma, 2018; van den Berg, Awh, & Ma, 2014) to test the 

contribution of each of these parameters to predicting pupil response time series (Table 1).

All four tested parameters (event latency, tmax, task-related component, and y-int) 

significantly improved model fits (Figure 3; multi-way within-observers ANOVA on BIC 

scores, main effects of latency: F(1,20) = 143.39, p = 1.4e–10, mean across observers and 

models ΔBIC = −5466; tmax: F(1,20) = 76.59, p = 2.8e–08, ΔBIC = −10324; task-related: 

F(2,40) = 19.88, p = 1.0e–06, ΔBIC (box minus linear) = −1379, ΔBIC (box minus none) = 

−8558; y-int: F(1,20) = 20.53, p = 2.0 e–04, ΔBIC = −6865). We also observed interactions 

between some factors including task-related component by tmax: F(2,40) = 23.66, p = 1.7e–

07; tmax by y-int: F(1,20) = 8.27, p = 9.4e–03; task-related component by latency: F(2,40) = 

3.25, p = 4.9e–02; tmax by latency: F(1,20) = 7.00, p = 1.6e–02. The best model for most 

observers (model 1, best for 11 out of 21 observers) included all the tested parameters, with 

the task-related component modeled as a boxcar convolved with the pupil response function. 

The model fit the mean time series data well (mean across observers, R2 = 0.99; cross-

validated R2 = 0.67, 98% of noise ceiling). The single-trial R2 was 0.20; this value reflects 
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the noise at the single-trial level. Model 2 (best for 6 out of 21 observers), in which the task-

related component was modeled as a linear function of time but which was otherwise 

identical to model 1, performed similarly (R2 = 0.99; cross-validated R2 = 0.68, 98% of 

noise ceiling; single-trial R2 = 0.20). These two types of task-related components also 

performed similarly at the factor level (ΔBIC = −1379). Otherwise, model 1 was 

significantly better than every other model (paired t-tests of model 1 BIC vs. each model’s 

BIC, all t > 3.09, all p < 5.8e–03 uncorrected; with Bonferroni correction for 23 pairwise 

comparisons, all but model 3 had p < 0.05). Model 3, which was identical to Models 1 and 2 

but with no task-related component, was the only other model that was best for some 

individuals, 4 out of 21 observers. We found a similar pattern across models for cross-

validated R2 as well as when we fit to single-trial data. Model 1 was consistently the best 

model, and latency, tmax, and task-related parameters improved model fits. Therefore, the 

addition of timing parameters to the standard model substantially improved model fits.

Our final test of the model’s structure was to ask whether modeling all trial events was 

needed to predict the pupil area time series. In particular, the two visual target events were 

separated by only 250 ms, which is short compared to the dynamics of the pupil response. 

To test whether the model captured separate pupil responses to the two targets, we compared 

models that included either two target events (model 1) or only one target event. The two-

target model outperformed the one-target model, t(20) = 4.23, p = 4.1e-04, consistent with 

separate pupil responses to the two rapidly presented targets.

Validation of the fitting procedure: Parameter recovery and tradeoffs

We evaluated the best model (model 1) and fitting procedures in several ways. First, we 

sought to validate the model and fitting procedures by performing parameter recovery on 

simulated data. Redundancies in the model or lack of precision to resolve the unique 

contributions of different trial events to the pupil time series would result in parameter 

tradeoffs, and noise in the fitting procedure from stochastically searching a high-dimensional 

parameter space would result in variability in the parameter estimates. We performed 

parameter recovery to assess these possibilities by generating 100 simulated time series with 

known parameter values and then fitting the model. Parameter estimates from simulated data 

tended to be similar to the true values for the entire range of tested values (strong diagonals 

on the 2D histograms in Figure 4 and correlations in each panel). This was also the case 

when the range of T1-T2 SOAs was restricted to ±100 ms around the experimental SOA of 

250 ms (Figure S1), as well as when noise on single trials was simulated (Figure S2). 

Parameter recovery accuracy was lowest for the T1 and T2 amplitudes, likely because of 

their close temporal proximity. Figure S1 indicates the level of recovery precision that can 

be expected for the shortest SOA range tested (r = 0.520.54 vs. r = 0.60–0.69 for all SOAs). 

Accuracy for the timing parameters was generally high.

We assessed parameter tradeoffs first by examining correlations between estimated values 

for pairs of parameters in the simulated data. No correlations were significant after 

Bonferroni correction for multiple comparisons (Figure S3). The lack of significant 

correlations between parameters in the simulated data indicates that parameter tradeoffs are 

not inherent to the structure of the model or the fitting procedure.
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We next assessed parameter tradeoffs by examining correlations between pairs of parameter 

values (bootstrap medians) estimated from the real data. All event-related amplitudes were 

positively correlated with each other (r > 0.61, p < 1.2e–07). Certain event latencies were 

also positively correlated with each other (T1 with T2, T2 with response cue; r > 0.44, p < 

2.7e–04). These correlations are likely to arise from true statistical dependencies in the data; 

e.g., some observers have generally stronger pupil dilation responses, across all events. In 

addition to these positive correlations, T1 latency negatively correlated with event-related 

amplitudes (precue, T1, T2; r < −0.44, p < 3e–04) and precue latency negatively correlated 

with task-related amplitude (r = −0.48, p < 6.1e–05). tmax negatively correlated with y-int (r 

= −0.43, p = 4.7e–04) and positively correlated with response cue latency (r = 0.53, p = 

6.4e–06). The negative correlations could arise from parameter tradeoffs driven by noise in 

the real data, or from true statistical dependencies in the pupil responses.

Reliability of parameter estimates for individual observers

We next evaluated the reliability of the parameter estimates in real data. Real data have 

multiple sources of noise, some of which are unknown, so to estimate the reliability of 

parameter estimates given such noise, we used a bootstrapping procedure. This procedure 

allowed us to estimate the reliability of parameter estimates for individual observers. 

Parameter estimates and their reliabilities for an example observer are shown in Figure 5. 

We define “reliability” as the range of the 95% confidence interval (CI). The mean 

confidence interval for each parameter estimate is shown in Figure 5. The mean reliability of 

different event types were: trial event amplitude: 2.21%; task-related amplitude: 2.75%; trial 

event latency: 342 ms; tmax: 334 ms; y-int: 0.74%. Due to this variability across bootstrap 

samples, we recommend using the median of the bootstrapped distribution as a robust 

parameter estimate, and we adopt this practice going forward.

Consistency of parameter estimates within observers and variability across observers

We next investigated the consistency of parameter estimates within each observer as well as 

their variability across observers. To do this, we measured the consistency of parameter 

estimates for a given observer across independent sets of trials (Figure 6). We split the trials 

for each observer based on the experimental condition (3 conditions per observer: precue T1, 

T2, neutral). Parameter estimates were generally consistent for individual observers, though 

latency was less consistent than the other parameters. In contrast to the within-observer 

consistency, all parameters varied substantially across observers. In particular, the tmax 

parameter, which describes the dynamics of the pupil response function, was highly 

consistent within individual observers but varied over a large range across observers (from 

~700 to ~1600 ms). These findings underscore the importance of modeling individual pupil 

response time series rather than only considering a group average time series, and they 

further show the importance of modeling individual observer pupil response dynamics rather 

than assuming a fixed pupil impulse response function. Averaging observers would blur the 

distinct individual dynamics; using a single puRF for all observers would result in 

misleading parameter estimates due to model mismatch.
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Parameter estimates for the temporal attention experiment: Amplitude depends on task

To demonstrate how modeling can reveal cognitive modulations of the pupil response, we 

used the developed modeling procedure to evaluate the parameter estimates in the 

experimental data. We calculated separate estimates for each precue type (T1, T2, neutral), 

separately for the Discrimination and Estimation experiments, which had the same stimulus 

sequence but different types of behavioral reports (Figure 7). No differences were found 

among the different precue types (χ2(2) < 5.77, p > 0.05 for all parameters). There were also 

no interactions between precue and experiment (χ2(2) < 3.70, p > 0.15). So here we report 

the mean across precues for each experiment.

Amplitude estimates for trial events were 1–7% change from baseline, and the amplitude of 

the decision-related signal was 2.18% (Discrimination) or 3.44% (Estimation). The mean y-

int was slightly below zero, driven by a few observers with larger negative y-int values 

(Figure 6), and did not differ between experiments (−0.50% for Discrimination, −0.54% for 

Estimation). Interestingly, amplitude estimates were higher for all trial events in the 

Discrimination experiment compared to the Estimation experiment (Figure 7a, χ2(1) > 

32.62, p < 1.3e–7 with Bonferroni correction for multiple comparisons across parameters). 

To assess whether this effect was present at an individual observer level, we examined the 

trial event amplitudes of the three observers who participated in both experiments. We found 

that two out of the three observers, like the group data, had higher event amplitudes for 

Discrimination compared to Estimation (differences of 6.20% and 8.49%), whereas one had 

similar amplitudes (difference of −0.24%). No other task differences survived correction for 

multiple comparisons.

Latency estimates were similar for the two experiments (Figure 7b, χ2(1) < 1.75, p > 0.18). 

The latency estimate for T2 was similar to the event onset, (51 ms for Discrimination, 19 ms 

for Estimation, comparison to zero latency: χ2(1) = 2.62, p = 0.11). However, the latency 

estimate for T1 was well before T1 onset (−290 ms for Discrimination, −182 ms for 

Estimation, comparison to zero: χ2(1) = 65.88, p = 1.9e–15 corrected). The precue latency 

estimate was also well before the precue onset (−157 ms for Discrimination, −221 ms for 

Estimation, comparison to zero: χ2(1) = 32.13, p = 5.8e–8 corrected). Meanwhile, the 

response cue latency estimate was delayed relative to the response cue onset (169 ms for 

Discrimination, 292 ms for Estimation, comparison to zero: χ2(1) = 89.84, p < 8e–16 

corrected). The mean tmax was 1,053 ms for Discrimination and 1,296 for Estimation, with 

no significant difference (χ2(1) = 0.12, p = 0.73). Thus the two experiments had similar 

latency but different amplitude profiles, with larger event-related pupil responses in the 

Discrimination than the Estimation experiment.

Discussion

Pupil size is an accessible, continuous measure that reflects rapidly changing internal states, 

but the pupil response itself is relatively slow. Linear modeling has shown promise for 

inferring the dynamics of internal signals that drive pupil responses, but as has been noted 

(Bach et al., 2018), these methods have not been systematically evaluated. To work toward a 

standard pupil modeling approach, here we compared different pupil models, validated 

modeling procedures, and evaluated the reliability of the best model. Based on the results, 
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we recommend a specific pupil model and fitting procedure, and we quantify the uncertainty 

of the resulting parameter estimates. The best model includes timing parameters that are not 

usually fit, indicating that more precise modeling of pupil dynamics may improve the 

estimation of pupillary responses to rapid events.

Model validation

Despite the increasing use of linear models of pupil size to capture pupillary time series to 

multiple sequential events, such methods have not been well validated. Our best model and 

fitting procedures performed well on simulated data, with reasonably accurate parameter 

recovery. The model also fit the real data well. The unknown nature of noise in the pupil 

data limited our ability to simulate the impact of noise on parameter recovery, so we also 

quantified the uncertainty of the parameter estimates in the real data. Note that these 

uncertainty estimates are expected to depend on the number of trials. We also identified a 

few parameter tradeoffs in the real data. Both uncertainty and tradeoffs should be considered 

when interpreting parameter estimates and potentially when designing experiments. For 

example, given the ~350 ms 95% confidence interval on latency estimates, it may be helpful 

to separate successive trial events by at least that interval, if possible. The results suggest 

that the current model is reasonable as a current standard and can serve as a starting point for 

future work.

Temporal properties

The inclusion of two timing parameters, event latency and tmax, improved the model’s ability 

to fit the pupil size time series. With respect to latency, internal signals related to the precue 

and T1 events were estimated to occur before the events themselves. This finding suggests 

that these internal signals anticipated the stimulus onsets, which were predictable. Pupil 

dilation in advance of a predictable stimulus has been observed previously and found to 

depend on temporal expectation (Akdoğan, Balcı, & van Rijn, 2016; Bradshaw, 1968) and 

upcoming task demands (Irons, Jeon, & Leber, 2017). Allowing for variable latency in pupil 

models may therefore be particularly important when observers have expectations about the 

timing of upcoming events. More broadly, latency estimates can provide information about 

anticipatory processes related to the observer’s task.

Most previous pupil modeling studies (de Gee et al., 2017; de Gee et al., 2014; Kang et al., 

2014; Kang & Wheatley, 2015; Lempert et al., 2015; Murphy et al., 2016; van Kempen et 

al., 2019; Wierda et al., 2012; Willems, Damsma, et al., 2015; Willems, Herdzin, et al., 

2015; Zylberberg et al., 2012) have used the canonical puRF proposed by Hoeks and Levelt 

(1993), which assumes that all observers have identical pupil dynamics. We found, on the 

contrary, that fitting the time-to-peak (tmax) of the puRF improved model fits. The value of 

tmax varied widely across observers but was highly consistent for a given observer, 

suggesting that tmax is an observer-specific property. The tmax values we estimated for 

individual observers were in line with Hoeks and Levelt’s original estimates using a single 

stimulus event, which ranged from 630–1300 ms and showed some variability between 

auditory vs. visual events (Hoeks & Levelt, 1993). van den Brink et al. (2016) also varied 

tmax, but did so by setting it to the latency of the maximum dilation in the time series, rather 
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than fitting it. Here we found that individual puRFs can be estimated from a multi-event time 

series and should be used instead of the canonical puRF to improve pupil modeling.

Despite the sluggishness of the pupillary response, a model with two target events 

outperformed a model with only one target event. This suggests that the two target events 

were associated with separate pupil dilations, even though they were separated by only 250 

ms. Due to the early response to T1, however, the estimated dilations occurred further apart 

in time, closer to 500 ms. Individual observer latency estimates had a reliability of ~350 ms, 

indicating that while separate pupillary responses to events close in time seem to be 

recoverable, one should take care in interpreting their exact timing. The interpretation of 

some estimated latencies in the current data set was also limited by the fact that they fell at 

the boundary of the allowed range, −500 ms.

Dependence on task and temporal attention

The event-related pupil response amplitude depended on the task observers were 

performing, with larger amplitudes in the Discrimination compared to the Estimation task. 

This finding demonstrates that even when the stimulus sequence is identical, cognitive 

factors can influence the pupil response, consistent with a large body of research (Ebitz & 

Moore, 2018; Einhäuser, 2016; Mathôt, 2018). Here, a relatively modest change in task 

instruction - discrimination vs. estimation - changed the amplitudes of pupillary responses to 

sensory stimuli. The larger amplitude effect for Discrimination could have been due, at least 

in part, to a larger baseline pupil size in the Estimation task, perhaps related to a higher 

cognitive load, as tonic size and phasic response amplitudes are inversely related (Aston-

Jones, Rajkowski, Kubiak, & Alexinsky, 1994; de Gee et al., 2014; Gilzenrat, Nieuwenhuis, 

Jepma, & Cohen, 2010; Murphy, Robertson, Balsters, & O’Connell R, 2011). We were 

unable to directly compare baseline pupil size across tasks, however, because the tasks were 

performed in separate sessions. Task affected pupil response amplitudes to trial events more 

than the sustained, task-related amplitude, and had no effect on pupil response latencies. 

These results show how models can help specify the effects of cognitive manipulations on 

pupillary responses.

In contrast, we found no reliable impact of temporal attention on any model parameter, 

despite finding overall effects of temporal expectation in the form of anticipatory responses 

to the predictably timed stimuli, as well as behavioral effects of temporal attention in the 

same experiments (Denison et al., 2017). While it is difficult to draw any strong conclusions 

from a null result, our findings suggest that the effects of voluntary temporal attention on 

pupil size may be subtle, if not absent. Previous research has linked changes in pupil size to 

temporal selection during the attentional blink, in which observers identify targets embedded 

in a rapid visual sequence (Wierda et al., 2012; Willems, Damsma, et al., 2015; Willems, 

Herdzin, et al., 2015; Zylberberg et al., 2012). One model of the attentional blink explains 

the phenomenon as arising from the dynamics of the LC (Nieuwenhuis, Gilzenrat, Holmes, 

& Cohen, 2005), according to the idea that phasic LC responses act as a temporal filter 

(Aston-Jones & Cohen, 2005). Temporal selection during the attentional blink - in which 

target timing is unpredictable - may be different, however, from voluntary temporal attention 

- the prioritization of specific, relevant time points that are fully predictable. In contrast to 
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our findings for the pupil, microsaccade dynamics are modulated by both temporal 

expectation (Amit, Abeles, Carrasco, & Yuval-Greenberg, 2019; Dankner, Shalev, Carrasco, 

& Yuval-Greenberg, 2017; Denison et al., 2019; Hafed, Lovejoy, & Krauzlis, 2011; 

Pastukhov & Braun, 2010) and temporal attention (Denison et al., 2019).

Limitations and extensions

The best model was determined based on a sample dataset in which ~2-s trials contained 

multiple sequential events. This dataset was therefore suited to ask about the recovery of 

rapid internal signals driving pupil dilation. Nevertheless, other models may perform better 

for different datasets. For example, Murphy et al., 2016, showed that the task-related 

component, which we found to be best modeled as a boxcar, was better described as boxcar 

or linear depending on the task. van Kempen et al., 2019, also found support for a linear 

task-related component. Note that all of these best-fitting boxcar and linear regressors were 

dependent on RT, unlike the linear regressor we tested, which modeled linear drift across the 

whole trial following Wierda et al., 2012.

Future work could extend the current model in multiple ways. In the main analyses, we 

modeled average pupil time series across trials in a given experimental condition, using the 

median RT to define the task-related boxcar component. Another approach would be to 

model single trial time series and define the boxcar for each trial using that trial’s RT (e.g., 

de Gee et al., 2014). In the present study, we tested only the tmax parameter of the puRF, 

leaving the second parameter, n, fixed. The motivations for this choice were that 1) tmax is 

easily interpretable as the time-to-peak of the puRF, whereas n governs the shape of the 

puRF in a more complex way, and 2) Hoeks and Levelt reported that n could vary 

considerably without a large impact on the other parameter estimates. However, future work 

could test whether fitting n would further improve the model fits. Future work could also add 

covariates to the model such as tonic pupil size (de Gee et al., 2014), model pupil 

modulations associated with blinks and microsaccades (Knapen et al., 2016), and model 

pupil constrictions as well as dilations (Korn & Bach, 2016). A recent pupil model included 

both transient and sustained components of the pupil dilation response (Spitschan et al., 

2017), which could be compared to the unitary puRF used here and in most previous work. 

Furthermore, it will be important to test this model on a variety of perceptual and cognitive 

tasks, including those known to modulate pupil responses (Einhäuser, 2016). The PRET 

toolbox will facilitate tests to address generalization of the present study to multiple tasks 

and observer populations.

General linear models have also been used to model BOLD fMRI time series. A common 

strategy for accommodating individual variations in hemodynamic response function (HRF) 

timing has been to use temporal derivatives of the canonical HRF to generate extra 

regressors in the model. Such an approach could also be used to model the puRF, with the 

practical advantage that the models could then be fit using regression, which is less 

computationally demanding than the optimization procedure used here. We chose to 

parameterize the latency and tmax of the puRF instead of introducing separate temporal 

derivative regressors for two reasons. The first is interpretability. We can read out the latency 

and tmax parameter estimates directly from our model, whereas they would have to be 
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derived if multiple puRF regressors were used. The second reason is theoretical: Latency and 

tmax have different underlying sources so they should be decoupled in the model. 

Specifically, tmax is due to pupillary mechanics, whereas latency also depends on the latency 

of the neural response that drives the pupil dilation. Letting these parameters be independent 

therefore allowed us to fit a single tmax per observer but separate latency parameters for each 

event, better reflecting their different underlying sources.

Pupil Response Estimation Toolbox (PRET)

We provide a MATLAB toolbox, PRET, that performs all the analyses reported here, 

including basic preprocessing (blink interpolation and baseline correction), model 

specification, model fitting, bootstrapping of parameter estimates, data simulation and 

parameter recovery, and model comparison. The toolbox is open-source and freely available 

on GitHub (https://github.com/jacobaparker/PRET). Importantly, PRET can be readily 

employed for model comparison and uncertainty estimation in other data sets to continue to 

work toward a fieldstandard pupil modeling approach.

Open Practices Statement

The code for the pupil analyses is available at https://github.com/jacobaparker/PRET. The 

data for all experiments are available upon request. None of the experiments was 

preregistered.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task and pupil time series. a) Setup of visual display and eye tracker. b) Trial sequence. In 

the Discrimination task, observers reported whether the probed stimulus was tilted CW or 

CCW. In the Estimation task, a response grating (not shown) appeared after the response 

cue, and observers adjusted it to report the exact orientation of the probed stimulus. c) Pupil 

time series (colored lines), mean across trials in each condition for each observer. Filled 

lines are observers in the Discrimination experiment, and open lines are observers in the 

Estimation experiment. Each observer has a unique color, and three observers participated in 

both experiments (same color filled and empty). Three lines per observer and experiment 

show different precuing conditions (precue T1, T2, neutral), i.e., independent sets of trials. 
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Time series were baseline-normalized per trial (baseline period shaded yellow). Gray shaded 

regions are trial events.
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Figure 2. 
General linear modeling of the pupil time series. a) Pupil response function (puRF), which 

describes the pupillary response to an impulse event. The canonical puRF, an Erlang gamma 

function with n = 10.1 and tmax = 930 ms (vertical dashed line), is shown. b) Internal signals 

hypothesized to drive pupil dilation. The internal signal associated with each trial event 

(brief auditory and visual stimuli, gray shaded regions) is modeled as a delta function 

(vertical colored lines) with some amplitude and some latency with respect to the event. A 

sustained, task-related signal could also be modeled. Shown here is a boxcar (black line), 

which starts at the onset of the precue and lasts until the median RT of the modeled trials. c) 
The mean pupil time series across trials (yellow line) is modeled in two steps. First, each 

internal signal time series is convolved with the puRF to form component pupil responses 
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(colored lines, legend in panel b). Second, the component pupil responses are summed to 

calculate the model prediction (gray dashed line). Parameters of the model, such as the 

amplitudes and latencies of the internal event signals, are fit using an optimization 

procedure.
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Figure 3. 
Model comparison. Difference in BIC score for each observer and model with respect to 

model 1, the best model for most observers. Each color corresponds to an individual 

observer. Black square with error bar corresponds to mean difference in BIC score across all 

observers. Crosses in the table indicate that the parameter type was fit for that model. In the 

task row, B indicates boxcar and L indicates linear function.
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Figure 4. 
Parameter recovery for simulated data. 2D histograms showing the proportion of model fits 

for which a given actual parameter value (x-axis) was fit as a given estimated parameter 

value (y-axis). Perfect model recovery would appear as a diagonal black line (all actual 

values recovered as the same estimated values). Each panel is one parameter. Pearson 

correlations between actual and estimated values are given in each panel. Gray shaded 

regions are outside the range of actual parameter values simulated.
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Figure 5. 
Reliability of individual parameter estimates for a representative observer. a) Amplitude and 

y-int estimates. Box and whisker plots show bootstrap median along with 50% and 95% 

bootstrapped confidence intervals. b) Latency and c) tmax estimates, plotted as in panel a.
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Figure 6. 
Consistency of parameter estimates across independent sets of trials. a) Amplitude and y-int 

estimates. Each point is one condition (precue T1, T2, neutral) for one observer; each 

condition was fit separately. Each observer has a unique color. Filled points are from the 

Discrimination experiment, empty points are from the Estimation experiment. b) Latency 

and c) tmax estimates, plotted as in panel a.
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Figure 7. 
Group parameter estimates. a) Amplitude and y-int estimates. Colored points show mean of 

bootstrap medians across observers and conditions. Filled points are from the Discrimination 

experiment, empty points are from the Estimation experiment. Thin colored error bars show 

mean 95% confidence intervals across observers. Thick black error bars show SEM across 

observers. b) Latency and c) tmax estimates, plotted as in panel a.
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Table 1.

Factorial model comparison. All models tested are shown with their parameters. Rows are models; columns 

including gray shading are factors. Gray shading indicates parameters were fit, with number of parameters in 

parentheses. No shading indicates parameters were fixed, with the fixed value given. Model code: L = latency, 

Y = y-int, T = tmax, 0 = none; task component: B = boxcar, L = linear, 0 = none.

Model # Model code
Event-related 
amplitude Latency y-int tmax Task-related # params Δ BIC

1 LYT-B

Parameter (4)

Parameter (4)

Parameter (1)

Parameter (1)

Boxcar (1) 11 -

2 LYT-L Linear (1) 11 -49

3 LYT-0 None 10 3328

4 LY-B

930 ms

Boxcar 10 7939

5 LY-L Linear 10 7006

6 LY-0 None 9 19196

7 LT-B

0%

Parameter

Boxcar 10 8840

8 LT-L Linear 10 10946

9 LT-0 None 9 12344

10 L-B

930 ms

Boxcar 9 14069

11 L-L Linear 9 14609

12 L-0 None 8 25178

13 YT-B

0 ms

Parameter

Parameter

Boxcar 7 14688

14 YT-L Linear 7 20564

15 YT-0 None 6 20296

16 Y-B

930 ms

Boxcar 6 27319

17 Y-L Linear 6 26392

18 Y-0 None 5 40876

19 T-B

0%

Parameter

Boxcar 6 22556

20 T-L Linear 6 25720

21 T-0 None 5 27568

22 0-B

930 ms

Boxcar 5 30585

23 0-L Linear 5 31841

24 0–0 None 4 45679
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