
Phongpreecha et al., Sci. Adv. 2020; 6 : eabd5575     25 November 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 11

D I S E A S E S  A N D  D I S O R D E R S

Single-cell peripheral immunoprofiling of Alzheimer’s 
and Parkinson’s diseases
Thanaphong Phongpreecha1,2,3*, Rosemary Fernandez3*, Dunja Mrdjen3, Anthony Culos1,2,4, 
Chandresh R. Gajera3, Adam M. Wawro3, Natalie Stanley1,2,4, Brice Gaudilliere1,4,  
Kathleen L. Poston5, Nima Aghaeepour1,2,4, Thomas J. Montine3†

Peripheral blood mononuclear cells (PBMCs) may provide insight into the pathogenesis of Alzheimer’s disease 
(AD) or Parkinson’s disease (PD). We investigated PBMC samples from 132 well-characterized research participants 
using seven canonical immune stimulants, mass cytometric identification of 35 PBMC subsets, and single-cell 
quantification of 15 intracellular signaling markers, followed by machine learning model development to increase 
predictive power. From these, three main intracellular signaling pathways were identified specifically in PBMC 
subsets from people with AD versus controls: reduced activation of PLC2 across many cell types and stimulations 
and selectively variable activation of STAT1 and STAT5, depending on stimulant and cell type. Our findings func-
tionally buttress the now multiply-validated observation that a rare coding variant in PLCG2 is associated with a 
decreased risk of AD. Together, these data suggest enhanced PLC2 activity as a potential new therapeutic target 
for AD with a readily accessible pharmacodynamic biomarker.

INTRODUCTION
Many laboratories have tested the hypothesis that peripheral blood mono
nuclear cells (PBMCs) can provide a window into the pathogenesis of 
neurodegenerative diseases, either because a subset of them, e.g., specific 
T cells or monocytes, traffic into the brain and thus may directly partic
ipate in disease mechanisms or because an inherited or acquired trait 
shared between PBMCs and brain cells might serve as a biomarker of 
neuroinflammation (1, 2). PubMed lists more than 1200 citations for 
human leukocytes and Alzheimer’s disease (AD) and more than 550 
citations for human leukocytes and Parkinson’s disease (PD) (3–5). There 
has been some success using quantitative traits in leukocytes to validate 
genetic risk loci for AD or PD (6, 7); however, the outcome of these 
studies has not yet been broadly reproduced across research laboratories. 
This could be because of diagnostic misclassification, lack of a validation 
cohort, or challenges to cellspecific resolution. Hence, none has tran
sitioned to serve as a bloodbased clinical biomarker of AD or PD (8).

Although it is difficult to generalize across such a large number of 
studies, a few themes emerge. Most studies assembled PBMCs from 
relatively small groups of individuals with variable clinical charac
terization. Most used unstimulated PBMCs, which means that they 
likely were in variable states of activation due to sitespecific processes of 
collection and enrichment. A few studies used ex vivo PBMC stimu
lants to investigate immune responses, but the repertoire of stimulants 
has been limited thus far to nonspecific stimuli such as propylene 
glycol monomethyl ether acetate (PMA)/ionomycin or noncanonical 
stimuli such as amyloid (A) or synuclein, which activate through 
incompletely understood mechanisms (9). Relatively few studies have 
used flow cytometry to isolate specific subsets of PBMCs, and even those 
that used conventional flow cyto metry identified only a limited number 
of cell types (10). Of those that measured secreted molecules, most 

measured only one or a small number; measuring a larger number 
of secreted factors has thus far been irreproducible (11, 12). Last, only 
a few previous studies (8) have included multiple neurodegenerative 
diseases to control for features of being chronically ill.

To address these limitations, we designed a study with a more com
prehensive (i) cohort, (ii) range of stimuli, (iii) PBMC subtype identifi
cation, and (iv) response molecule repertoire. We assembled samples 
from 132 individuals who had undergone extensive researchquality 
clinical assessment with diagnosis performed by a consensus panel of 
experts. Our discovery cohort comprised sporadic (lacking mono
genetic cause) AD dementia, sporadic PD, matched healthy controls 
(HCs), and younger HCs. Our validation cohort comprised AD de
mentia and matched HCs. PMBCs were stimulated by one of seven 
canonical activators chosen to provide a range of activation: pro and 
antiinflammatory cytokines that act through specific receptors 
[interferon (IFN), interleukin6 (IL6), IL7, IL10, and IL21]; 
a powerful stimulant of innate immune response that activates via 
Tolllike receptor 4 (TLR4) [lipopolysaccharide (LPS)]; and non–
receptormediated activation (PMA and ionomycin), along with an 
unstimulated control. Using timeofflight mass cytometry (CyTOF), 
a proteomics technology that assesses the abundance of cell subsets, 
protein expression, and activation of signaling pathways with single 
cell resolution (13–18), we assayed 15 different intracellular signaling 
responses across 35 PBMC cell types (determined by a combination 
of 12 cell surface markers). Thus, each individual’s PBMC sample 
yielded a total of 4200 (8 stimulant conditions × 35 subtypes × 
15 responses) intracellular signaling responses. We then used machine 
learning algorithms and statistical analyses to identify patterns of each 
diagnosis group from these extensive singlecell data and examine 
the generalizability and predictive power of the findings.

RESULTS
Single-cell profiling of PBMC response in patients with AD, 
patients with PD, and HCs
The goal of our study was to determine which components of the 
peripheral immune response correlated with diagnoses of AD or PD. 
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As outlined in Fig. 1, we performed deep singlecell profiling of 
PBMCs from our discovery cohort (AD, PD, HCI, and HCII; 
Fig. 1A) in response to a panel of ex vivo stimulants (Fig. 1B) that 
activate known cell signaling mechanisms. The results from our dis
covery work (Fig. 1C) could then be used to further test the devel
oped model, without any retraining, on a separate validation cohort 
comprising patients with AD (ADV) and matched HCs (HCV) 
(Fig. 1A).

We first assessed the relative abundance of PBMC subsets before 
stimulation (fig. S1). Using our panel of 15 cell surface markers [CD3, 
CD4, CD7, CD8, CD11b and CD11c, CD14, CD16, CD19, CD20, 
CD24, CD25, CD27, CD38, CD45RA, CD56, CD123, and CD127; 
immunoglobulin A (IgA) and IgD; and human leukocyte antigen–
DR isotype (HLADR)], we subtyped them into monocytes, CD8+ 
T cells, CD4+ T cells, CD3+ (CD4− CD8−) T cells, B cells, natural killer 
(NK) cells, and dendritic cells (DCs) (fig. S1A). Their relative abundance 
was characterized by a significance analysis of microarrays (19) with 
equal events sampled (minimal cluster size of 1% and false discovery 
rate of 1%). CITRUS (cluster identification, characterization, and regres
sion) was used to compare PBMC subtype abundance for AD/HCI 
and for PD/HCIsub. Unsupervised hierarchical clustering of age and 
sexmatched groups identified no significant differences among these 

wellestablished PBMC subtypes in paired comparison of AD or PD 
with appropriate HCs. Although less well matched for age and sex, 
we found significant differences between AD and PD samples (fig. S1).

We detected stimulant (IFN; IL6, IL7, IL10, and IL21; LPS; 
or PMA/ionomycin) response with additional probes directed at 
15 intracellular signaling molecules [pERK1/2, IB, nuclear factor 
B (NFB), p38, pAKT, pCREB, pLCK, pPLC2, pS6, pSTAT1, 
pSTAT3, pSTAT5, Lamp2, EEA1, and Rab5] (Fig. 2). Signals ob
tained from AD, PD, and HCI PBMCs in unstimulated state or in 
response to IFN, IL6, and IL7 tended to be more strongly cor
related to each other as indicated by proximity and the communities 
formed by these features in the correlation network (Fig. 2A). Similarly, 
responses to IL10, IL21, LPS, and PMA/ionomycin also tended to 
group together. Visualizing the pairwise correlation matrix and distri
butions further confirmed this behavior (fig. S2). To obtain a more 
meaningful description of each community, we performed dimension 
reduction (UMAP, uniform manifold approximation and projection) 
followed by unsupervised clustering (kmeans) to segment the 
network into 24 annotated communities (Fig. 2B). Annotation was 
based on the PBMC subtype, stimulant, and/or intracellular signal 
that appeared most frequently in each community. Immune features 
with the same intracellular signals were likely to belong to the 

Fig. 1. Experimental and analytical workflow from obtaining PBMCs to identifying potential immune cell markers. (A) In the discovery cohorts, whole blood was 
collected from 28 individuals with AD and 17 individuals with PD; AD was compared with the samples from 53 older HCs (HC-I), while PD samples were compared with a 
subset of those with age- and sex-matched HCs (HC-Isub). A different set of 10 younger HCs (HC-II) was included for examining age effects. In addition, an independent 
cohort of nine individuals with AD (AD-V) and 15 HCs (HC-V) was used for validation of the developed machine learning models without retraining. (B) PBMCs were either 
unstimulated or stimulated with IFN-, IL-6, IL-7, IL-10, IL-21, LPS, or PMA/ionomycin. PBMCs were then bound with 21 metal-conjugated antibodies to surface markers 
and 15 metal-conjugated antibodies to intracellular signaling molecules before analysis by CyTOF. (C) Cell abundance was evaluated on PBMCs from an unstimulated 
condition. The stimulations and antibody probes generated a total of 4200 intracellular signaling responses (35 PMBC subtypes under eight stimulating conditions and 
assayed for 15 intracellular responses), which were used to identify the potential immune features with the aid of cell signaling knowledge, machine learning methods, 
and statistical analysis.



Phongpreecha et al., Sci. Adv. 2020; 6 : eabd5575     25 November 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 11

same community. In some communities, features could be fur
ther subdivided by cell type and stimulant. Detailed community an
notations are presented in table S1.

iEN model developed from immune responses predicted  
AD diagnosis
Given these highly correlated immune features, we constructed a 
multivariate model using immunological Elastic Net (iEN), a recently 
developed regression algorithm designed for immune signals (20), 
and examined its predictive power on unseen data as an alternative 
to multiple univariate testing (Fig. 3). In the discovery cohort, the 
crossvalidated results indicated satisfactory classification of AD/
HCI [P = 1.03 × 10−3, area under receiver operating characteristic 
(ROC) curve (AUC) = 0.72 ± 0.06; Fig. 3, A and B] but poor perform
ance for PD/HCIsub (P >> 0.05). The model was then tested on 
separate validation cohorts: HCV and ADV. The model achieved 
accurate ADV/HCV classification (P = 5.42 × 10−3, AUC = 0.84 ± 0.08; 
Fig. 3, A and B). This suggested generalizability of the model; how
ever, it should be noted that because of the low number of samples 
in the validation cohort, the higher AUC in the validation cohorts 
could be by chance, and this AUC was not significantly differ
ent from the discovery cohort’s AUC (P = 0.27; Fig. 3B). The power 
of the resulting iEN predicted values were 0.92 and 0.86, at 
0.05 significance level, for the discovery and validation cohort, 
respectively.

Note that one of the inputs to the iEN model was a list of im
mune features that represent literaturebased canonical signaling 
pathways to prioritize during model optimization. In addition, we 
tried using signals that were experimentally present in this study 

and found a ~10% discrepancy compared to canonical features 
(fig. S3), with no significant effect on the model performance. 
Other conventional algorithms were also attempted but obtained 
less accuracy.

Analyses of the model components revealed broader 
cellular differences between AD and HC-I
Coefficients assigned to the immune features by the iEN model 
could be used as a proxy to examine biological plausibility. Figure 3C 
shows these coefficients displayed on a correlation network, with 
red color indicating immune features that increased with the likeli
hood of carrying the AD diagnosis and blue indicating features that 
decreased. Piecewise regression analysis of the model revealed that 
only about 14 of the features with the highest coefficient magnitudes 
were necessary, and 111 components were needed to get a compa
rable performance to using the entire set of immune features (4200 
components; Fig. 3D). These top 14 and 111 features were depicted 
on the correlation networks (Fig. 3E and fig. S4A). We next explored 
the four communities that contained the top 14 features, since 
features within the same community were highly correlated, and 
exhibited a high univariate P value of the immune feature to diag
nosis: communities 18, 12, 17, and 20 (Fig. 3C).

Community 18 comprised features with pPLC2 intracellular 
signal. Visualizing the differences in pPLC2 signal between the 
HCI and the AD participants by PBMC subtypes and stimulant 
highlighted strong differences from diverse cell types (with the 
exception of most CD4+ T cells and DCs) under unstimulated and 
various stimulated conditions (Fig. 4A and fig. S4C), where all of the 
responses tended to be lower in the AD group (fig. S4B), particularly 

Fig. 2. Responses from the same intracellular signaling proteins are highly correlated to each other. (A) Correlation network (Spearman’s coefficient) of immune 
features obtained from CyTOF data of HC-I, AD, and PD colored by the type of stimulant. The edges of the network represent features with Spearman’s coefficient higher 
than 0.8. (B) An unsupervised algorithm clustered the network into 24 communities, where their annotations are based on commonly shared feature attributes (PBMC 
subtype, stimulation, or signaling property) within the community. ERK-1/2, extracellular signal–regulated kinase–1/2.
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in NKT cells (Fig. 4, D and E). Among these are the most informa
tive components of the iEN model, including “pPLC2 response in 
unstimulated NKT, CD4+CD8+ T, and CD56bright NK cells” (Fig. 4, 
D and F, and fig. S4C). These findings provide functional data that 
buttress the previous association that a variant in the gene that 
encodes phospholipase C–2 (PLC2) lowers the risk of AD (21). 
To determine whether any single pPLC2 signal alone could serve 
as a standalone diagnostic marker without the need of iEN or other 
machine learning models, we performed crossvalidation tests on 
each of them with evaluation by F1score (Fig. 4I and see Supple
mentary Methods). We found that no single feature was sufficiently 
robust to yield good accuracy in both discovery and validation 

cohorts and that the iEN method was necessary to help address 
variations among cohorts (Fig. 4, J and K).

Communities 12, 17, and 20 were primarily a mix of pSTAT1 
and pSTAT5 responses, which were highly correlated with each 
other. Examining the strength of these signal differences between 
HCI and AD by cell type and stimulant using univariate analysis 
revealed that for both pSTAT1 and pSTAT5 intracellular responses, 
the strongest signals were mostly from IFN–stimulated cells (Fig. 4, 
B and C). However, unlike pPLC2, the trends of both intracellular 
responses were not monotonic across cell types and stimulations; the 
responses tended to be higher in HCI only in IFN–stimulated 
cells or certain types of CD4+ T cells, while other conditions mostly 
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Fig. 3. The iEN model can satisfactorily classify AD/HC-I in both discovery and validation cohorts with the most important model components associated with 
signals from pPLC2 and pSTATs. (A) Box plots showing the predicted values from iEN model with Wilcoxon rank sum test P value for discovery and validation cohorts. 
(B) ROC curves from the iEN model predictions of discovery and validation cohorts with their respective AUC and P values from unpaired t test indicating no significant 
difference between the discovery and validation’s AUCs. (C) Correlation network colored by iEN model components with red and blue colors highlighting the compo-
nents that are indicative of AD and HC-I, respectively. The size of the nodes represents the Spearman’s coefficient of the immune feature to the respective ground truths. 
(D) A model reduction analysis looking at the effect of the number of included features on iEN performance. (E) The correlation network colored and annotated only for 
the top 14 features that were associated with components selected from model reduction.
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Fig. 4. Heatmaps and box plots of the intracellular response in the PBMC of the selected communities highlight immune features for AD/HC-I classification and 
examination of the predictive power by F1-score of pPLC2 as a standalone biomarker. (A to C) Heatmap of the pPLC2, pSTAT1, and pSTAT5 responses by PBMC 
subtypes and stimulations. The color of the heatmap scaled with the Wilcoxon rank sum test P value of the difference in response of the immune feature between HC-I 
and patients with AD. The network communities annotated with these responses (communities 12, 17, 18, and 20) were depicted on the left-hand side of the heatmap. 
The size of the nodes in the community corresponds to the Spearman’s coefficient of the immune feature. The features within the communities that were selected by 
reduced iEN model (14 components) retained their red/blue colors corresponding to the direction of the component. (D to H) Box plots showing the significant difference 
of the selected immune features from the heatmap. These are mostly features associated with the most informing components of the iEN model. (I) The distribution of 
the mean F1-score in the test set from 1000 iterations of leave-group out test for each of the 280 pPLC2 features from different cell types and stimulating conditions in 
the discovery set. (J) The mean F1-score and its SD for the top seven performing pPLC2 features in the discovery cohort compared to the iEN predicted values. (K) The 
F1-score for each of the top seven features and iEN predicted values in the validation set. Tregs, regulatory T cells.
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led to an opposite response (fig. S4B). All of the pSTAT features among 
the top 11 components of the iEN model with a high univariate 
P value were IFN–stimulated cells, including “pSTAT1 response 
of IFN–stimulated plasmablast and CD4+CD8+ T cells” and “pSTAT5 
response of IFN–stimulated CD4+ TActivated” (Fig. 4, G and H, and 
fig. S4, D and E). These reflected differential Janus kinase (JAK)/
signal transducer and activator of transcription (STAT) signaling after 
IFN stimulation between the two diagnostic groups. In addition, 
other pSTAT signals that were expected such as pSTAT1 and pSTAT5 
from IL7–stimulated CD4+ and CD8+ cells also were observed. 
Conversely, those that were not expected, such as pSTAT signaling 
from LPS and PMA/ionomycinstimulated cells, were not observed 
(fig. S5) (22, 23). These alignments to the existing signaling knowl
edge further supported the strength of our experimental approach.

AD/HC-I responses were different between sexes and were 
not driven by aging
The change in univariate P values depicted on the correlation 
network when separated by sex strongly suggested that most of the 
differences in pPLC2 responses stemmed from male participants, 
whereas pSTATs were mostly contributed by female participants in 
both the discovery and validation cohorts (fig. S6, A and B). The 
pPLC2 response was very similar even if only patients with AD 
were separated by sex and compared to the entire HCI (fig. S6, C 
and D), suggesting sexspecific immune responses in patients with 
AD. Sexspecific immune responses are not uncommon and are 
being studied actively (23). In addition, for participants with known 
APOE genotype, separating patients with AD into those with or 
without an APOE 4 allele and then comparing both with HCI 
with no APOE 4 implied relevance of pPLC2 in both APOE sub
groups of AD (fig. S7, A and B). In contrast, the significance of 
pSTAT signals was reduced in both APOE subgroups. This was 
potentially due to fewer female participants in the AD group. The 
results were similar if the entire HCI cohort was used regardless 
of APOE 4 status. As we earlier associated pPLC2 with male AD 
participants, narrowing the APOE analyses only to males revealed that 
pPLC2 signals mostly persisted whether the male HCI or male AD 

did or did not have the APOE 4 allele (fig. S7, C and D), suggesting 
that pPLC2 response is independent of the APOE status. Others 
have shown repeatedly that macrophage and microglial innate im
mune responses have apolipoprotein E (apoE) isoform–dependent 
components in experimental settings (24–26); however, we are 
aware of only one report from a small number of participants that 
observed a modest apoE isoform–specific effect on human PBMC 
response to PMA/ionomycin stimulation (27). The number of ob
servations in each of these subanalyses is limited and consequently 
more susceptible to potential unknown confounding factors.

Another possibility is that the pPLC2 and pSTAT differences 
observed between AD and HCI might be due to changes of aging 
that are accentuated in the AD group. However, correlation networks 
between HCII/HCI and HCII/AD (fig. S8, A and B) implied that, 
for both pairs, only a small number of signal differences were con
tributed by pSTATs, with no significant contribution from pPLC2 
region. In addition, the specific pSTAT regions were different from 
those highlighted by HCI/AD comparison. These results further 
increase confidence that differential PBMC responses in pPLC2 
and some pSTATs are specific to AD.

Disease cross-prediction using the AD/HC-I model indicated 
some similarity between AD and PD
The prediction accuracy of the developed iEN models from AD/
HCI could be used as a proxy to determine the similarities between 
the diagnostic groups (Fig. 5). As expected, the developed models 
could perfectly classify the AD diagnostic group on which it was 
trained (P = 2.59 × 10−13, AUC = 1.00 ± 0.00; Fig. 5, A and B). Dis
ease crossprediction to PD, i.e., using an AD/HCI–trained model 
to classify PD/HCIsub participants, resulted in a satisfactory per
formance (P = 1.75 × 10−6, AUC = 0.88 ± 0.06) although not as high 
as in the original domain. The correlation network of PD/HCIsub 
diagnostic groups illustrated potential regions containing features 
associated with the developed iEN components from AD/HCI (strong 
colors) that were also significantly different between PD and HC
Isub (sizable nodes) such as those in community 20 (Fig. 5C). Accu
rate PD/HCIsub prediction may indicate comorbidity, shared risk 

Fig. 5. Disease cross-prediction reveals similarities between AD and PD. (A) Performance of the disease cross-prediction using iEN components developed from AD/
HC-I diagnosis to classify PD/HC-Isub and AD/PD. (B) The iEN predicted values for each diagnostic group. (C) The correlation network with node size corresponding to the 
Wilcoxon rank sum test P value of each feature for PD/HC-Isub diagnosis, with the color of each node representing the magnitude and direction of the associated iEN 
components developed from AD/HC-I. The network highlighted possible regions, such as in the labeled clusters, where AD and PD signals can overlap.
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factors, or shared mechanisms between the two neurodegenerative 
diseases. However, other communities whose features were import
ant in the AD/HCI iEN model—particularly communities 12, 17 
(pSTATs region), and 18 (pPLC2 region)—did not overlap with 
signal differences in PD/HCIsub. Hence, the model also can sepa
rate AD and PD patients (P = 3.99 × 10−3, AUC = 0.75 ± 0.06), 
although the accuracy decreased when combined with ADV pre
dictions (P = 1.70 × 10−2, AUC = 0.70 ± 0.07), suggesting that it did 
not merely classify between HC and those with an unspecified 
neurodegenerative disease.

DISCUSSION
Our work joins a range of previous publications that have tested 
whether PBMCs might provide insight into the pathogenesis of 
neurodegenerative disease, either because some subset of PBMCs 
traffic into the brain and directly participate in disease mechanisms 
(1, 2) or because of inherited or acquired traits shared between 
some PBMCs and some brainresident immunocompetent cells. 
As outlined in the Introduction, several groups have attempted to 
identify subsets of PBMCs or other peripheral immune markers in 
unstimulated samples that are characteristic of AD, and none of these 
have been broadly replicated. More recently, colleagues have high
lighted an enriched subpopulation of CD8+ T cells in unstimulated 
samples in roughly equal number of participants diagnosed with 
AD dementia or mild cognitive impairment compared to matched 
controls (28). Although we were unable to validate this finding in 
our unstimulated samples from participants with AD dementia 
compared to matched controls, we hasten to add that, in addition to 
the difference in diagnostic groups studied, our focus was on the 
response of peripheral immune cells to wellcharacterized stimuli, 
rather than unstimulated samples, which appear to have greater 
variability. Our robust study design is distinguished by a large sample 
set from wellmatched participants with researchquality annotation, 
multiple canonical immune stimulants, flow cytometric identification 
of 35 PBMC subsets, singlecell quantification of 15 intracellular 
signaling markers, inclusion of a neurodegenerative disease control 
in addition to matched HC, and validation of major findings with a 
completely independent cohort. Our data analysis is distinguished 
by the application of machine learning, instead of univariate testing, 
to demonstrate the accuracy and generalizability of the findings from 
this complex set of diagnostic phenotypes and singlecell quantita
tive molecular data. Our results showed that 3 of the 15 intracellular 
signaling pathways were differentially activated in PBMC subsets 
from people with AD compared to age and sexmatched HC: muted 
activation of PLC2 across many cell types and stimulations and 
more selective activation of STAT1 and STAT5 depending on stim
ulant and cell type. As far as we are aware, none of the previous 
studies that focused on PBMCs in AD have highlighted altered 
responses by PLC2, STAT1, or STAT5.

Reduced pPLC2 activation (community 18) was a strong feature 
of AD in all major subclasses of cells except DCs and most CD4+ 
T cells and under all stimulation conditions except IL6 (Fig. 4A). 
Although pPLC2 differential response was observed across most 
stimulants, it appeared strongest with LPS. pSTAT1 (community 20) 
and pSTAT5 (community 17) differential responses were more 
selective and largely restricted to IFN stimulation. pSTAT5 dif
ferential response was focused strongly in monocytes (Fig. 4C), 
while pSTAT1 differential response was weaker and more broadly 

observed in CD8+ T cells, B cells, and NK cells but not in monocytes 
(Fig. 4B). These differential immune responses have potential patho
genetic relevance to AD. A peptides directly and indirectly activate 
TLR4, the pattern recognition receptor for LPS (29, 30). STAT1 tis
sue concentration is increased in diseased regions of AD brain (31) 
and can regulate expression of  secretase 1, one of the endoproteases 
that sequentially catalyzes the hydrolysis of amyloid precursor pro
tein to generate A peptides (32). STAT5 activation regulates micro
glial activation and is required for monocytemediated synaptic 
degradation (33). A recent pathway analysis that combined multi
ple GWAS (genomewide association study) data with clinical an
notation nominated JAKSTAT signaling abnormalities as prominent 
contributors to AD etiology or pathogenesis (34). Last, both T cells 
and monocytes can traffic from peripheral blood into the brain, at 
least raising the possibility that the differential responses observed 
in these subsets of PBMCs might access the brain, rather than sim
ply being peripheral biomarkers of brain immune responses.

A rare variant in the gene that encodes pPLC2 (PCLG2; rs72824905, 
P522R) recently has been linked to a decreased risk of AD (21), a 
finding that was recently validated in three other diverse cohorts 
(35–37). One of these validation studies also demonstrated that 
rs72824905 is associated with decreased risk of other forms of de
mentia but showed no risk modification for PD despite adequate 
sample size (36). None of these four genetic association studies eval
uated the influence of sex or APOE genotype on PLCG2 risk modi
fication for AD. Three groups have published results from human 
and mouse brain showing that expression of PLCG2 is limited to 
microglia among the major cell types in the brain and that the pro
tective P522R polymorphism modestly increases enzyme activity 
(35, 36, 38). These genetic risk findings implicate PLCG2dependent 
pathways as being important in AD pathogenesis. Our functional 
results from the peripheral immune system are consistent with these 
earlier findings; however, this rare variant in PLCG2 cannot be the 
mechanism underlying the common functional changes we observed 
in AD participants. We speculate that other yettobeclarified epi
genetic or environmental mechanisms are affecting activation of 
PLC2 in AD. Together, these data raise the possibility that increasing 
PLC2 activity may be a new therapeutic target for AD and perhaps 
other forms of dementia. Moreover, our data suggest that a PBMC 
biomarker may be developed to aid in screening for therapeutics 
that enhances PLC2 activity. Although PLC2 activation alone does 
not appear to be a diagnostic biomarker in PBMCs, it might have a 
potential application as a pharmacodynamic biomarker. However, 
it should be kept in mind that other PLCG2 variants have been 
asssociated with immune dysregulation (39), warranting caution in 
attempting to modulate its activity.

The role of microglia and the immune response in AD remains 
unclear but is an area of very active investigation highlighted by single 
cell approaches (40). On the basis of epidemiologic observations and 
results from transgenic mouse models, initial hypotheses focused on 
increased immune response in AD brain; however, recent observational 
and experimental data support a more nuanced view of both pro and 
antiinflammatory facets to AD progression (41). Our work fits well 
within this contemporary construct by revealing reduced and in
creased peripheral immune responses as characteristic of AD.

The iEN algorithm was unable to develop a predictive model 
for PD despite a similarly sized sample set as AD. Although disap
pointing, these results enhance our confidence in the predictive 
model for AD by controlling for nonspecific features of agerelated 
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neurodegenerative disease, like reduced physical activity. Our 
disease crossprediction analysis showed that the AD/HCI model 
much more weakly, but significantly, predicted PD/HCIsub. There 
are several possible explanations for this outcome including partially 
shared genetic or environmental risk factors or partially shared 
neurodegenerative mechanisms for AD and PD. The latter is sup
ported by the now wellestablished observation that the neuro
pathologic hallmark of PD (Lewy body disease) is present in about 
onethird to onehalf of people diagnosed clinically with AD despite 
using the most rigorous research criteria. Alternatively, this disease 
crossprediction may indicate partially shared alterations in the 
peripheral immune response between people with AD or PD. In 
this respect, disease crossprediction of PD was driven largely by 
community 20 and not by community 18 (pPLC2 region; Fig. 5C), 
consonant with the finding that the genetic variant in PLCG2 that 
lowers risk for AD does not modulate risk of PD (36).

Our extensive and unbiased investigation and robust analysis of 
the peripheral immune response strongly implicates reduced activa
tion of PLC2 as a molecular characteristic of AD but not PD or ad
vancing age. Our experimental data from patient samples functionally 
buttress the now multiplyvalidated observations that a rare coding 
variant in PLCG2 is associated with decreased risk of AD (36). Last, 
our analyses suggest that altered PLC2 activity in PBMCs is more 
commonly a feature of men with AD and that it is not strongly in
fluenced by APOE genotype or aging. Together, these data point to 
enhancing PLC2 activity as a potentially new therapeutic target for 
AD that has a readily accessible pharmacodynamic biomarker.

MATERIALS AND METHODS
Study design
The aim of this study was to determine whether differences in pe
ripheral immune responses between healthy participants and par
ticipants with neurodegenerative diseases are detectable by CyTOF 
analysis of PBMCs. Participants were research volunteers at Stanford 
University in the Alzheimer’s Disease Research Center or the Pacific 
Udall Center. All participants provided written informed consent to 
participate in the study, which followed protocols approved by the 
Stanford Institutional Review Board. Clinical diagnosis was made by 
consensus criteria (42–44) (see the Supplementary Materials for details).

Blood was collected from volunteers after obtaining informed 
consent. We assembled a discovery cohort (n = 108) and a completely 
separate validation cohort (n = 24; summary statistics is shown in 
Table 1, and individual information is shown in tables S2 and S3). 
The discovery cohort consisted of four groups: AD, PD, and two dif
ferent HC groups. The first HCs (HCI) were older and were matched 
for AD with a subgroup of these people (HCIsub; ages between 63 
and 80 for male and 67 and 73 for female) matched for PD. The 
second HCs (HCII) were younger. A separate validation cohort also 
was assembled: ADV and HCV. No validation cohort was assembled 
for PD because there was no generalizable model identified from 
the discovery cohort. A separate technical quality control of PBMCs 
was prepared from a single healthy individual (70yearold man) 
not included in the discovery or validation cohorts and frozen into 
multiple aliquots and included in every CyTOF run. 

Metal-tagged monoclonal antibodies
A panel of 37 metaltagged monoclonal antibodies was used to probe 
PBMCs (table S4). All preconjugated antibodies were purchased 

from Fluidigm. All other antibodies were purchased in carrier pro
tein–free phosphatebuffered saline (PBS) and conjugated inhouse 
with the respective metal isotope using the MaxPar antibody conju
gation kit (Fluidigm). Metallabeled antibodies were diluted to 
0.5 mg/ml in a Candor PBS Antibody Stabilization solution (Candor 
Bioscience GmbH) for storage at 4°C.

PBMC processing and stimulations
PBMCs were isolated from freshly drawn whole blood using density 
gradient centrifugation (FicollPaque PLUS; GE Healthcare) in 
Sepmate tubes (45). The isolated and washed wholeblood PBMCs 
were resuspended in 10% dimethyl sulfoxide and 90% fetal bovine 
serum and cryopreserved in liquid nitrogen. Frozen aliquots of 
PBMCs (batch of ~10 samples and an aliquot of technical control) 
were washed twice in RPMI at 37°C. The samples were brought up 
in 1 ml of RPMI, and viability was checked. One hundred micro
liters of each sample was aliquoted and rested for 1 hour at 37°C. 
PBMCs were then incubated in RPMI (unstimulated) or one of the 
seven specific stimulants, either a cytokine (IFN, IL6, IL7, IL10, 
and IL21), LPS, or PMA/ionomycin for 15 min at 37°C as shown in 
table S5 and described previously (46). Following incubation under 
these eight conditions, PBMCs were fixed for 15 min with 4% para
formaldehyde (PFA) at room temperature, washed, permeabilized, 
and barcoded exactly according to published methods to facilitate 
processing and minimize batch effects (47).

All eight stimulation conditions from a barcoded sample were 
pooled and incubated with titrated metallabeled antibodies directed 
at cell surface markers designed to identify 35 immune cell subsets 
(48, 49). Cell types were identified by surface antibody signal for the 
following lineage markers: CD3, CD4, CD7, CD8, CD11b, CD11c, 
CD14, CD16, CD19, CD20, CD24, CD25, CD27, CD38, CD45RA, 
CD56, CD123, CD127, IgA, IgD, and HLADr. Pooled sample was 
then permeabilized with methanol and stored at −80°C. Frozen sam
ples were washed and incubated with metallabeled antibodies di
rected at 15 intracellular signaling markers, followed by Irintercalator 

Table 1. Summary of participants in the discovery (n = 108) and 
validation cohorts (n = 24) diagnosed with AD, PD, or HCs.  

Cohort Group n Age

Discovery HC-I M 29 75 ± 8

F 24 68 ± 6

AD M 14 74 ± 10

F 14 67 ± 9

HC-Isub M 22 73 ± 5

F 12 71 ± 2

PD M 11 70 ± 5

F 6 71 ± 3

HC-II M 4 40 ± 9

F 6 40 ± 10

Validation HC-V M 6 71 ± 10

F 9 70 ± 6

AD-V M 4 74 ± 12

F 5 71 ± 10
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staining and resuspended in 0.1 EQ Four Element Calibration Beads 
(50). Intracellular signaling markers were pERK1/2, IB, NFB, 
p38, pAKT, pCREB, pLCK, pPLC2, pS6, pSTAT1, pSTAT3, pSTAT5, 
endosomal proteins, Lamp2, EEA1, and Rab5 (51–53). Singlecell 
data were acquired by CyTOF (model: Helios, software version 6.5.358, 
Fluidigm, South San Francisco, CA) at 300 to 400 events per second. 
Initiation and tuning were performed according to the manufacturer’s 
recommendation. Postacquisition normalization and debarcoding 
were done with CyTOF software version 6.7.1014. From these, 
about 1.2 million individual cells were collected, unassigned events 
were then removed, and subsampled at a maximum of 100,000 cells 
for subsequent analyses. Counts in each gating stage are shown 
in table S6. Gating was performed using FlowJo10 (fig. S9) and 
Cytobank. More details on data processing and gating can be found 
in the Supplementary Materials.

Statistical analysis
Application and evaluation of iEN for multivariate modeling 
of mass cytometry data
The iEN model was used as a multivariate model to examine gen
eralizability and predictive power. The iEN added on to the com
monly used EN algorithm the capability to incorporate knowledge 
of intracellular signal transduction on the generation of the mass 
cytometry data. We have recently reported in detail that this model 
demonstrates increased predictive power relative to multiple tra
ditional methods (20). Briefly, the iEN algorithm optimized the 
coefficient () for each associated feature by minimizing the cost 
function

    L  iEN  ( ) =  ∣Y − X∣   2  +  (    ∣∣  1   +    − 1 ─ 2    ∣∣   2  )     

Here, X is a matrix of size m × n, where m is the number of sam
ples, n is the number of all immune features (intracellular signals 
from cells under different stimulating conditions), Y is a vector of 
ground truths (diagnostic groups) with length n,  is a vector of the 
model’s coefficients with length n, and  and  together control the 
magnitude of the model regularization. Last,  is a diagonal matrix 
of size n × n containing a prioritization value of 1 for elements asso
ciated with canonical immune feature or e−φ for other lower prior
ity (noncanonical) features. The list of canonical signals that were 
prioritized is tabulated in table S7.

To determine objectively the value of the hyperparameters and 
the generalizability of the iEN model from the discovery cohort, 
250 iterations of a twolayered crossvalidation scheme were used. 
In each iteration, the outer layer randomly held out onethird of the 
samples for performance evaluation on unseen data, and the inner 
layer used the rest of the samples for parameter optimization (grid 
search of , , and φ). At the completion of the 250 iterations, the 
mean values of the predictions were used for model evaluation by 
Wilcoxon rank sum test P value and AUC. The ROC curve’s 95% CI 
and AUC’s SD was calculated by bootstrapped replicates as described 
in previous studies (54, 55). The statistical tests related to the ROC 
comparison (unpaired t test) was also calculated (54). The power of 
the model’s predicted value was calculated using an established 
formula (54, 56). The weights and φ determined from all iterations 
were averaged to obtain a final model. The final model was used for 
feature component analyses, prediction of validation cohort, and 
disease crossprediction.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/48/eabd5575/DC1
View/request a protocol for this paper from Bio-protocol.
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