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Abstract

Background: Large observational clinical datasets are becoming increasingly available for mining associations between
various disease traits and administered therapy. These datasets can be considered as representations of the landscape of all
possible disease conditions, in which a concrete disease state develops through stereotypical routes, characterized by
“points of no return” and “final states” (such as lethal or recovery states). Extracting this information directly from the data
remains challenging, especially in the case of synchronic (with a short-term follow-up) observations. Results: Here we
suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and
missing values, through modeling the geometrical data structure as a bouquet of bifurcating clinical trajectories. The
methodology is based on application of elastic principal graphs, which can address simultaneously the tasks of
dimensionality reduction, data visualization, clustering, feature selection, and quantifying the geodesic distances
(pseudo-time) in partially ordered sequences of observations. The methodology allows a patient to be positioned on a
particular clinical trajectory (pathological scenario) and the degree of progression along it to be characterized with a
qualitative estimate of the uncertainty of the prognosis. We developed a tool ClinTrajan for clinical trajectory analysis
implemented in the Python programming language. We test the methodology in 2 large publicly available datasets:
myocardial infarction complications and readmission of diabetic patients data. Conclusions: Our pseudo-time
quantification-based approach makes it possible to apply the methods developed for dynamical disease phenotyping and
illness trajectory analysis (diachronic data analysis) to synchronic observational data.
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Background

Large observational datasets are becoming increasingly avail-
able, reflecting the physiological state of observed individuals,
their lifestyles, exposure to environmental factors, treatments
received, and medical examinations undergone. From the big
data point of view, each person’s life can be represented as a
trajectory in a multidimensional space of qualitative or quan-
titative traits. Simultaneous analysis of a large number of such
trajectories can reveal the most informative features whose dy-
namics is correlated with trajectory clusters, associations be-
tween various factors, and, potentially, the “points of no return,”
i.e., bifurcations representing important fate decisions.

The most important applications of such a framework are
medical. The notion of “disease trajectory” as a person’s trajec-
tory in the data space of various diagnoses (diseases quantified
by their severity) accompanying the person’s life has emerged
recently and became available for large-scale analyses in cer-
tain contexts [1, 2]. For example, a dataset containing an elec-
tronic health registry collecting during 15 years and covering
the whole population of Denmark, with 6.2 million individu-
als, has been analyzed with an objective of determining previ-
ously unreported disease comorbidities [1]. An ambitious “Data
Health Hub” (https://www.health-data-hub.fr/) project has been
recently launched in France with the aim of making avail-
able for machine learning–based analysis the collection of sev-
eral decades-long population-wide anonymized health insur-
ance records [3]. A formal review and meta-analysis of scientific
texts using the concept of patient trajectory (or clinical pathway)
based on disease management and care but also considering
medico-economic aspects with a focus on myocardial infarction
(MI) has been recently published [4].

Dynamical phenotyping is the conceptual paradigm under-
lying such studies, which can be applied at organismal and cel-
lular scales [5–7]. It states that distinguishing various dynamical
types of progression of a disease or a cellular program is more
informative than classifying biological system states at any fixed
moment of time because the type of dynamics is more closely re-
lated to the underlying hidden mechanism. From the machine
learning point of view, this dictates different choices of meth-
ods, with clustering more adapted to the synchronic (snapshot)
data [8] while more specific methods for trajectory analysis are
needed in the case of diachronic (having important temporal as-
pect) data [9–13]. The dynamical phenotyping paradigm and ac-
companying data mining methodologies become even more im-
portant with wider introduction of various types of continuous
health monitoring devices and apps [14].

However, examples of massive comprehensive and lifelong
longitudinal clinical data are still rare. Most of the existing clin-
ical datasets correspond to relatively short periods of patients’
stays inside hospitals, or during their treatment for a particu-
lar disease. In this sense, clinical datasets frequently represent
a detailed but “static snapshot” rather than the dynamical pic-
ture of the individuals’ states. Nevertheless, one can hypoth-
size that such a snapshot, if sufficiently large, can sample the
whole landscape of possible clinical states, with certain routes
and branches corresponding to some average illness trajectories.
Then each patient can be thought of as occupying a particular
position along such a trajectory, where those patients following
the same trajectory can be ranked according to their progression

along it from the hypothetical least heavy state towards some
extreme state.

This situation is reminiscent of some recent studies of
molecular mechanisms of several highly dynamical biological
processes such as development or differentiation, at the single-
cell level. Indeed, profiling a snapshot of a cell population can
capture individual cells in a variety of different states (e.g., map
their progression through the cell cycle phases). This allows cel-
lular trajectories to be reconstructed through sampling the dy-
namics of the underlying phenomenon without the need to fol-
low each individual cell in time [15, 16]. In this field, a plethora of
machine learning–based methods have been recently suggested
in order to capture the cellular trajectories and quantify pro-
gression along them in terms of “pseudo-time,” representing the
total number of molecular changes in the genome-wide pro-
files of individual cells [16] rather than physical time. Many of
these methods are able to detect branching trajectories, where
the branches can represent important bifurcations (cell fate de-
cisions) in the dynamical molecular processes underlying differ-
entiation of developmental programs.

The aim of the present study is to suggest and test a com-
putational methodology for extracting clinical trajectories from
sufficiently large synchronic clinical datasets. Clinical trajec-
tory is a clinically relevant sequence of ordered patient pheno-
types representing consecutive states of a developing disease
and leading to some final state (i.e., a lethal outcome). Impor-
tantly, in our approach we do not assume that these are the same
patient’s states, even if this can be so in the case when there ex-
ist some longitudinal observations. Each clinical trajectory can
be characterized by its proper pseudo-time, which allows one
to quantitatively characterize the degree of progression along
the trajectory. Each clinical variable can be analyzed as a func-
tion of pseudo-time conditioned on a given clinical trajectory.
We also assume that clinical trajectories can be characterized
by branches (bifurcations), representing important decisive mo-
ments in the course of a disease.

Unlike the previously developed methodology of cell trajec-
tory analysis in omics datasets, where the majority of the vari-
ables can be considered continuous and of similar nature (e.g.,
gene expression levels), the clinical datasets possess certain
specifics that must be taken into account. Typical real-life clin-
ical data are characterized by the following features: (i) they
contain mixed data types (continuous, binary, ordinal, categor-
ical variables, censored data); (ii) they typically contain miss-
ing values with non-uniform missingness pattern across the
data matrix; and (iii) they do not have a uniquely defined la-
beling (part of the clinical variables can be used to define clin-
ical groups, but this can be done in several meaningful ways).
This means that an important integral part of the methodol-
ogy should be procedures for quantifying and imputing missing
values in mixed type datasets, making them amenable for fur-
ther application of machine learning methods. The last feature
(iii) suggests that unsupervised or semi-supervised methodol-
ogy might play a more important and insightful role here than
purely supervised methods.

We develop a methodology of clinical data analysis, based on
modeling the multi-dimensional geometry of a clinical dataset
as a “bouquet” of diverging clinical trajectories, starting from
one or several quasi-normal (least severe) clinical states. As a
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concrete approach we exploit the methodology of elastic prin-
cipal trees (EPT), which is a non-linear generalization of princi-
pal component analysis (PCA). Principal tree is a set of princi-
pal curves assembled in a tree-like structure, characterized by
branching topology [17, 18]. Principal trees can be constructed
using the ElPiGraph computational tool, which has been pre-
viously exploited in determining branching trajectories in var-
ious genomics datasets (in particular, in single-cell omics data)
[15, 19, 20]. As an unsupervised machine learning method, esti-
mating elastic principal graphs solves several tasks simultane-
ously, namely, dimensionality reduction, data visualization, par-
titioning the data by the non-branching graph segments (anal-
ogous to clustering), and quantifying robust geodesic distances
(pseudo-times) from one data point to another along the recon-
structed principal graph. Unlike many other methods relying on
heuristics for guessing the optimal graph topology (e.g., a tree)
such as minimal spanning tree (MST), the elastic principal graph
method optimizes the graph structure via application of topo-
logical grammars and gradient descent-like optimization in the
discrete space of achievable graph structures (e.g., all possible
tree-like graphs) [19].

The suggested method is implemented as a Python package,
ClinTrajan, which can be easily used in the analysis of clinical
datasets. We provide several reproducible Jupyter notebooks il-
lustrating the different steps of the methodology. The figures
in this article are directly copied from these notebooks. The
methodology proved to be scalable to datasets containing hun-
dreds of thousands of clinical observations, using an ordinary
laptop, and can be scaled up further for even larger datasets.

Data Description

In this study we apply the suggested methodology to 2 publicly
available clinical datasets, 1 of moderate size (1,700 patients) and
1 of relatively large size (>100,000 patients).

Complications of myocardial infarction database

MI is one of the most dangerous diseases. The wide spread of
this disease over the past half century has made it one of the
most acute problems of modern medicine. The incidence of MI
remains high in all countries. This is especially true of the urban
population of highly developed countries, exposed to chronic
stress factors, unhealthful diet, and decreased physical activity.
In the United States annually, >1 million people become ill with
MI [21].

The course of the disease in patients with MI is diverse. MI
can occur without complications or with complications that do
not worsen the long-term prognosis. At the same time, roughly
half of patients experience complications in the acute and suba-
cute periods that lead to a worsening of the course of the disease
and even death. Even an expert cannot always foresee the de-
velopment of these complications. In this regard, predicting the
complications of MI so that the necessary preventive measures
can be carried out in a timely fashion could improve outcomes.

The database analyzed here was collected in the Krasno-
yarsk Interdistrict Clinical Hospital (Russia) from 1992 through
1995 but has only recently been deposited to the public do-
main. The original database and its description can be down-
loaded [22]. It contains information about 1,700 patients charac-
terized by 111 features describing the clinical phenotypes and
12 features representing possible complications of the MI dis-
ease (123 features in total). Previously, the dataset was a subject

of machine learning method applications, including convolu-
tional neural networks [23] and dimensionality reduction meth-
ods [24]. We believe that introducing this dataset, which exem-
plifies the specificity and difficulties of analyzing real-life clini-
cal data, to the big data and machine learning research commu-
nity should contribute to developing better treatment and sub-
typing strategies in cardiology and in clinical research in general
[25].

A detailed description of the variable names with associated
descriptive statistics is provided in the dataset description avail-
able online [22]. Here we provide Table 1 with the meaning of
those variables that appear in the figures of the present article.

Diabetes readmission dataset

Together with MI, various diabetes-related clinical states such
as hyperglycemia are widespread in the modern population.
The management of hyperglycemia in hospitalized patients has
a significant bearing on outcome, in terms of both morbidity
and mortality [26]. An assembly and analysis of a large clinical
database was undertaken to examine historical patterns of dia-
betes care in patients admitted to US hospitals and to inform
future directions that might lead to improvements in patient
safety [26]. In particular, the use of HbA1c as a marker of atten-
tion to diabetes care in a large number of individuals identified
as having a diagnosis of diabetes mellitus was analyzed. A focus
was on the readmission probability of a patient after leaving the
hospital and its dependency on other clinical features that can
be collected during hospitalization.

The dataset represents 10 years (1999–2008) of clinical care
at 130 US hospitals and integrated delivery networks. It includes
>50 features representing patient and hospital outcomes. The
dataset can be downloaded from the UCI repository or from Kag-
gle (see Availability of Supporting Data and Materials). The data
contain >100,000 hospitalization cases of patients with diabetes
characterized by 55 attributes.

Analyses
ClinTrajan package for trajectory inference in large
clinical datasets

We suggest the computational methodology of construct-
ing principal trees in order to extract clinical trajectories
from large-scale clinical datasets that take into account their
specificity. The following steps of the analysis have been
implemented:

� Univariate and multivariate quantification of nominal vari-
ables, including an original implementation of the optimal
scaling procedure for ordinal values

� Several methods for imputation of missing values including
2 original implementations of singular value decomposition
(SVD)-based imputers

� Constructing principal tree for a quantified clinical dataset
� Partitioning the data accordingly to the non-branching seg-

ments of the principal tree (analogue of clustering) and asso-
ciating the segments with clinical variables

� Extracting clinical trajectories and associating the trajecto-
ries with clinical variables

� Visualization of clinical variables using principal trees and
metro map data layouts [27]

� Pseudo-time plots of clinical variables along clinical trajecto-
ries, visualization of their bifurcations

https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
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Table 1. Names of selected variables from the myocardial infarction complication dataset

Variable name Meaning

General input values

AGE Age
DLIT AG Duration of arterial hypertension
ant im Presence of an anterior myocardial infarction (left

ventricular)
FK STENOK Functional class of angina pectoris in the last year
GIPER NA Increase of sodium in serum (>150 mmol/L)
IBS POST Coronary heart disease in recent weeks, days before

the admission time
inf im Presence of an inferior myocardial infarction (left

ventricular)
lat im Presence of a lateral myocardial infarction (left

ventricular)
K BLOOD Serum potassium content (mmol/L)
L BLOOD White blood cell count (billions per liter)
NA BLOOD Serum sodium content (mmol/L)
post im Presence of a posterior myocardial infarction
NA R 1 n Use of opioid drugs in the ICU in the first hours of

the hospital period
NA R 2 n Use of opioid drugs in the ICU in the second day of

the hospital period
NA R 3 n Use of opioid drugs in the ICU in the third day of the

hospital period
NOT NA 1 n Use of NSAIDs in the ICU in the first hours of the

hospital period
NOT NA 2 n Use of NSAIDs in the ICU in the second day of the

hospital period
NOT NA 3 n Use of NSAIDs in the ICU in the third day of the

hospital period
R AB 1 n Relapse of the pain in the first hours of the hospital

period
R AB 2 n Relapse of the pain in the second day of the hospital

period
R AB 3 n Relapse of the pain in the third day of the hospital

period
TIME B S Time elapsed from the beginning of the attack of

CHD to the hospital

Inputs from anamnesis

nr 03 Paroxysms of atrial fibrillation
nr 04 A persistent form of atrial fibrillation
nr 11 Observing of arrhythmia
np 10 Complete RBBB
STENOK AN Exertional angina pectoris
zab leg 02 Obstructive chronic bronchitis
zab leg 03 Bronchial asthma
zab leg 06 Pulmonary tuberculosis
ZSN A Presence of chronic heart failure

Inputs for the time of admission to hospital

n p ecg p 06 Third-degree AV block on ECG
n p ecg p 08 LBBB (posterior branch) on ECG
n p ecg p 12 Complete RBBB on ECG
n r ecg p 05 Paroxysms of atrial fibrillation on ECG
n r ecg p 06 Persistent form of atrial fibrillation on ECG
n r ecg p 08 Paroxysms of supraventricular tachycardia on ECG
ritm ecg p 01 Sinus ECG rhythm (HR between 60 and 90)
ritm ecg p 02 Atrial fibrillation in ECG rhythm
ritm ecg p 04 Atrial ECG rhythm
ritm ecg p 06 Idioventricular ECG rhythm
ritm ecg p 07 Sinus ECG rhythm (HR >90)
SVT POST Paroxysms of supraventricular tachycardia
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Table 1. Continued

Variable name Meaning

Inputs for the time of admission to ICU

D AD ORIT Diastolic blood pressure (mm Hg)
S AD ORIT Systolic blood pressure (mm Hg)
FIB G POST Ventricular fibrillation
K SH POST Cardiogenic shock
MP TP POST Paroxysms of atrial fibrillation
O L POST Pulmonary edema

Complications

FIBR PREDS Atrial fibrillation
PREDS TAH Supraventricular tachycardia
JELUD TAH Ventricular tachycardia
FIBR JELUD Ventricular fibrillation
DRESSLER Dressler syndrome
ZSN Chronic heart failure
OTEK LANC Pulmonary edema
P IM STEN Post-infarction angina
REC IM Relapse of the myocardial infarction
A V BLOK Third-degree AV block
RAZRIV Myocardial rupture

Cause of death

LET IS=0 Survive
LET IS>0 Death with cause from 1 to 7
LET IS 0 Survive
LET IS 1 Cardiogenic shock
LET IS 2 Pulmonary edema
LET IS 3 Myocardial rupture
LET IS 4 Progress of congestive heart failure
LET IS 5 Thromboembolism
LET IS 6 Asystole
LET IS 7 Ventricular fibrillation

AV: atrioventricular; CHD: coronary heart disease; ECG: electrocardiogram; HR: heart rate; ICU: intensive care unit; LBBB: left
bundle branch block; NSAID: nonsteroidal anti-inflammatory drug; RBBB: right bundle branch block.

Myocardial infarction complications case study

Quantification of nominal values and imputation of missing data
values
As a first step of pre-processing, 7 variables were removed from
the initial MI complication data table as containing >30% of
missing values. Next, 126 records were removed as containing
>20% of the missing values. After this step, the data table con-
tained 2.5% of missing values with 533 rows (34% of all clinical
cases) having no missing values.

After the missing value filtering step, the data table of MI
complications contained 84 binary, 9 continuous numerical, 22
ordinal, and 1 categorical variables. The large number of or-
dinal variables requires careful quantification (see Methods),
which is not trivial given the large number of rows with missing
values.

We considered the number of continuous numerical vari-
ables too small to apply the methodology of categorical prin-
cipal component analysis (CatPCA) [28]. Therefore, for all ordi-
nal and binary variables we first applied univariate quantifica-
tion following the approach described in the Methods section.
This quantification allowed the application of the “SVDCom-
plete” imputation method for imputing the missing values, as

described in the Methods. After all missing values were imputed,
we could apply the optimal scaling approach for ordinal val-
ues, optimizing the pairwise correlations between them and be-
tween ordinal and continuous numerical variables. The 22 ordi-
nal variables quantified in this way were further used for form-
ing the data space. In addition, all variables were converted to
z-scores.

Constructing elastic principal tree
The initial data space was formed by 123 variables. We evalu-
ated the global intrinsic dimensions of the dataset using several
methods implemented in Scikit-dimension Python package [29]
and found that the majority of non-linear methods estimated
the intrinsic dimensions in the range 10–15 while linear meth-
ods based on PCA gave much larger intrinsic dimension values
(see Supplementary Figure S1). We compared the estimations of
intrinsic dimensions with and without complication variables
and found them to be similar, which indicates that there exists a
certain level of dependency between the complication variables
and the rest of the clinical variables. We also observed that the
screen plot for this dataset is characterized by an elbow approxi-
mately at n = 12. As a result of this analysis, for further inference



6 Trajectories, bifurcations, and pseudo-time in large clinical datasets

of the principal tree, we projected the dataset into the space of
the first 12 principal components.

The elastic principal tree was computed using elastic princi-
pal graphs: ElPiGraph Python implementation as documented in
the Jupyter notebook [30] and in the Section “Method of Elastic
Principal Graphs (ElPiGraph)” of this article. The principal tree
explained 52.4% of total variance, in contrast to the first 2 prin-
cipal components, which explained 25.9%, and the first 5 prin-
cipal components, which explained 54.0%. The obtained prin-
cipal tree (shown in Fig. 1) was used to provide a 2D layout of
the dataset, which can be used for visualization of various clin-
ical variables and the results of analyses. Globally, the princi-
pal tree defined 3 terminal non-branching segments populated
with non-lethal clinical cases [indicated as Nos. 3, 5, 6 in Fig. 1,
panel “Tree segments (branches)”] and associated with younger
patients (Fig. 1, panel “AGE”). Other terminal segments (Nos. 0,
7, 9, 10, 12, 14, 15) were characterized by various risks of lethal-
ity (Fig. 1, panel “Lethal cases”), with 2 terminal segments Nos.
12 and 15 being strongly enriched with lethal cases, caused by
cardiogenic shock and myocardial rupture correspondingly.

Each node of the principal tree is connected with a subset of
data points. We performed the enrichment analysis, based on
application of the independence χ2 test, to determine the node
that is the most strongly associated with the “no complication”
class (black points in Fig. 1). The position of this node (No. 8) is
indicated as “Root node” in Fig. 1, main panel.

Assigning data point classes
As mentioned above, the classes of the clinical observations can
usually be defined by selecting a subset of clinical variables that
represent some final readouts of a patient state. Thus, in the MI
complications dataset, 12 clinical variables report the complica-
tions, with 11 of them representing binary variables and 1 the
categorical variable LET IS, whose value is 0 if there is no lethal
outcome. Otherwise, LET IS can take 1 of the 7 nominal values
representing the cause of death. Following the methodology sug-
gested in this study, the LET IS variable is first made a subject of
dummy coding, introducing 7 binary features. The resulting 18
binary variables were characterized by 158 unique combinations
of 0/1 values, which appeared to be too many to define 1 class
per each unique combination.

Therefore, it was decided to reduce the number of distinct
complication states to a more manageable number by cluster-
ing them. The table of 158 possible complications and 18 binary
variables was analyzed by the method of elastic principal trees
as described below and clustered into 11 clusters according to
the principal tree non-branching segments (see Fig. 2). Seven
of these clusters contained lethal outcomes and clearly corre-
sponded to particular causes of death, which corresponds to
non-zero values of the LET IS variable. The non-lethal outcomes
have been clustered into 4 classes (0, 1, 2, 3). Classes 1 and 2
appeared to be characterized by fibrillation and tachycardia but
differed in the types (“1” corresponded to atrial fibrillation and
tachycardia, while “2” had a tendency to be characterized by ven-
tricular). Non-lethal Class 0 was distinguished by “P IM STEN”
(post-infarction angina), and Class 3, by the presence of diag-
nosed “A V BLOCK” (third-degree atrioventricular block).

Besides this clustering, a particular non-lethal state was dis-
tinguished characterized by zero values of all complication vari-
ables. We distinguished this class as a separate “no complica-
tions class.” In the complete dataset, it corresponded to 45% of
clinical records (denoted as black points in Figs 1 and 2). In the
rest of the analysis, all complication variables have been ana-
lyzed together with the clinical characteristics.

Dataset partitioning (clustering) by principal tree non-branching
segments
The explicitly defined structure of the computed elastic princi-
pal tree allows the dataset to be partitioned in accordance with
the projection of the data points on various internal and termi-
nal segments as described in the “Methods” section and shown
by color in Fig. 1, panel “Tree segments (branches).” Such parti-
tioning can play a role of clustering with the advantage that the
tree segments can recover non-spherical and non-linear data
clusters. In addition, the data clusters, defined in such a way,
are connected in a tree-like configuration, with junctions cor-
responding to the branching points, which can correspond to
“points of no return” in the state of the patients.

Each non-branching segment in the tree can be associated by
enrichment analysis with either a data class or a variable. The
points of the data classes that are associated with ≥1 tree seg-
ment are highlighted by size in Fig. 1, panel “Classes associated
with segments.” The results of enrichment analysis for all clini-
cal variables are shown in Fig. 3. Briefly, we found that 44 clinical
variables, including 8 complication variables, can be associated
with ≥1 segment (Fig. 3) with reasonably high thresholds for ei-
ther the deviation score (8) or ANOVA linear model coefficient
(provided that the results of χ2 or ANOVA tests are statistically
significant).

Analysis of clinical trajectories and pseudo-time
The non-branching segments of the principal tree are connected
into trajectories, from the root node of the tree corresponding
to the least frequency of complications to one of the leaf nodes
representing some extreme states of the disease (some of which
are connected with increased risk of lethality). Internal tree seg-
ments are shared between several trajectories, while the termi-
nal segments correspond to a single trajectory. Consequently,
each data point can be associated with one or more trajectories.
The position of the data point on a trajectory is quantified by the
value of pseudo-time characterizing the intrinsic geodesic dis-
tance from the root node, measured in the units of the number
of tree edges. The value of pseudo-time is continuous because a
data point can be projected on a tree edge, in between 2 nodes.

If a data point (clinical observation) is attributed to several
trajectories, then it is characterized by the same pseudo-time
value on each of them. This can be interpreted as the state of un-
certainty from which several clinical scenarios can be developed
in the further course of the disease, following 1 or several bifur-
cation points. Those clinical observations belonging to a single
trajectory correspond to less uncertainty in the prognosis, with
higher chances to end up in a terminal state.

To determine the factors affecting the choices between al-
ternative clinical trajectories, it is necessary to associate clinical
variables with each trajectory and determine the trend of their
changes along them. Mathematically this corresponds to solv-
ing the regression problem connecting a clinical variable and the
observation pseudo-time. Using this approach we identified 35
variables associated with pseudo-time with R2 > 0.3 for ≥1 tra-
jectory (Fig. 4A and B). The pseudo-dynamics of these variables is
shown in Fig. 4C. This analysis allows one to draw conclusions
regarding the sequence of clinical variable changes leading to
various complications. Thus, the 4 trajectories 8 → 52, 51, 54,
55 are associated with increasing risks of 4 distinct lethal out-
comes (progress of congestive heart failure, myocardial rupture,
cardiogenic shock, and pulmonary edema, respectively). Three
trajectories (8 → 49, 53, 57) correspond to mild course of the dis-
ease associated with younger patients, with the risk of ventric-
ular tachycardia increasing along the trajectory 8 → 53.
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Figure 1 Principal tree recapitulating the multidimensional structure of the myocardial infarction complications dataset. Distribution of classes along the tree is
visualized in the large panel. Various modes of data visualization are shown in the small panels. “Tree segments (branches)” shows partitioning (clustering) of data
points accordingly to the linear fragments connecting branching points and/or leaf nodes (called “non-branching segments” in this work). “AGE” is an example of a
continuous variable visualization using color gradient of data points. “Classes associated with segments” shows data points of only those classes that have statistical

associations with ≥1 segments. “Atrial fibrillation” and “Lethal cases” show visualization of a binary variable, with edge width reflecting the trend (in the case of “Lethal
cases” it can be interpreted as lethality risk estimate). “Trajectory 8→54” is a subset of data points, colored according to their classes and belonging to 1 particular
clinical trajectory, having the node with the least risk of complications as the root node (Node 8) and the highest risk of cardiogenic shock as its final state (Node 54).

To illustrate the picture of decreasing uncertainty while the
disease progresses along clinical trajectories, we focused on 4
trajectories 8 → 50, 52, 55, 56 sharing 1 or several internal tree
segments. We selected several clinical variables and 2 lethal out-
come variables associated with pseudo-time along these trajec-
tories and showed them all in the same plot (Fig. 5). One can see
that the pseudo-dynamics of some clinical variables estimated
by logistic regression as having a probability of value “1” gradu-
ally diverge at the branching points of the principal tree.

The trajectory 8 → 55 is characterized by increasing sinus
tachycardia after the bifurcation point A and increasing risk
of congestive heart failure and to a lesser extent pulmonary
edema. The trajectory 8 → 50 is characterized by the absence
of sinus tachycardia with gradual decline in the variable “ECG
rhythm - sinus with a heart rate 60–90” after the point B, and,
after the bifurcation point C, rapid increase of the probability of
paroxysms of atrial fibrillation. The prognosis along this trajec-
tory is relatively favorable, as well as on the clinical trajectory 8
→ 56, which is characterized by slow and incomplete decrease
of the probability of “ECG rhythm - sinus with a heart rate 60–90”
after the point C.

The trajectory 8 → 52 is characterized by high risk of pul-
monary edema and gradual increase of sinus tachycardia. One
of the distinguishing features of this trajectory is increased use
of opioid and antiinflammatory drugs in the intensive care unit
at days 2 and 3 after admission to the hospital, which is in turn
connected to pain relapse (R AB 2 n variable).

Predicting survival and lethal risk factors
Each clinical trajectory extracted from the analysis of synchronic
clinical data is interpreted as a possible ordered sequence of

states from the least severe condition to the extreme final point
of the trajectory. Assuming that for a given patient state all the
downstream points on the clinical trajectory represent possible
future states of the patient, we can make a prediction of pos-
sible clinical risks connected with moving along this trajectory.
In particular, this can be used for estimating lethal risks if such
events are recorded in the clinical dataset. To evaluate the risks
of a clinical event in the future, a well-developed methodology of
survival analysis can be used, but using the pseudo-time value
instead of the real time value. We call such analysis the pseudo-
time survival analysis.

The pseudo-time quantified along different clinical trajecto-
ries might be incomparable in terms of the physical time. There-
fore, the pseudo-time survival analysis should be performed for
each trajectory individually, even if the estimated risks can be
visualized together using the common pseudo-time axis.

We applied a non-parametric estimator of the cumulative
hazard rate function (see Methods) to quantify lethal risks along
10 identified clinical trajectories in the MI complication dataset
(Fig. 6A). This analysis highlighted 6 of 10 trajectories as char-
acterized by elevated hazard rates of lethality, which is a quan-
tification of the distribution of lethal cases on the principal tree
shown in Fig. 1. The total lethality risk can be decomposed into
the risks resulting from a particular cause of death (1 of 7). Quan-
tification of individual cause of death risks is shown in Fig. 6B. In
this case, an event for the hazard function estimator is a particu-
lar cause of death. As a result, the increased risk of total lethal-
ity can be attributed to 1 or several particular causes of death
(Fig. 6A).

Using the same assumptions, different risk factors affecting
the risks along different clinical trajectories can be evaluated us-
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Figure 2 Defining classes of myocardial infarction complications using principal
tree–based clustering. The labeling marks either the cause of death (underscored

for lethal outcome classes) or a set of complication variables strongly overrep-
resented in the cluster, according to the χ2 test of independence; the size of
the label reflects the significance of over-representation (the larger the label the
more significant is the deviation from independence). A V BLOK: third-degree

AV block; DRESSLER: Dressler syndrome; FIBR JELUD: ventricular fibrillation;
FIBR PREDS: atrial fibrillation; JELUD TAH: ventricular tachycardia; OTEK LANC:
pulmonary edema; P IM STEN: post-infarction angina; PREDS TAH: supraven-
tricular tachycardia; REC IM: relapse of the myocardial infarction; ZSN: chronic

heart failure.

ing the standard methodology of survival regression. As an ex-
ample, we computed the survival regression for the set of pa-
tients along the trajectory ending in Node 52, associated with
increased risks of congestive heart failure and asystole (cardiac
arrest). The clinical variable making the largest positive contri-
bution to the regression was the presence of bronchial asthma
in the anamnesis, suggesting that it can be an aggravating fac-
tor along this particular clinical trajectory (Fig. 6C). Indeed, split-
ting this set of patients into 2 groups (with or without asthma in
anamnesis) shows differential survival as a function of pseudo-
time along this particular trajectory.

Diabetes readmission case study

Clinical trajectories in large-scale observational diabetes data
To check whether the ClinTrajan package can be applied to larger
datasets, we extracted clinical trajectories using a publicly avail-
able dataset, representing 10 years (1999–2008) of clinical care at
130 US hospitals and integrated delivery networks. The dataset
contains 101,766 records satisfying the following conditions: (i)
it is an inpatient encounter (a hospital admission); (ii) it is a dia-
betic encounter, i.e., one during which any kind of diabetes was
entered to the system as a diagnosis; (iii) the length of stay was
≥1 day and ≤14 days; (iv) laboratory tests were performed dur-
ing the encounter; and (v) medications were administered dur-
ing the encounter. The data contain such attributes as patient
race, sex, age, admission type, time in hospital, medical spe-
cialty of admitting physician, number of laboratory tests per-
formed, HbA1c test result, diagnosis, number of medications,
diabetic medications, and number of outpatient, inpatient, and

emergency visits in the year before the hospitalization. In the su-
pervised setting, the aim of the analysis of this dataset is usually
to predict readmissions (“readmitted” variable) within 30 days
after discharge from the hospital. In our analysis, we considered
the readmitted variable as a part of the data space, in order to
perform unsupervised analysis of the dataset with the aim of
extracting clinical trajectories, some of them leading to the in-
creased readmission likelihood.

The exact protocol for encoding the diabetes dataset is pro-
vided at the ClinTrajan github [30]. Importantly, we encoded sev-
eral categorical variables as ordinal. In particular, the readmit-
ted variable was encoded in 3 levels with 0 value corresponding
to “No” (absence of recorded readmission), 1 to “>30 days,” and
2 to “<30 days.” The “A1Cresult” feature (related to the HbA1c
test) was encoded in 2 variables. The first was binary, indicat-
ing absence (“None” value) or presence of the measured event.
The second was the actual level of HbA1c: missing values cor-
responding to “None,” and 3 levels encoding for the measured
values, 0 for “Norm,” 1 for “>7,” and 2 for “>8.” Because the
A1Cresult field was not “None” in only 17% of patient records,
this created a column containing 83% missing values, which
were further imputed from the rest of the data. This was the
only variable containing missing values. The age field was en-
coded as a 10-level ordinal variable according to 10 age intervals
provided in the initial data table.

For encoding the 23 categorical fields of the dataset describ-
ing the administered medications and change in their dosage,
we used the following schema. First, we kept only the 4 most fre-
quently prescribed (in >10% of cases) medications: insulin (53%
cases), metformin (20% cases), glipizide (12% cases), and gly-
buride (10% cases). Second, each medication field was encoded
into 2 variables: a binary indicating the absence (“No” value) or
presence (“Steady” or “Down” or “Up”) of the treatment prescrip-
tion, and a 3-level with 0 corresponding to either absence or no
change in the treatment dose (“No” or “Steady”), −1 correspond-
ing to decreased dose (“Down”), and +1 to increased dose (“Up”).

We did not include some of the categorical variables such as
admission type or diagnosis in the definition of the data space
because they contained hundreds of different values, and we
used them rather as annotations to be visualized on top of the
constructed tree. We excluded 2.3% of records corresponding to
the elapsed states (hence, without possibility of readmission)
from the analysis, similarly to some previous analyses [31].

The resulting encoded dataset contained 22 variables (8 nu-
merical, 7 ordinal, and 7 binary). We performed the data pre-
processing similarly to the way it was done in the MI datasets,
with imputing the missing values in the “A1Cresult value” col-
umn and with further application of optimal scaling to ordi-
nal values (see the corresponding Jupyter notebook [30]). The
dimensionality of the dataset was reduced to 6 because it was
the consensus value resulting from the application of several
methods of intrinsic dimension estimation (see Supplementary
Fig. 1), excluding outlying ID values.

The principal tree algorithm was applied with the same pa-
rameters as in the previous section. The construction of the
principal tree with 50 nodes for the 6D dataset with 99,343 data
points took ∼400 seconds on an ordinary laptop. The principal
tree explained 64% of the total variance, in contrast to 47% for
the first 2 principal components, with 4 principal components
needed to explain the same percentage of variance as the prin-
cipal tree. The tree contained 8 branching points (see Fig. 7A)
with 1 fourth-order star. The principal tree–based data layout
was used to visualize the values of data space variables (Fig. 7A)
and some other variables from the annotation data (Fig. 7B and

https://github.com/sysbio-curie/ClinTrajan/
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Figure 3 Association of principal tree segments (as shown in Fig. 1) with data variables. Right: Hierarchical clustering dendrogram of association scores. Right: 3
examples of strong associations with continuous/ordinal and binary variables. The following variables are shown: DLIT AG: duration of arterial hypertension (years);
MP TP POST: paroxysms of atrial fibrillation; NA BLOOD: serum sodium content, mmol/L; OTEC LANC, pulmonary edema; ritm ecg p 04, ECG rhythm at the time of

admission to hospital, atrial; STENOK AN, Exertional angina pectoris in the anamnesis. The meaning of other variable names is provided in the “Data description”
section.

D), some of which did not participate in determining the struc-
ture of the principal tree.

As a root node in this case, we selected the middle node of
one of the internal segments of the principal tree (segment No. 3
in Fig. 7A), which was characterized by the shortest times spent
in the hospital, smallest number of all procedures, no history
of inpatient stays or emergency calls in the preceding year, nor-
mal predicted (not measured) value of HbA1C, and absence of
any medication. Therefore, this area of the principal tree was
considered as corresponding to a quasi-normal state in terms of
diabetes treatment.

Starting from this root node, the structure of the principal
tree allowed us to define 8 distinct clinical trajectories. We fo-
cused on 2 of them, depicted in Fig. 7C as solid and dashed lines,
together with the pseudo-time dependence of several selected
clinical variables. One of these trajectories was the only one as-
sociated with the high readmission incidence, increasing with
pseudo-time. It did not correspond, however, to the longest hos-
pital stays, which was a feature of the second clinical trajectory
considered. Therefore, we designate these clinical trajectories
as “readmission-associated” and “long stay–associated.” Unsur-
prisingly, the readmission-associated trajectory was character-
ized by an increasing number of inpatient and outpatient stays,
as well as increasing number of emergency visits in the pre-
ceding year. This association must be interpreted by clinicians
to attribute it either to objective clinical patient state requiring
frequent return to the hospital or a psychologically motivated
pattern of behavior. In favor of the objective cause, one can no-
tice that the readmission-associated trajectory contains a dif-
ferent spectrum of primary diagnoses compared with the long

stay–associated trajectory, where primary diagnoses related to
the circulatory system dominate (Fig. 7D, left). We also note
that elective hospitalizations were increasingly more frequent
for the long stay–associated trajectory, while the pseudo-time of
the readmission-associated trajectory correlates with increasing
probability of admission by emergency (Fig. 7D, right).

The readmission-associated trajectory in this analysis can be
considered an undesirable clinical scenario, the main source of
burden on the medical system with respect to diabetes. By the
trajectory-based analysis we confirmed previous conclusions
[26] that the readmission-associated trajectory was connected
with almost complete absence of HbA1C measurement (Fig. 7C),
unlike the long stay–related trajectory, where up to 40% of pa-
tients underwent HbA1C testing at the final pseudo-time values.
The predicted value of HbA1C along the readmission-related
trajectory was “>7” (moderate elevation). Both readmission-
and long stay–associated trajectories were characterized by re-
ceipt of insulin, with slightly more metformin indications along
the long stay–associated trajectory. Importantly, the long stay–
associated clinical trajectory is connected to the earlier, in terms
of pseudo-time, “any treatment” variable dynamics (Fig. 7C, bot-
tom panel).

Trajectory-based analysis of the relation between early readmission
rate and the measured glycated hemoglobin HbA1c
In the original publication of the diabetes dataset, several obser-
vations were reported [26]. First, it was observed that the depen-
dency of the early readmission (in <30 days) frequency estimate
on the presence of an HbA1c measurement is conditional on the
type of primary diagnosis (with 3 major types being diabetes



10 Trajectories, bifurcations, and pseudo-time in large clinical datasets

Figure 4 Clinical trajectory analysis of the myocardial infarction complications dataset. A, Visualization of R2 values for the regression between clinical variables and
the pseudo-time along 10 clinical trajectories. B, Examples of regression analysis for binary (logistic regression), continuous, and ordinal (Gaussian kernel regression)
clinical variables. C, Pseudo-time plots for clinical variables selected by regression analysis. For binary variables, the probability inferred by logistic regression is shown.

For ordinal and continuous variables, non-linear regression line is shown. Complication variables associated with the clinical trajectories are shown with thick lines
(e.g., LET IS 0 represents the survival probability.) Vertical dashed lines indicate the positions of tree branching points along pseudo-time. The abscissa in the pseudo-
time plots corresponds to the variable value scaled to unity for the total variable amplitude. The meaning of the variable names is provided in the “Data description”
section.
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Figure 5 Example of bifurcating clinical trajectories. Four of 10 clinical trajectories are depicted for myocardial infarction complications data. The trajectories all share

the internal segment 8-A and diverge at nodes A, B, C. Four selected binary clinical variables and 2 lethal outcome variables are shown as functions of 4 pseudo-time
measurements, 1 per trajectory. The abscissa in the pseudo-time plots corresponds to the variable value scaled to unity for the total variable amplitude.

and circulatory and respiratory diseases). Second, for the pa-
tients with diabetes as primary diagnosis, it was shown that not
measuring the level of HbA1c is connected to increased risk of
early readmission. Interestingly, from Fig. 1 of [26], one can con-
clude that, in patients with diabetes as primary diagnosis, high
levels of measured HbA1c are connected to decreased readmis-
sion risk compared with the normal level of measured HbA1c.
This paradoxical observation emerged from simple calculations
of the early readmission frequency, as well as rate calculations
adjusted for several clinical covariates.

To illustrate the advantage of trajectory-based patient strat-
ification, we recomputed the simple unadjusted estimations
of the early readmission frequency as a function of measured
HbA1c in sets of patients with different primary diagnosis
(Fig. 8A). This reproduced the previously drawn conclusions
from the original study [26]. The frequency of readmission ap-
peared to be higher in the patients without measured HbA1c.
Qualitatively similar to the previous publication, the readmis-
sion rate was significantly lower for the high values of HbA1c
compared with normal levels (8.6% vs 11.8%). Note that the an-
alyzed dataset has changed since its original publication, with
>20,000 new patients being added. Noting this seeming paradox,
we hypothesized that it can be explained by the heterogeneity
of relationships between the levels of HbA1c and readmission,
which can be captured in distinct clinical trajectories.

We looked at the cases of primary diagnosis of diabetes sep-
arately for each of the 8 clinical trajectories previously identified
by applying the principal tree method (Fig. 8B). Strikingly, the de-
pendence of early readmission on the measured levels of HbA1c
is clearly different along different trajectories (Fig. 8C). For exam-
ple, the trajectory ending with Node 50 (Fig. 8B and C, denoted
as “Trajectory 12-50”) was associated with higher risks of read-
mission. Absence of HbA1c measurement is still associated with
a higher level of early readmission (26.8% compared with 20.0%
for the cases with normal HbA1c level). However, along this tra-
jectory the higher levels of measured HbA1c are associated with
much higher levels of readmission (35.7%). There exists another

trajectory (“Trajectory 12-54”) where the dependence follows an
opposite pattern (12.7% of early readmissions for unmeasured
HbA1c vs 10.6% for normal levels of HbA1c and 4.4% for high
levels of HbA1c).

Therefore, we can tentatively suggest that different trajec-
tories in the diabetes data stratify the patients into clinically
distinct scenarios, requiring different statistical models for an-
ticipating the readmission rates. As a consequence, measuring
HbA1c might have more clinical value in terms of estimating
risks of early readmission along some trajectories and less along
the others. For example, the patients with diabetes as primary
diagnosis along Trajectory 12-50 are characterized by frequent
readmissions, with more severe cases of diabetes leading to
very frequent reamissions. Two other trajectories, exemplified in
Fig. 8B and C, show much less of an effect of measuring HbA1c on
readmission rates, and one of the trajectories shows an opposite
trend, with more severe cases leading to less frequent readmis-
sion. As a consequence, we can suggest that measuring HbA1c
is critical for determining the risk of early readmision for Trajec-
tory 12-50 and Trajectory 12-54 but appears to be less important
for Trajectory 12-48 and Trajectory 12-51.

Interpretation of distinct clinical scenarios must be per-
formed by experts in the field of diabetes treatment. We can
only hypothesize that the seeming decrease in the globally as-
sessed readmission rates in patients with high measured HbA1c
might be connected to the existence of a large subset of “stabi-
lized” patients, with established supportive treatment. However,
the stratification of patients into different clinical trajectories
demonstrates that this is not a universal effect and that one can
distinguish other patient clusters characterized by severe forms
of diabetes characterized by relatively high rates of early read-
mission.

Discussion

In this study we considered two rich and large publicly available
observational clinical datasets from the most challenging areas
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Figure 6 Pseudo-time survival analysis and determination of risk factors along clinical trajectories. A, Visualizing total hazards of death from myocardial infaction

complications together with uncertainty of their estimate along different pseudo-time trajectories. The trajectories of the principal tree are denoted by different colors,
corresponding to the color of the hazard plot. The dominant contribution of the cause of death to the total hazard is annotated by a label. B, Hazards of individual
causes of death along various trajectories. The axis scale of each small plot here is identical to the plot shown in A. C, Example of survival regression for the data points
along the trajectory ending with Node 52 (light blue in A). Only the 10 most significant positive and 10 most significant negative survival regression coefficients are

shown. D, The effect of the top positive survival regression coefficient (zab leg 03, meaning presence of bronchial asthma in the anamnesis) leads to different survival
functions between 2 patient groups. Thus, presence of asthma in the anamnesis (zab leg 03=1) worsens the survival along this particular trajectory associated with
the risk of congestive heart failure and asystole (cardiac arrest). CI: confidence interval; HR: hazard ratio.

of public health: cardiology and diabetes. Both datasets contain
synchronic (related to a hospital stay) observations over a rela-
tively large population of patients. Therefore, the traditional un-
supervised machine learning approach for treating these data in
order to classify clinical states is supposed to be some kind of
clustering or manifold learning. We demonstrate that there ex-
ists an alternative approach that allowed us to represent these
data as pseudo-diachronic, i.e., to reflect to some extent the tem-
poral aspects. This opens a possibility to classify not only the
states of particular patients but their hypothetical clinical tra-
jectories arriving from the past and projected into the future.
This in turn makes it possible to reason in terms of dynamical
disease phenotyping, e.g., classifying clinical states in terms of
the type of disease dynamics.

Identification of clinical trajectories is made possible by the
use of the branching pseudo-time approach, consisting of mod-
eling the geometry of the dataset as a “bouquet” of diverging tra-
jectories, starting from 1 or several hypothetical quasi-normal

(e.g., characterized by the least severe condition) disease states.
The progression along a particular clinical trajectory can be
quantified in terms of pseudo-time, reflecting the abstract accu-
mulated amount of changes in the observed clinical traits. The
main requirement for the possibility of such reconstruction is
the existence of a sufficient number of observations (thousands)
such that the individual variations in the clinical states would
reveal the major non-linear routes along which they progress in
real physical time.

Trajectory analysis from snapshot data is a widely used ap-
proach in modern molecular single-cell studies, where genome-
wide measurements of individual cell states are inevitably de-
structive. Collecting information about a large number of cell
states allows the underlying hidden cellular dynamics to be re-
constructed without following each individual cell in physical
time [15]. Dynamic phenotyping of cell states is a rapidly emerg-
ing concept in this scientific field [6]. ElPiGraph is an established
general machine learning method that is widely used for the
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Figure 7 Analysis of clinical trajectories in large-scale diabetes dataset. A, Visualization of various clinical variables on top of the metro map layout of the principal tree.
Partitioning the data according to the principal tree segments is also shown in the top left corner. B, Visualization of 4 categorical variables related to the administered

drug treatments and their dose changes. Here, the data points are shown on a semi-transparent background, while on top of each graph node the relative proportions
of the associated (the closest) data points are shown as a pie chart. The sizes of the pie charts are proportional to the number of points associated with each node. C,
Pseudotemporal dynamics of clinical variables correlated to readmission- and long stay–associated clinical trajectories (shown as solid and dashed lines on the left).

D, Visualization of the data table fields not participating in the construction of the principal tree, “primary diagnosis” on the left and “admission type” on the right.

purpose of reconstructing cellular trajectories from single-cell
data, in the form of principal trees or other more or less complex
graph topologies [19]. Here we suggest applying ElPiGraph to the
quantification of clinical trajectories in large clinical datasets,
which requires adapting ElPiGraph to datasets characterized by
mixed data types and the presence of non-randomly distributed
missing values.

This effort resulted in the ClinTrajan Python package, which
can be readily applied in the analysis of clinical datasets con-
taining even millions of observations. In the real-life diabetes
dataset considered here and containing >1 hundred thousands
of observations, the analysis by ClinTrajan takes a few minutes
on an ordinary laptop.

Use of ElPiGraph is the most relevant in the case when the
hypothetical probability density function underlying the multi-
dimensional data is characterized by certain archetypal fea-
tures. Recall that classical phenotyping is, in its essence, cluster
analysis of data. The application of standard clustering meth-
ods assumes thee existence of lumps and peaks in the density

function: therefore, clustering looks for a set of principal points
[8, 32].

Dynamical phenotyping has a different basic assumption
that the point density is characterized by the existence of con-
tinuous 1D “ridges” that can diverge from or converge to each
other in the data space. They can also connect local density
peaks. In this case, the appropriate data approximation methods
(such as ElPiGraph) look for principal curves and, more generally,
branching principal trajectories, along which the data points are
condensed [19, 33]. The relevance of such a data model for dy-
namical phenotyping follows from the nature of a complex dy-
namical process, underlying disease progression, which devel-
ops in physical time and is sampled in the space of clinical char-
acteristics.

Similar to cellular trajectories, the reconstructed clinical tra-
jectories do not possess any natural orientation: therefore, ori-
enting them necessitates expert-based decisions for choosing
one or several root nodes in the principal tree. Also, the hypo-
thetical dynamics of patients along the clinical trajectory does
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Figure 8 Relation between early readmission and measured glycated hemoglobin HbA1c. A, Global frequencies of early readmission (in <30 days) as a function of HbA1c
measure. B, Frequencies of early readmission along 4 representative trajectories (shown in C), computed only for the patients with diabetes as primary diagnosis.
Standard deviation interval is shown by shaded area for each curve in A and B. C, Pie charts show readmission frequencies along the clinical trajectories. The size
of the pie charts reflects the number of patients with diabetes as primary diagnosis associated with each node of the principal tree. Bigger color data points show

patients with diabetes as primary diagnosis, with known measured level of HbA1c (normal in green, medium in yellow, and high in red). Note that more severe cases
of diabetes confirmed by HbA1c tend to be at the end of the clinical trajectories. The colors of the trajectories in C match those in the plots in B.

not have to be assumed to be irreversible. Some additional in-
sights about orientation and reversibility can be obtained from
a mix of synchronic and diachronic data, where individual pa-
tients can be represented not by simple data points but by more
or less longitudinal observations represented by short trajecto-
ries. The best practices of using such data from the machine
learning perspective remain to be established [10].

It appears interesting to relate the inferred pseudo-time to
the physical time and use it to parametrize the obtained clinical
trajectories. This raises for us an important challenge that can
be approached in several ways.

One of them is related to the aging of patients. Indeed,
chronological age represents the most basic way to rank the pa-
tients in a sequence that can potentially correlate to the clinical
state (hence, define a clinical trajectory). However, the relation-
ship between “biological” and “chronological” age remains com-
plex, especially in the pathological context [34]. In our study we
exploited chronological patient age as any other clinical vari-
able, and observed that indeed age correlates to some clinical
trajectories but not to others. Moreover, some clinical trajec-
tories might be characterized by decreasing chronological age,
which can be interpreted as an aggravating clinical picture spe-
cific to younger patients. We can imagine other ways of using
the age variable: e.g., for learning the structure of the principal
tree in a semi-supervised fashion. How to use chronological age
in the most informative way when analyzing both longitudinal
and synchronic data remains an open question [34].

A second approach to introducing physical time into the pic-
ture is using partially diachronic data as an additional annota-
tion of a clinical dataset (the case of complete diachronic clinical
data, representing longitudinal observations, is usually treated
using a different and established set of approaches). One source
of information that can be relatively easily obtained is identi-
fying pairs of data points corresponding to 2 subsequent states
of the same patient and recording the time lapse between the 2
states. For example, a fraction of the patients in a clinical dataset
can be returning to the hospital, with a previous record included

in the dataset, so this information must be available. If the num-
ber of such pairs is sufficiently large, then one can try to learn
a monotonic function Fk of pseudo-time along each trajectory k,
predicting the actual temporal label for each observation. Note
that the connection between pseudo-time and physical time can
be different along different clinical trajectories. Moreover, the
paired patient observation data can be used in the process of
principal tree learning, by minimizing the number of paired pa-
tient observations belonging to distinct clinical trajectories.

Another limitation of the suggested approach is that the clin-
ical trajectories are assumed to be diverging from some initial
root state or states. In reality, convergence of clinical trajectories
seems to be feasible (as in the case of the cellular trajectories).
In this case, the model of the principal tree has to be general-
ized to some more general graph topologies (e.g., existence of
few loops). In the case of the ElPiGraph method, such modifi-
cations are easy to introduce technically; however, introducing
graph structures more complex than trees requires careful con-
sideration to avoid creating data approximators whose complex-
ity will be comparable to the complexity of the data themselves
[35].

Potential Implications

Quantification of clinical trajectories represents the first step in
using the concept of dynamic clinical phenotyping for diagnos-
tics and prognosis. Predicting the probabilities of future clinical
states for a particular patient together with their uncertainties,
using the knowledge of clinical trajectories, can be a natural next
step for future studies. These approaches can consider clinical
trajectories as a coarse-grained reconstruction of the state tran-
sition graph for a dynamic system, described by, e.g., continuous
Markov chain equations. Some methodological ideas can be bor-
rowed from recent omics data studies [36].

Recapitulating the multi-dimensional geometry of a clinical
dataset in terms of clinical trajectories might open possibilities
for efficient applications of other methods more oriented to-
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wards supervised machine learning. For example, it can poten-
tially be used for learning the optimal treatment policy, based
on the application of reinforcement learning as in [37].

The existing large clinical datasets are frequently collected
as a result of multi-site studies. In the case of strong artifacts
and biases caused by the application of significantly different
practices for data collection or other factors, specific methods of
correction should be applied, integrated into the data analysis or
even in the study design [38]. However, dimensionality reduction
methods based on averaging can in principle partially compen-
sate for data heterogeneity if it can be modeled as a mixture of
independent site effects that remain relatively small compared
to the ranges of variable variations along the clinical trajecto-
ries. ElPiGraph in this respect has advantages over much more
rigid PCA, being a nonlinear generalization of it for the case of
datasets with complex geometries [19]. However, this aspect of
ElPiGraph requires further specific investigation.

Overall, we believe that introducing trajectory-based
methodology in the analysis of synchronic datasets might
change the angle of view on their use for developing prognostic
and diagnostic expert systems.

Methods
Implementation of the methodology

The ClinTrajan methodology is implemented in Python, pack-
aged and openly available [30] together with Jupyter notebooks
providing the exact protocols for applying the ClinTrajan pack-
age to several case studies. A detailed description of ClinTrajan
functionality is provided on its website.

Quantification of mixed-type datasets

Quantification of mixed-type datasets, i.e., assigning a numeri-
cal value for nominal variables, is a vast field in which many so-
lutions have been suggested [39]. In the ClinTrajan package we
used several popular ideas adapted to the aim of finding non-
linear trajectories in the data.

First, for all non-binary categorical variables we suggest ap-
plying “dummy” encoding (or “one-hot” encoding), e.g., intro-
ducing new columns containing binary values 1 per category
(one of the categories might be dropped as redundant). Alter-
natively, if there are enough numerical variables, CatPCA can be
applied [28, 40].

Second, for ordinal variables (including binary ones as a par-
ticular case) we suggest using either univariate or multivariate
quantification. For univariate quantification we assume that the
ordinal values are obtained by binning a “latent” numeric con-
tinuous variable possessing the standard normal distribution
(zero mean and unit variance), following the approach described
in [41]. Let us consider an ordinal variable V, which takes ordered
values v1 < v2. . . < vm, and each vi value has ni counts in the
dataset. We quantify V by the values

xi = �−1
(∑i−1

j=1
pj + pi

2

)
, (1)

where pi = ni /N, N is the total number of data points, and �(x) =
1/

√
2π

∫ x
−∞ e−x2/2dx.

If there exist many ordinal variables in the dataset, one can
use multivariate methods to jointly quantify them. One of the
most popular approaches is a particular variant of “optimal scal-
ing,” aiming at maximizing the sum of squared pairwise corre-

lations between all variables, including numerical and ordinal
ones [39]. The ClinTrajan package includes its own implemen-
tation of this variant of optimal scaling, which can be used to
quantify ordinal variables in clinical datasets.

The advantage of multivariate ordinal variable quantification
with respect to univariate is that it can decrease the intrinsic
dimensionality of the resulting data point cloud, which can be
beneficial for further application of manifold learning methods,
including the method of ElPiGraph. The disadvantage of multi-
variate quantification of ordinal variables consists in the need to
have a sufficiently large portion of data table rows without miss-
ing values. If this fraction is small, then it might be impossible
to quantify certain ordinal levels because they will not be repre-
sented in this complete part of the dataset, while this might still
be possible with univariate quantification.

Thus, imputing missing values requires quantification of or-
dinal variables, and multivariate quantification of them requires
imputation of missing values. Therefore, in practice we apply a
hybrid approach consisting in application of univariate quantifi-
cation with further imputation of missing values and further ap-
plication of multivariate quantification using the optimal scaling
approach.

Last, we suggest transforming all continuous numerical vari-
ables to standard z-scores (i.e., centering and scaling) to make
them comparable.

Imputing missing values in mixed-type datasets

Real-life clinical datasets are almost always only partially com-
plete and contain missing values. Typically, these values are not
distributed uniformly across the rows and columns of the data
matrix but rather form some non-random patterns, which can
even be constructively used for the tasks of clinical data analy-
sis [42]. A typical pattern is the existence of a column (or a row)
containing an abnormally large number of missing values. One
can define 2 parameters δrow and δcolumn as the maximally toler-
able fraction of missing values in any row or column of the data
matrix. The problem of finding the largest submatrix satisfying
these constraints is not completely trivial but can be approxi-
mated by some simple iterative approaches. In practice, the triv-
ial suboptimal solution consists in eliminating columns whose
fraction of missing values is >δcolumn and then eliminating the
rows whose fraction of missing values is >δrow.

After constraining the maximum fraction of missing values
in the data matrix, one can apply one of the available missing
value imputation algorithms (imputers), which can also be clas-
sified into univariate and multivariate. For our purposes we ad-
vocate the use of multivariate imputers that allow us to avoid
having strong data outliers destroying the manifold structure of
the dataset. The standard Scikit-learn collection provides 2 types
of imputers: nearest neighbors imputation and iterative multi-
variate imputation, which can in principle be used for this pur-
pose. In the ClinTrajan package we add 2 alternative imputers
based on the application of SVD of order k. The first one, which
we designate “SVDComplete,” is applicable if the number of rows
in the data matrix with no missing values is large enough (e.g.,
not much smaller than 50%). Then the standard SVD of order k
is computed on the submatrix having only complete rows, and
each data vector containing missing values is projected into the
closest point of the hyperplane spanned by the first k princi-
pal components. The imputed value is then read out from the
projected vector. For ordinal and binary variables, the imputed
value can be additionally rounded to the closest discrete numer-
ical value to avoid “fuzzy values” that do not correspond to any



16 Trajectories, bifurcations, and pseudo-time in large clinical datasets

initial nominal value. The mutual exclusivity of binary variables
encoding the categorical fields can also be taken into account.
The second SVD-based imputer is called “SVDFull” and is based
on computing SVD of order k for the full matrix with missing val-
ues, e.g., using the method suggested in [18, 43]. After computing
the principal vectors, the imputation is performed as in the SVD-
Complete imputer. The choice of k can be made either through
applying cross-validation or by using a simple heuristics con-
sisting in setting k to the value of the intrinsic dimensionality of
the data. The intrinsic dimensionality can be estimated through
the application of full-order SVD and analyzing the scree plot, or
through a number of more sophisticated approaches [44].

Method of Elastic Principal Graphs (ElPiGraph)

Computing the elastic principal graph
Elastic principal graphs are structured data approximators [17,
18, 45, 46] consisting of nodes connected by edges. The graph
nodes are embedded into the space of the data, minimizing the
mean squared distance (MSD) to the data points, similarly to the
k-means clustering algorithm. However, unlike unstructured k-
means, the edges connecting the nodes are used to define the
elastic energy term. This term is used to create penalties for edge
stretching and bending of segments. To find the optimal graph
structure, ElPiGraph uses a topological grammar (or, graph gram-
mar) approach and gradient descent–based optimization of the
graph topology, in the set of graph topologies that can be gener-
ated by a limited number of graph grammar operations.

An elastic principal graph is an undirected graph with a set
of nodes V = {Vi} and a set of edges E = {Ei}. The set of nodes V
is embedded in the multidimensional space. To denote the posi-
tion of the node in the data space, we use the notation φ(Vj),
where φ(Vj) is a map φ: V → Rm. The optimization algorithm
searches for such φ() that the sum of the data approximation
term and the graph elastic energy is minimized. The optimiza-
tion function is defined as follows:

Uφ (X, G) = MSDφ (X, V) + Uφ

E (G) + Uφ

R (G), (2)

where

MSDφ (X, V) = 1
|X|

∑|X|
i=1

min
[||Xi − φ(VP (i ))||2, R2

0

]
, (3)

Uφ

E (G) =
∑

E i
λpenalized

(
E i ) {

φ
[
E i (0)

] − φ
[
E i (1)

]}2
, (4)

Uφ

R (G) = μ
∑

Sj

{
φ[Sj (0)] − 1

deg[Sj (0)]

∑deg[Sj (0)]

i=1
φ[Sj (i )]

}2

, (5)

λpenalized(E i ) = λ + α
[
max

(
2, deg[E i (0)], deg[E i (1)]

) − 2
]
, (6)

where |V| is the number of elements in set V, X = {Xi}, i = 1, . . . ,
|X| is the set of data points, Ei(0) and Ei(1) denote the 2 nodes of
a graph edge Ei, star Sj is a subgraph with central node Sj(0) and
several (>1) connected nodes (leaves), Sj(0), . . . , Sj(k) denote the
nodes of a star Sj in the graph (where Sj(0) is the central node
to which all other nodes are connected), deg(Vi) is a function re-
turning the order k of the star with the central node Vi, and P(i)
= argminj = 1, . . . , |V|‖Xi − φ(Vj)‖2 is a data point partitioning func-
tion associating each data point Xi to the closest graph node VP(i).
R0, λ, μ, and α are parameters defined as follows: R0 is the trim-
ming radius such that points farther than R0 from any node do
not contribute to the optimization of the graph, λ is the edge-
stretching elasticity modulo regularizing the total length of the
graph edges and making their distribution close to equidistant
in the multidimensional space, μ is the star-bending elasticity

modulo controlling the deviation of the graph stars from har-
monic configurations (for any star Sj, if the embedding of its cen-
tral node coincides with the mean of its leaves’ embedding, the
configuration is considered harmonic), and α is a coefficient of
penalty for the topological complexity (existence of higher-order
branchings) of the resulting graph.

Given a set of data points and a principal graph with nodes
embedded into the original data space, a local minimum of Uφ(X,
G) can found by applying a splitting-type algorithm. Briefly, at
each iteration given an initial guess of φ, the partitioning P(i)
is computed, and then, given the P(i), Uφ(X, G) is minimized by
finding new node positions in the data space. A remarkable fea-
ture of ElPigraph is that the Uφ(X, G) minimization problem is
quadratic with respect to node coordinates and is reduced to
solving a system of linear equations. Importantly, the conver-
gence of this algorithm is proven [18, 47].

Topological grammar rules define a set of possible transfor-
mations of the current graph topology. The graph configuration
of this set possessing the minimal energy Uφ(X, G) after fitting
the candidate graph structures to the data is chosen as the lo-
cally best with a given number of nodes. Topological grammars
are iteratively applied to the selected graph until given condi-
tions are met [e.g., a fixed number of grammar applications or
a given number of nodes is reached or the required approxima-
tion accuracy MSDφ (X, V) is achieved]. The graph learning pro-
cess is reminiscent of a gradient descent–based optimization in
the space of all possible graph structures achievable by applying
a set of topological grammar rules (e.g., in the set of all possible
trees).

One of the simplest graph grammars consists of the opera-
tions “add a node to node” and “bisect an edge,” which gener-
ates a discrete space of tree-like graphs [19]. The resulting elastic
principal graphs are called “elastic principal trees” in this case.
In the ClinTranjan package we currently use only principal trees
for quantifying trajectories and pseudo-time, even though us-
ing more general graph topologies is possible. The advantages
of limiting the graph topology to trees are that it is easy to lay
out the structure of the graph on a 2D plane and that any trajec-
tory connecting 2 nodes of the graph is unique.

The resulting explicit tree structure can be studied indepen-
dently of the data. Also, an arbitrary vector x (not necessarily
belonging to the dataset X) can be projected onto the tree and
receive a position in its intrinsic geodesic coordinates. The pro-
jection is achieved by finding the closest point on the principal
graph as a piecewise linear manifold, composed of nodes and
edges as linear segments connecting nodes. Therefore, the pro-
jection can end up in a node or on an edge. Furthermore, we de-
fine a projection function {p, ε} = Proj(x, G), returning a couple
containing the index of the edge that is the closest to x and the
position of the projection from the beginning of the edge Ep(0) as
a fraction of the edge length ε ∈ [0, 1]. Therefore, if ε = 0 then x is
projected into Ep(0) and if ε = 1 then the projection is in Ep(1). If
ε ∈ (0, 1) then the projection is on a linear segment, connecting
Ep(0) and Ep(1).

A detailed description of ElPiGraph and related elastic princi-
pal graph approaches is available elsewhere [19]. The ElPiGraph
package implemented in Python is available [48]. Implementa-
tions of ElPiGraph in R, Matlab, Java, and Scala are also available
[49]. When analyzing the clinical datasets, the principal tree in-
ference with ElPiGraph was performed using the following pa-
rameters: R0 = ∞, α = 0.01, μ = 0.1, λ = 0.05. After the initial
principal tree was constructed, it was pruned and the terminal
segments were extended. The pruning consists in eliminating
the final terminal segments of the tree containing only 1 single
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Figure 9 Decomposing a graph into non-branching segments and partitioning
the data accordingly to the principal graph segments. A, The principal opera-

tion for segmenting the graph: each branching point of the graph (having degree
>2) is multiplied and attached to the end of every edge composing the branch-
ing point such that the edges of the graph star are unglued and become discon-
nected. B, Toy example of a principal graph approximating a cloud of data points

(shown in grey), and using its decomposition into non-branching segments for
partitioning the data, which can be considered a kind of clustering (see text for
details).

edge. Extending the terminal segments consists in extrapolating
the segment so that most of the data points will be projected
on the edges of the terminal segment and not at its terminal
node. Both functions are standard principal tree post-processing
choices, implemented in the ElPiGraph package.

Partitioning (clustering) the data according to the principal graph
segments
Embedding a graph to the data space allows us to partition (clus-
ter) the dataset in several natural ways, e.g., by assigning each
data point to the closest node or the closest edge. However, these
ways do not fully suit our purposes because they do not reflect
the intuition of “trajectory.” So it is natural first to decompose
the graph itself into linear fragments without branching (we call
them non-branching graph segments or simply segments) and
afterwards to cluster the dataset according to the closest seg-
ment. This is the idea of the data partitioning used in this article,
and it is described in more detail below.

By the branching node in a graph we denote any node with
connectivity degree >2, i.e., deg(Vi) > 2, and by the leaf or ter-
minal node of the graph we denote a node with degree <2, i.e.,
deg(Vi) < 2.

Let us call linear segment (or simply segment) of a graph such
a path that connects a branching node to another branching or a
leaf node and that does not contain any other branching nodes.
Internal segments connect 2 branching nodes and the terminal
segments connect a branching node to a leaf node (Fig. 9A). As
one can see this definition reflects the intuition underlying the
notion of the “segment”; we only need to specify several excep-
tional cases. For a graph that is an isolated cycle (not containing
branching or leaf nodes), the whole cycle should be considered
as a segment. The same is true if a graph contains several con-
nected components that are cycles: then all of them are con-

sidered as separate segments. The other exceptional cases are
nodes of degree zero (isolated nodes)—they also will be consid-
ered as separate segments. These exceptional cases cannot hap-
pen for connected principal trees, which are the main object of
the present study; they are just mentioned for completeness.

Any graph can be uniquely split into “segments,” which is not
difficult to prove, especially for trees.

We coded in Python a version of the depth-first search algo-
rithm to produce a split into segments for an arbitrary graph.
The main difference from the classical depth-first search is a
storage of visited edges (not only nodes) of the graph to correctly
process possible cycles in the graph. The algorithm starts from
any branching or leaf node and walks along edges in depth, join-
ing them to the “current segment” until it meets a branching or
a leaf node. Here, the current segment is terminated. In the case
of a leaf node one returns from the recursion; the same goes for
an already visited branching node. In the case of a new branch-
ing node (not visited before) one goes into a deeper level of the
depth-first recursive process. After all edges of a graph are parti-
tioned into segments, one can partition (or, cluster) the dataset
according to the closest segment, which can be done in 2 ways.
First, choose the edge nearest to a given data point and associate
the point to the segment to which that edge belongs. However, a
simpler approach is much more computationally efficient: cal-
culate distances from data points to nodes and choose the seg-
ment that contains the nearest node. In case this node belongs
to several segments (therefore it is a branching node), we choose
the segment that contains the second-nearest node among all
nodes that belong to the corresponding segments. If the num-
ber of nodes in the graph is large enough, then both approaches
will produce (almost) identical results (Fig. 9B).

Dimensionality reduction and data visualization using principal
graphs
To visualize the principal graph, each data point is first associ-
ated with the closest ElPiGraph edge in full dimensional space,
and the distance to the projection onto the edge is recorded.

We then embed the graph structure in 2 dimensions by com-
puting a force-directed layout with the Kamada-Kawai algo-
rithm [50]. Each data point is placed orthogonally on a random
side of its associated edge, at the distance proportional to the
distance to the projection in the initial space. The proportional-
ity constant is called the scattering parameter, which is adjusted
by the user or can be optimized to best preserve the structure of
the distances between the data points in the initial data space.

Edge widths can also be used to visualize the values of a vari-
able or any function of the variables defined in the nodes of the
graph.

Quantifying pseudo-time and extracting trajectories using principal
trees
After computing the principal tree, a root node Vroot has to be
defined by the user, according to application-specific criteria. For
example, it can correspond to the node of the graph closest to a
set of data points enriched with those having the least disease
severity.

The pseudo-time Pt(x) of an arbitrary vector x is defined as
the total geodesic distance in the principal tree from Vroot to the
projection {p, ε} = Proj(x, G) of x on the graph. Algorithmically,
we need to define which node of the edge Ep is the closest to Vroot

and add the ε accordingly, i.e.,

Pt(x) =
{

|Vroot → E p(0)| + ε, if |Vroot → E p(0)| < |Vroot → E p(1)|
|Vroot → E p(0)| − ε, if |Vroot → E p(0)| > |Vroot → E p(1)| (7)
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where |Vi → Vj| signifies the number of edges (length) of the tra-
jectory Vi → Vj.

Associating class labels and data variables and
principal tree segments

Segment labeling of the data points induced by the structure of
the principal graph represents a categorical label that can be as-
sociated to the dataset variables of various types.

To test whether there is an association of the tree segments
to a categorical variable (including binary as a particular case),
we used the standard independence χ2 test. If the test was sig-
nificant, then we identified those segments that have the most
unexpected value of the variable k by considering a simple devi-
ation score:

Deviationk(value j, segment i ) = E i
kj − Oi

kj

E i
kj

, (8)

where Oi
kj is the observed number of data points associated to

the segment i having value j of the variable k and E i
kj is the ex-

pected number of occurrences of the value j of the variable k,
from the standard independence assumption. Positive values of
this score correspond to positive enrichment, and negative val-
ues, to negative enrichment.

To test for statistical association between tree segments and
numerical variable (including ordinal as particular case), we
used the standard ANOVA test representing the independent
tree segment variable through the standard one-hot encoding
into a set of binary variables. If the test was significant, then we
evaluated the significance of each of the segments by looking
at the value and the P-values of the generalized linear model
coefficients for each segment. Positive values of the coefficients
correspond to positive enrichment, and negative, to negative en-
richment.

Associating data variables and trajectories

For computing the score of association between a data variable
k and a trajectory, we compute the R2 score of the regression:

xk = F (Pt(x)), for x ∈ XVroot→Vj , (9)

where Vj is one of the leaf nodes in the tree and Pt(x) is the
pseudo-time value of the data point x computed from equation
(7). For continuous variables, F() can be linear or a non-linear re-
gression (e.g., the most popular Gaussian kernel regression). For
binary variables, we fit F() by computing the logistic regression.
We consider a variable k associated to the trajectory XVroot→Vj if R2

of the regression problem solution exceeds a certain threshold.

Pseudo-time survival analysis

The survival analysis shown in Fig. 6 was performed using the
Python package “lifelines” [51]. To estimate the hazard rate, we
used the non-parametric Nelson-Aalen estimator of the cumu-
lative hazard rate function implemented in the package. This
estimator uses the formula [52]:

H(t) =
∑

ti ≤t

di

ni
, (10)

where di is the number of observed events at time ti and ni is
the total number of patients at risk at time ti. For each patient,
instead of physical time ti, we used the value of pseudo-time
computed along a particular trajectory.

For computing multivariate survival regression, we used the
standard Cox model using the object “CoxPHFitter” from the
same package.

Availability of Source Code and Requirements
� Clinical trajectories (ClinTrajan)
� RRID:https://scicrunch.org/browse/resources/SCR 019018
� biotools: https://bio.tools/clintrajan
� Project home page: https://github.com/sysbio-curie/ClinTraj

an
� Operating system(s): Platform independent
� Programming language: Python 3.∗
� Other requirements: none
� License: LGPL

Availability of Supporting Data and Materials

The myocardial infarction complication dataset can be down-
loaded from https://doi.org/10.25392/leicester.data.12045261.v3.
The diabetes dataset can be downloaded from the UCI repos-
itory at https://archive.ics.uci.edu/ml/datasets/diabetes+130-u
s+hospitals+for+years+1999-2008 or from Kaggle at https://ww
w.kaggle.com/brandao/diabetes. The dataset supporting this
work is also openly available in the GigaScience repository, Gi-
gaDB [53].

Additional Files

Supplementary Figure 1. Intrinsic dimensionality analysis of
clinical datasets used in the study. The PCA-based estima-
tion is defined here as the number of the eigenvalues of
the covariance matrix exceeding λ0/C, where λ0 is the first
(largest) eigenvalue and C is the maximal conditional number
of the covariance matrix after dimensionality reduction (here
C = 10). The computations were performed using the pack-
age Scikit-dimension Python package [29], where one can find
the complete definitions of the methods and the corresponding
references.
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ponent analysis; ClinTrajan: Clinical Trajectory analysis; ElPi-
Graph: Elastic Principal Graph; MI: myocardial infarction; PCA:
principal component analysis; SVD: singular value decomposi-
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