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Abstract

Dexterous forelimb movements like reaching, grasping, and manipulating objects are fundamental 

building blocks of the mammalian motor repertoire. These behaviors are essential to everyday 

activities, and their elaboration underlies incredible accomplishments by human beings in art and 

sport. Moreover, the susceptibility of these behaviors to damage and disease of the nervous system 

can lead to debilitating deficits, highlighting a need for a better understanding of function and 

dysfunction in sensorimotor control. The cerebellum is central to coordinating limb movements, as 

defined in large part by Joseph Babinski and Gordon Holmes describing motor impairment in 

patients with cerebellar lesions over 100 years ago (Babinski, 1902; Holmes, 1917), and supported 

by many important human and animal studies that have been conducted since. Here, with a focus 

on output pathways of the cerebellar nuclei across mammalian species, we describe forelimb 

movement deficits observed when cerebellar circuits are perturbed, the mechanisms through which 

these circuits influence motor output, and key challenges in defining how the cerebellum refines 

limb movement.
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Introduction

The control of forelimb movement is distributed across a broad network of neural circuits 

dedicated to establishing appropriate spinal motor neuron activity and forelimb muscle 

contraction. The precise coordination of dozens of muscles required for dexterity depends on 
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descending commands that direct and modulate movement through spinal networks, as well 

as continuous feedback from sensory pathways that refine motor output (Lemon, 2008; 

Alstermark and Isa, 2012; Azim and Seki, 2019). Visual, proprioceptive, and tactile 

pathways provide crucial sensory information about the consequences of moving the limb 

and any environmental disturbances (Scott et al., 2015; Tuthill and Azim, 2018). Yet, a 

major challenge for the motor system is that sensory feedback carries inherent temporal 

delays; thus relying only on peripheral signals for refinement can result in ill-timed and 

inaccurate movements (Wolpert and Miall, 1996; Shadmehr et al., 2010; Azim and 

Alstermark, 2015).

One proposed solution to these temporal delays is that the cerebellum uses internal copies of 

motor commands to predict movement outcome, by implementing a forward model that 

represents the dynamics of the body (Wolpert and Miall, 1996) (Fig. 1A). In principle, these 

predictions can be used to compensate for delayed sensory feedback and rapidly update the 

state estimate of the limb, enabling online adjustments of outgoing motor signals and 

ensuring precise trajectories (Scott, 2004; Shadmehr and Krakauer, 2008; Adrian and John, 

2012; Azim et al., 2014a). On longer timescales, the cerebellum is also thought to reshape 

this forward model. Mismatch between predictions and actual sensory outcome can be 

corrected over time, leading to sensorimotor adaptation of subsequent movements (Thach et 

al., 1992a; Blakemore et al., 2001; Ilg et al., 2008; Ito et al., 2014). Thus, theory predicts 

that the cerebellum uses a combination of internal copies of motor commands and sensory 

information about the state of the limb to refine movement across timescales (Wolpert et al., 

1998; Kawato, 1999).

How does the cerebellum influence limb movement? Ultimately, the cerebellum affects 

forelimb muscle activity through output from the cerebellar nuclei, which are linked to many 

subcortical and spinal targets (Bentivoglio, 1982; Teune et al., 2000; Houck and Person, 

2015; Fujita et al., 2020). Projection neurons in the cerebellar nuclei receive a convergence 

of inputs from Purkinje cells in the cerebellar cortex, as well as collateral input from mossy 

fibers and climbing fibers conveying motor and sensory information (Fig. 1B). Purkinje cell 

activity, also driven by mossy fibers (via granule cells) and climbing fibers, shapes the rate 

and timing of cerebellar nuclear neuron activity through inhibition (Chan-Palay, 1977; 

Person and Raman, 2011; Uusisaari and De Schutter, 2011; Wu and Raman, 2017) (Fig. 1B). 

As forward models are thought to be implemented in the cerebellar cortex, projection 

neurons in the cerebellar nuclei are an ideal candidate to carry out rapid online correction 

based on predicted movement outcomes, and longer-term adaptation of future movements 

(Wolpert et al., 1998) (Fig. 1A).

In this review, we focus on the final conduit of cerebellar signaling – the cerebellar nuclei – 

and describe how delineating their organizational and functional logic in several mammalian 

species is clarifying how the cerebellum contributes to dexterous motor control. We begin by 

describing how the execution of skilled forelimb movements is affected in patients with 

cerebellar disease. We then outline the organization of cerebellar output circuits and 

summarize insights gained from experimental perturbation and electrophysiological 

recording in the cerebellar nuclei of animal models. Finally, we review recent studies using 

molecular-genetic strategies in mice that have begun to define specific cell types and neural 
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circuits that control and refine limb movements. By describing key studies across model 

systems, we aim to provide a perspective on how cerebellar output controls dexterous 

behaviors, and highlight critical challenges that remain.

Insights from patients with cerebellar dysfunction

Deficits in reaching movements

Key evidence for the importance of the cerebellum in controlling limb movements has come 

from analysis of humans with cerebellar pathology (Babinski, 1902; Holmes, 1917). Patients 

with cerebellar ataxia exhibit uncoordinated movements of the extremities known as 

dysmetria (Hore et al., 1991; Schmahmann, 2004; Manto, 2009), and often display deficits 

in endpoint precision that are either hypermetric (overshoot) or hypometric (undershoot) 

during reaching (Holmes, 1917; Gilman et al., 1976; Schmahmann, 2004). Moreover, limb 

movements in these patients have irregular trajectories towards a target, suggesting 

disruptions in online motor adjustments (Gilman et al., 1976; Bastian et al., 1996; Tseng et 

al., 2007).

Another defining feature of cerebellar disease is limb oscillations, known as intention 

tremor. Intention tremor is most apparent during goal-directed movements of the extremities, 

and becomes more pronounced as the effector (forelimb/hindlimb) reaches the end of the 

movement (Flament and Hore, 1986; Deuschl et al., 2000). A potential explanation for this 

characteristic tremor is that cerebellar dysfunction disrupts forward model-based prediction, 

leaving delayed sensory signals as the primary determinant of limb state estimation (Azim 

and Alstermark, 2015) (Fig. 1A). Thus, delayed sensory information leads to outdated 

corrections that accumulate and manifest as a tremor as the target is approached (Miall and 

King, 2008). Recent studies in patients with cerebellar ataxia have shown that providing 

artificial phase-advanced visuomotor feedback from self-motion in a virtual reality setup is 

able to improve limb control (Zimmet et al., 2019), supporting the idea that cerebellar 

predictions are needed to compensate for sensory feedback delays during movement.

During multi-joint limb behaviors, movement of one joint often results in dynamic 

interaction torques at adjacent joints (Hollerbach and Flash, 1982). Kinetic analysis of the 

torque generated at the elbow and shoulder joints during reaching movements shows that 

patients with cerebellar ataxia are unable to generate suitable muscle torques during fast 

reaching movements. Moreover, kinematic analysis of elbow and shoulder joints shows 

abnormalities in the relative timing of joint movements, curved trajectories, and poor 

endpoint precision (Bastian et al., 1996) (Fig. 2A). These deficits are thought to result from 

loss of the ability to produce appropriate muscle activity that predictively compensates for 

interaction torques, leading to a loss of coordination during movement (Bastian et al., 2000). 

Together, these studies uncover a critical role for the cerebellum in controlling precision and 

stability during goal-directed reaching movements.

Deficits in grasping movements

The ability to grip, rotate, manipulate, and stabilize an object with appropriate force during 

movement is a major attribute of dexterity, and critical for the development and use of tools 
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(Gibson, 1991; Nowak et al., 2013). Individuals predictively shape their hands when 

grasping an object, and modify the grip force appropriate for the load once contact is made 

(Brandauer et al., 2008). With changes in load, grip force is dynamically adjusted to 

maintain stability (Nowak et al., 2013). In addition to perturbed reaching, patients with 

cerebellar ataxia also have characteristic deficits when grasping an object, exhibiting an 

exaggerated grip aperture (i.e. the distance between the thumb and index finger), and 

increased grip force relative to load (Brandauer et al., 2008; Nowak et al., 2013) (Fig. 2B).

Adjusting grasp and grip force on an object can be reactive or predictive. Reactive 

adjustments occur in variable environmental conditions when the load of the object is 

unknown. Conversely, predictive adjustments occur when the load of an object can be 

anticipated, such as during voluntary movement of the limb with an object already in hand 

(Zackowski et al., 2002; Nowak et al., 2013). Patients with cerebellar ataxia have difficulty 

adjusting grip forces to predictable changes, but their reactive responses appear less affected 

(Lang and Bastian, 1999). This disruption of predictive grasp control could be due to 

defective implementation of forward models necessary for anticipatory adjustments that 

produce appropriate force.

Studies of reaching and grasping in patients with cerebellar ataxia reveal the importance of 

the cerebellum in fine-tuning proximal and distal limb movements. While this work 

highlights critical roles for the cerebellum in controlling trajectories of the limb and adapting 

movements to changes in the environment, pathophysiology in cerebellar patients varies 

widely and can be difficult to attribute to deficits in specific cerebellar circuit elements. In 

order to gain mechanistic insight into cerebellar pathways that control limb movement, we 

now turn to the organization of cerebellar circuits, and animal studies examining the role of 

substructures within the cerebellum that contribute to motor output.

Cerebellar circuits

The cerebellum is broadly divided into the cerebellar cortex and nuclei (Fig. 1B). The 

cerebellar cortex consists of three distinct layers: the molecular layer (ML), the Purkinje cell 

layer (PCL), and the granular layer (GL) (Eccles et al., 1967; Miall, 2016). The PCL 

contains a single layer of Purkinje cells (PCs) that receive convergent internal copy and 

sensory input from granule cells that contact PCs through long parallel fibers extending 

through the ML. PCs also receive strong input from climbing fibers originating in the 

inferior olive. The final output of PCs in cerebellar cortical regions that influence limb 

movement is channelled through the cerebellar nuclei, which then target extra-cerebellar 

structures (Chan-Palay, 1977) (Fig. 1B, Fig. 3A,B). Thus, defining the input-output 

organization of the cerebellar nuclei is an important step in addressing the contribution of 

the cerebellum to forelimb behavior.

Over the past few decades, principles of the organization of PC convergence in cortico-

nuclear circuits and how nuclear neurons respond to PC inputs have emerged (Heck et al., 

2013). The inhibitory nature of PCs suggests that increases in their activity should correlate 

with a decrease in cerebellar nucleus output. Yet while nuclear neurons have been shown to 

reduce their firing in response to sensory stimuli (Cody et al., 1981), increases in firing in 

Thanawalla et al. Page 4

Neuroscience. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



both PCs and nuclear neurons have also been observed during movement (Thach, 1970a, b; 

Armstrong and Edgley, 1984). A key study examining the convergence of cortico-nuclear 

projections determined that mimicking asynchronous PC activity suppresses nuclear 

neurons, while synchronous PC activity drives phase-locked nuclear neuron activity, 

providing a mechanism through which PCs in the cortex can control precise firing in 

cerebellar output pathways (Person and Raman, 2011, 2012). Another recent study found 

that PCs increase or decrease their activity during saccadic eye movements, and their simple 

spike population response can predict movements of the eye. Importantly, the PC population 

code could reflect anatomical organization – PCs that project to a nuclear neuron group 

together based on similar complex spike activity driven by input from the inferior olive 

(Herzfeld et al., 2015). Thus, cortico-nuclear convergence is functionally organized based on 

olivocerebellar projections, and this grouping of PCs can be used to communicate specific 

information to target neurons in the cerebellar nuclei (Shadmehr, 2020). The organizational 

logic of these circuit will be further clarified as approaches for simultaneous large-scale 

recording from PCs and nuclear neurons continue to evolve.

While PCs are important regulators of nuclear neuron activity, the cerebellar nuclei also 

receive input from mossy fibers delivering motor and sensory information from the brain and 

periphery (Glickstein, 1997). Mossy fibers have been shown to control nuclear activity in a 

PC dependent manner. For instance, excitatory input from mossy fibers is more effective at 

driving nuclear neuron activity when coupled with convergent synchronous PC activity (Wu 

and Raman, 2017). Additionally, similar to climbing fiber mediated plasticity at parallel 

fiber-PC synapses, LTP and LTD have also been observed at mossy fiber-cerebellar nuclear 

neuron synapses, highlighting the potential role of these nuclear inputs in motor learning 

(Raymond et al., 1996; Ohyama et al., 2006; Pugh and Raman, 2006; Zhang and Linden, 

2006). Taken together, convergent PC circuit organization combined with dynamic sensory 

and motor inputs make the cerebellar nuclei a central hub of sensorimotor processing 

equipped to exert precise control over downstream circuit activity.

The cerebellum is implicated in a wide range of motor and cognitive behaviors 

(Schmahmann and Sherman, 1998; Ito, 2008; Popa and Ebner, 2018; Schmahmann et al., 

2019). This functional diversity is attributed, in part, to the cerebellum’s widespread 

connections to many regions of the brain and spinal cord (Bentivoglio, 1982; Schmahmann 

and Pandya, 1997; Teune et al., 2000; Kelly and Strick, 2003; Schmahmann et al., 2004; 

Liang et al., 2011; Fujita et al., 2020; Sathyamurthy et al., 2020). Moreover, the extensive 

motor and sensory convergence and the diversity of neuronal subtypes within the cerebellar 

nuclei suggest that nuclear neurons perform computational roles, rather than simply serving 

as a relay station for processed signals from the cerebellar cortex (Pugh and Raman, 2008; 

Uusisaari and De Schutter, 2011; Herzfeld et al., 2020).

The cerebellar nuclei can be divided into the dentate (lateral in rodents), interposed, and 

fastigial (medial in rodents) nuclei (Chan-Palay, 1977; Paxinos and Franklin, 2007) (Fig. 

1B,3B). In rodents, these three major, anatomically-distinct nuclei are further subdivided 

into nine subnuclei: interposed anterior (IntA), interposed posterior (IntP), interposed 

posterior parvicellular (IntPPC), interposed dorsolateral (IntDL), medial (Med), medial 

dorsolateral (MedDL), medial lateral part (MedL), lateral (Lat), and lateral parvicellular 

Thanawalla et al. Page 5

Neuroscience. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(LatPPC) (Paxinos and Franklin, 2007; Sugihara, 2011). The cerebellar cortex, which 

provides input to the nuclei, can be subdivided into sagittal zones (Sugihara and Shinoda, 

2004; Apps and Hawkes, 2009). Each zone is a longitudinal area of the cerebellar cortex 

defined by climbing fiber innervation from distinct areas of the inferior olive (Voogd and 

Ruigrok, 2004; Apps and Hawkes, 2009; Sotelo, 2020). Sagittal zones of the cerebellum 

have been proposed to represent operational units, with paramedian and vermal zones 

controlling sensorimotor behaviors and the laterally expanded zones also influencing non-

motor behaviors (Oscarsson, 1979; Bostan and Strick, 2013; Hawkes, 2014; Cerminara et 

al., 2015). Climbing fiber input also divides the cerebellar nuclei into subregions that receive 

a convergence of input from zones with similar climbing fiber receptive fields, together 

forming modules of cerebellar processing (Garwicz and Ekerot, 1994; Sugihara, 2011; 

Voogd, 2014). Thus, distinct cerebellar nuclear regions may implement a specific set of 

output functions.

Neurons in the cerebellar nuclei are not homogenous. Through electrophysiological and 

anatomical studies, cerebellar nuclear neurons have been classified into diverse subtypes 

(Raman et al., 2000; Czubayko et al., 2001; Aizenman et al., 2003; Sultan et al., 2003; 

Uusisaari and Knopfel, 2011; Canto et al., 2016). Excitatory and inhibitory projection 

neuron classes link the cerebellar nuclei with extra-cerebellar targets (Chan-Palay, 1977; 

Uusisaari and Knopfel, 2011). Glutamatergic projection neurons in the cerebellar nuclei 

innervate subcortical motor regions and collateralize to form nucleo-cortical mossy fibers in 

the granular layer (Houck and Person, 2015; Gao et al., 2016). Inhibitory neurons in the 

cerebellar nuclei form a feedback loop that modulates activity within the glomeruli of the 

inferior olive, as well as project back to the cerebellar cortex to regulate Golgi cells (Llinas, 

2013; Ankri et al., 2015; Lang et al., 2017) (Fig. 1B). Additionally, glycinergic cerebellar 

nuclear neurons also make functional connections with brainstem targets (Bagnall et al., 

2009).

Tracing experiments have shown that axons originating from neurons within each cerebellar 

nucleus target multiple subcortical motor nuclei (Teune et al., 2000; Kelly and Strick, 2003; 

Houck and Person, 2015; Low et al., 2018; Fujita et al., 2020) (Fig. 3A,B). Based on this 

target selectivity, each nucleus may have distinct functions. For example, within the Med 

nucleus is a subclass of neurons that project to the lateral vestibular nucleus, known to be 

involved in balance and control of head/trunk movements (Ilg et al., 2008; Bagnall et al., 

2009; Murray et al., 2018). Neurons in both the Lat and Int nuclei project to the motor 

thalamus and red nucleus, and are implicated in voluntary, goal-directed movements (Keifer 

and Houk, 1994; Tlamsa and Brumberg, 2010; Houck and Person, 2015; Low et al., 2018). 

Additional brain and spinal cord regions are also targeted by the cerebellar nuclei, such as 

the brainstem reticular nuclei, superior colliculus, zona incerta, and ipsilateral and 

contralateral spinal cord (Teune et al., 2000; Liang et al., 2011; Chen et al., 2014; 

Sathyamurthy et al., 2020) (Fig. 3A,B). Details of the connectivity and functional relevance 

of many of these output projections are beginning to be explored. Overall, diversity in 

cerebellar output pathways suggests that subtypes of neurons in each nucleus engage 

specific pathways to regulate distinct features of motor and non-motor control. In the 

following sections, we provide an overview of key studies in several mammalian species that 

have begun to uncover roles of specific cerebellar outputs for dexterous limb movement.
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Cerebellar nuclei and the control of forelimb movements

Inactivation of the cerebellar nuclei disrupts limb movements

Supporting observations from patients with cerebellar pathology, reversible inactivation 

studies in animals have revealed important roles for the cerebellar nuclei in forelimb 

movement. Focal muscimol inactivation of the cerebellar nuclei in cats and non-human 

primates have shown that each nucleus contributes to different features of movement 

(Thomas Thach and Bastian, 2004). Inactivation of the fastigial nucleus in cats results in 

deficits in balance, head and trunk control, and locomotion (Martin et al., 2000). In 

monkeys, inactivation of the fastigial nucleus causes animals to fall to the ipsilateral side. In 

both instances, reaching and grasping movements are not obviously affected when the 

animal’s body is supported (Thach et al., 1992b; Martin et al., 2000), suggesting that the 

fastigial nucleus does not have a primary role in controlling forelimb behavior. In cats, 

muscimol inactivation of the dentate nucleus results in slowed movement and a modest 

increase in reach path curvature, though success in a reach-to-grasp task is not affected 

(Martin et al., 2000). Inactivation of the dentate nucleus in monkeys results in hypermetria 

during reaching, perturbs wrist movements, and impairs grasping and coordination of the 

digits during food retrieval (Thach et al., 1992b; Ishikawa et al., 2014). Thus, the dentate 

nucleus influences the control of forelimb movement, with potential distinctions in 

functional roles across different species.

Perhaps the most extensively studied nucleus in the context of forelimb movement is the Int 

nucleus. Inactivation of the IntA and IntP subnuclei in cats produces pronounced effects on 

limb movement, resulting in dysmetria and changes in the speed of wrist movement during 

reaching (Bracha et al., 1999; Martin et al., 2000) (Fig. 4A). In monkeys, IntA and dentate 

nuclei inactivation results in an inability to extend the hand during a grasping movement, 

and IntP inactivation results in instability of the arm during reach and poor accuracy (Mason 

et al., 1998). Inactivation of the Int nucleus in monkeys also triggers dynamic tremor during 

reaching, causing the animal to miss the target (Thach et al., 1992b). When predictable force 

pulses were applied during the hold phase of a reach-to-grasp task, monkeys also had 

difficulty anticipating and maintaining appropriate grip force (Monzee et al., 2004; Monzee 

and Smith, 2004) (Fig. 4B). Additionally, IntA inactivation in cats causes a loss of 

anticipatory limb adjustments to an obstruction, while sensory reactive adjustments are left 

intact (Milak et al., 1997; Martin et al., 2000). The importance of the Int nucleus in 

coordinating limb behavior is not restricted to reaching and grasping movements. 

Inactivation of the Int nucleus in cats also affects conditioning of the withdrawal reflex as 

well as paw placement and movement precision during locomotion, indicating a critical role 

in controlling limb movement across behavioral contexts (Bracha et al., 1999).

Supporting distinct contributions of cerebellar substructures to forelimb movement, patients 

with focal cerebellar lesions in the intermediate and lateral areas of cerebellum including the 

interposed and dentate nuclei show characteristic deficits in reaching and grasping behavior. 

Lesions of the Int nucleus result in increased lift off times during movement while dentate 

lesions result in slowed reaching and prehensile deficits (Bastian and Thach, 1995; Küper et 

al., 2011). Together, inactivation and lesion studies across species reveal the importance of 
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the cerebellar nuclei in controlling dexterous movements through adjustment of limb 

kinematics and grip force.

Electrophysiological mapping of forelimb circuits of the interposed nucleus

Electrophysiological recording and stimulation experiments have provided insight into the 

organization of the cerebellar nuclei defined by sensory input and movements evoked. A 

series of studies investigated the functional organization of cerebellar nuclear neurons for 

forelimb control in anesthetized cats (Ekerot et al., 1997). Using cerebellar zones as an 

anatomical reference point, somatosensory input receptive fields in the cerebellar cortex and 

corresponding output regions of the cerebellar nuclei were mapped by peripheral stimulation 

(Ekerot et al., 1991). Forelimb cutaneous and nociceptive climbing fiber receptive fields in 

motor zones of the cerebellar cortex were mapped via stimulation of forelimb skin, and 

climbing fibers with similar receptive fields were found to terminate in a single longitudinal 

zone (Ekerot et al., 1991; Jorntell et al., 1996). In addition, analysis of tactile receptive fields 

through extracellular field recording within the IntA nucleus revealed a topographical 

organization of nuclear neurons. Nuclear regions that respond to climbing fiber input from 

specific forelimb areas receive a convergence of Purkinje cell input from cortical microzones 

corresponding to the same forelimb regions (Garwicz and Ekerot, 1994) (Fig. 5A). Thus, 

climbing fiber inputs relaying somatosensory information to the cerebellum appear to be 

organized into specific cortico-nuclear circuits.

Microstimulation of cerebellar nuclear neurons was also used to explore how output 

pathways of the cerebellum influence limb movement (Schultz et al., 1979; Ekerot et al., 

1995). IntA stimulation in cats evokes multi-joint movements consisting predominantly of 

flexion of the elbow and shoulder joints, and both flexion and extension of the wrist (Ekerot 

et al., 1995). Importantly, stimulation of a specific nuclear region elicits withdrawal of the 

limb segment with corresponding cutaneous receptive fields; for example, stimulation of 

sites with receptive fields on the ulnar surface of the forelimb produces flexion at the elbow 

and withdrawal of the ulnar surface of the limb (Ekerot et al., 1997) (Fig. 5B). Thus, 

cutaneous input appears to be an important determinant of which limb regions are recruited 

by specific IntA neurons. The topographic organization of sensory inputs to cerebellar 

cortico-nuclear circuits provides a potentially important link between feedback pathways 

that report unexpected environmental perturbations, and feedforward pathways that move the 

corresponding parts of the body.

The role of cerebellar nuclear neurons during forelimb movements has also been 

investigated in monkeys (van Kan et al., 1993; Monzee and Smith, 2004). Neural activity 

correlated to forelimb movements has been identified in the IntA, IntP, and adjacent dentate 

regions. Recording single neuron discharge within these regions during reach to grasp and 

joint movements revealed that nuclear neurons are modulated strongly by multi-joint 

forelimb movements, but show limited specificity to single joint actions (van Kan et al., 

1993). In another primate study, after training animals to lift and hold an object for a fixed 

period of time, a downward force pulse perturbation was applied to assess the ability to 

respond and adapt to the perturbation (Monzee and Smith, 2004). Single unit recording of 

neurons with proprioceptive receptive fields that correspond to the trained forelimb 
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movement were mapped to the IntA nucleus. A majority of these neurons encode reflex-like 

forelimb movements that respond to the force pulse, and a smaller subset of responsive 

neurons exhibit preparatory activity prior to the perturbation (Monzee and Smith, 2004). 

This preparatory IntA activity could reflect the anticipatory increase in grip force that occurs 

during the perturbation to maintain a stable grasp. More generally, these studies suggest that 

neurons in the Int nucleus respond to somatosensory information about environmental 

perturbations, and may coordinate anticipatory forelimb responses to make corrective 

adjustments.

Together, inactivation and electrophysiological studies in cats and monkeys have provided 

compelling evidence that the cerebellar nuclei, and the Int nucleus in particular, are essential 

for dexterous forelimb control. These findings also raise many questions about how distinct 

cerebellar output circuits influence motor output. Even within a single cerebellar nucleus, 

neurons possess diverse electrophysiological properties, neurotransmitter identities, and 

input-output connectivity patterns. The employment of molecular-genetic tools in mice to 

access discrete circuits has begun to extend findings from work in other species by clarifying 

the connectivity and functional logic of neuronal subtypes within the cerebellar nuclei.

Molecular-genetic dissection of cerebellar circuits and their contributions 

to dexterous movement

The advent of modern genetic and viral approaches in mice is enabling a more fine-grained 

investigation of pathways that send input into the cerebellum, specific classes of neurons in 

the cerebellar nuclei, and cerebellar output pathways involved in forelimb control.

Input to the cerebellum is essential for the execution and adaptation of forelimb movement

The cerebellum is thought to integrate internal copies of motor commands with sensory 

input to support adjustments over several timescales for smooth and precise execution of 

movement (Thach et al., 1992a; Adrian and John, 2012; Azim and Alstermark, 2015). 

Internal copies are hypothesized to arise from multiple levels in the descending flow of 

motor commands, including the motor cortex, red nucleus, brainstem, and spinal cord, 

providing a variety of motor-related information to the cerebellum (Huang et al., 2013; Azim 

et al., 2014b; Ishikawa et al., 2015; Beitzel et al., 2017). Similarly, peripheral input is 

conveyed to the cerebellum from diverse sensory modalities and is used to provide feedback 

that reports the consequences of movement and facilitate feedforward control over future 

movement (Shadmehr et al., 2010; Azim and Alstermark, 2015) (Fig. 1A).

The most prominent mossy fiber input to the cerebellum arises from the pontine nucleus, 

which receives descending input from corticofugal neurons across the neocortex, including 

the motor cortex (Leergaard et al., 2004; Huang et al., 2013). Optogenetic activation of 

pontine neurons during a skilled pellet reaching task in mice results in hypermetria and 

impaired grasping. Additionally, reversible inactivation of ponto-cerebellar neurons reduces 

task success and impairs the ability of mice to correct movements after a failed first attempt 

(Guo et al., 2019). Thus, disrupting circuits that convey descending cortical signals to the 

cerebellum affects the endpoint accuracy of ongoing reaching movements as well as the 
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correction of future movements. The cortico–ponto–cerebellar pathway is also instrumental 

in coordinating network dynamics across the cerebral and cerebellar cortices. A recent study 

found that the activity of cerebellar granule cells is coupled to the activity of layer 5 

pyramidal cells in the neocortex during a learned forelimb movement planning task. This 

correlated activity emerges during the learning process and depends on cortical input to the 

cerebellum via the pontine nucleus (Wagner et al., 2019). Although the specific role of this 

shared activity for motor control is unclear, results from this study suggest that the 

cerebellum works in conjunction with the cerebral cortex to improve forelimb motor 

performance during learning.

In addition to descending input from the motor cortex, the pontine nucleus also receives 

signals from sensory cortical areas. Cortico-pontine input from both sensory and motor 

whisker related cortical areas has been shown to converge in lateral regions of the cerebellar 

cortex, which then form a closed loop with the whisker motor cortex (Proville et al., 2014). 

Moreover, anatomical convergence of cortico-pontine input with proprioceptive sensory 

streams from the external cuneate nucleus has also been described at individual granule cells 

(Huang et al., 2013). Integration of sensory signals with motor internal copy information is 

an important element of feedforward control over motor output (Fig. 1A), and these studies 

provide compelling evidence for this convergence in the cerebellar cortex. The sensory 

cortex is also implicated in forelimb sensorimotor adaptation. Mice subjected to a forcefield 

perturbation in a joystick task show impaired sensorimotor adaptation when S1 neurons are 

optogenetically inhibited (Mathis et al., 2017), suggesting that the somatosensory cortex is 

involved in providing sensory input that updates cerebellar internal models in response to 

environmental disturbances. Thus, cerebellar input from the sensory and motor cortices 

through the pons is likely to contribute to learning, execution, and adaptation of limb 

movements.

Another important source of internal copies to the cerebellum originates from dual-

projecting propriospinal neurons (PNs) in the cervical spinal cord (Azim and Alstermark, 

2015). These cervical PNs receive direct input from descending motor pathways, and send 

axons that bifurcate, innervating forelimb motor neurons as well as neurons in the lateral 

reticular nucleus (LRN), a major source of mossy fiber input to the cerebellum (Alstermark 

and Isa, 2012; Azim et al., 2014b). The extensive connectivity of the LRN with the 

cerebellar cortex and cerebellar nuclei suggests that this structure plays an important role in 

transmitting copies of the penultimate motor command signals received by forelimb motor 

neurons (Matsushita and Ikeda, 1976; Alstermark and Ekerot, 2013; Mukherjee et al., 2018). 

Selective ablation of a genetically-defined subpopulation of neurons (V2a interneurons) that 

include cervical PNs results in dysmetric reaching movements and impaired success in a 

pellet retrieval task. Moreover, selective optogenetic activation of the ascending internal 

copy input to the LRN results in severe perturbation of forelimb trajectories during reach, 

caused by short latency modulation of motor neuron activity that requires intact cerebellar 

input from the LRN (Azim et al., 2014b). Several classes of functionally distinct spinal 

interneurons have been shown to send bifurcating projections to forelimb motor neurons and 

the LRN (Pivetta et al., 2014). Thus, spinal interneuron pathways provide a diversity of 

internal copy inputs to cerebellar circuits, establishing spinal-cerebellar-spinal loops capable 

of rapid adjustment of forelimb movements.
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Spinal pathways also convey sensory information directly and indirectly to the cerebellum. 

A major source of proprioceptive input to the cerebellum comes from spinocerebellar tract 

neurons that transmit proprioceptive information from primary sensory neurons (Chen et al., 

2003), some of which are subject to descending modulation by corticospinal circuits 

(Hantman and Jessell, 2010). Single-cell RNA sequencing recently revealed genetic 

diversity amongst spinocerebellar neurons, identifying segment-specific transcriptional 

codes required for appropriate connectivity between proprioceptive, spinal, and cerebellar 

circuits (Baek et al., 2019). In addition, the external cuneate nucleus in the brainstem, which 

sends mossy fiber projections to the cerebellum, directly receives proprioceptive input (Quy 

et al., 2011), and movement related modulation of activity in this nucleus is important for 

gating self-generated sensory signals (Tiriac and Blumberg, 2016). Thus, the cerebellum 

receives feedback from multiple ascending sensory streams that convey information about 

the state of the body.

The characterization of discrete pre-cerebellar pathways in rodents has begun to reveal the 

importance of copy and sensory signals for the precision of ongoing limb movements and 

the adaptation of subsequent movements. Resolving how the cerebellum uses these inputs to 

ultimately refine motor output requires a closer dissection of cerebellar nuclear circuits that 

influence forelimb movement.

Cerebellar nuclei are required for the initiation and execution of movement

Cerebellar nuclear neurons are linked to many subcortical motor nuclei, providing several 

potential pathways through which the cerebellum might implement online correction and 

sensorimotor adaptation (Tlamsa and Brumberg, 2010; Houck and Person, 2015; Gao et al., 

2016; Low et al., 2018). Downstream targets of cerebellar nuclei neurons include the motor 

thalamus, red nucleus, reticular nuclei, and spinal cord (Fig. 3A,B). However, due to the 

challenges in selectively accessing and manipulating subpopulations of neurons in the 

cerebellar nuclei, the role of each of these pathways in forelimb control is not well defined. 

Several studies employing genetic and viral strategies in mice have begun to uncover 

functional distinctions within the cerebellar nuclei for the control of dexterous movement.

Two recent studies provide direct evidence that neurons in the Int nucleus are required for 

the control of forelimb kinematics to ensure precision. Selective ablation of a genetically-

defined subpopulation of glutamatergic projection neurons in the IntA nucleus (Urocortin3/

Ucn3+ neurons) that preferentially target the motor thalamus and magnocellular red nucleus 

results in reduced success in a skilled forelimb reaching task, disrupted endpoint accuracy, 

and hypermetria (Fig. 6A, B). Ablation of Ucn3+ IntA neurons also disrupts limb trajectories 

during locomotion, and optogenetic activation of these neurons leads to increased vertical 

displacement during the swing phase of limb movement (Low et al., 2018). This study 

provides evidence that a discrete subpopulation of IntA neurons plays an essential role in 

controlling the accuracy of forelimb movements, raising the possibility that additional, 

molecularly-distinct subpopulations of Int neurons influence other aspects of limb 

movement.

A second study employed closed-loop neural manipulation and recording strategies to 

clarify specific roles for IntA neurons during reaching. Selective optogenetic activation of 
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IntA neurons results in a reduction of outward velocity during reach, premature termination 

of the movement, and hypometria (Becker and Person, 2019) (Fig. 6C). Consistent with the 

effects of ablating Ucn3+ IntA neurons, optogenetic inhibition of IntA neurons results in an 

increase in outward velocity and hypermetria (Low et al., 2018; Becker and Person, 2019). 

This ability to manipulate cerebellar output over millisecond timescales has thus provided 

new insight into the role of the Int nucleus in controlling forelimb kinematics. Moreover, 

single unit recordings determined that the magnitude of activity of IntA neurons is 

proportional to the outward velocity of the limb, suggesting that IntA adaptively decelerates 

the limb to ensure endpoint precision (Becker and Person, 2019) (Fig. 6D). These studies 

demonstrate the importance of IntA neurons in establishing appropriate limb kinematics, at 

least in part by modulating outward velocity of the limb. Thus, the online control of forelimb 

kinematics by IntA output neurons could provide a means to accommodate the speed 

accuracy tradeoff observed during movement, permitting rapid movements until deceleration 

is needed for precision (Harris and Wolpert, 1998).

In addition to online execution, the Int nucleus has also been implicated in sensorimotor 

adaptation of limb movements during locomotion. Selective chemogenetic inhibition of 

Purkinje cells that target the Int nucleus disrupts the ability of mice to adapt to differing 

speeds on a split-belt treadmill, leading to perturbed spatial and temporal adaptation of the 

limbs (Darmohray et al., 2019). Although the role of the Int nucleus in the adaptation of 

forelimb reaching has not been examined, the deficits in complex locomotor behaviors 

described in this study suggest a general role for the Int nucleus in sensorimotor adaptation 

of limb movements across behavioral contexts.

The cerebellar nuclei influence movement through many downstream targets. In a recent 

study, direct projections to the spinal cord from the Int and Med nuclei were found to be 

important for success in a forelimb reaching task and for adaptation to increasing speed on a 

rotarod. Moreover, distinct cerebellospinal circuits differentially contribute to reaching and 

rotarod adaptation, revealing separate roles for discrete pathways from the cerebellar nuclei 

in limb movement (Sathyamurthy et al., 2020). The contributions of cerebellar–thalamo–

cortical pathways to goal-directed movement have been the focus of several recent studies. 

Intersectional labeling by retrograde tracing from M1 and anterograde tracing from the Int 

and Lat nuclei was used to map specific cerebellar-recipient regions of the motor thalamus 

(Low et al., 2018; Dacre et al., 2019). Muscimol inactivation of this thalamic region reduces 

the success of goal-directed forelimb movements, and produces a specific deficit in the 

timing of movement initiation (Dacre et al., 2019). The Med nucleus is also involved in a 

reciprocal loop between the cerebellum and the anterior lateral motor cortex (ALM). A 

recent study showed that activity in the Med nucleus is linked to preparatory activity in 

ALM in a cued discriminative lick task, and manipulation of neurons in the Med nucleus 

disrupts behavioral choice, biasing the licking behavior in one direction, but leaving 

execution of licking movements intact. Moreover, motor preparatory activity can be 

observed in ALM and Med, and is maintained by bidirectional communication between 

these two structures (Gao et al., 2018). Similar to the Med nucleus, neurons in the Lat 

nucleus also exhibit preparatory activity, and silencing the Lat nucleus suppresses 

preparatory activity in ALM (Chabrol et al., 2019). These findings demonstrate that 

thalamus-projecting cerebellar nuclear neurons shape motor cortical preparatory activity, 
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raising the possibility that the modulation of anticipatory motor signals in the cerebral cortex 

is a fundamental role of the cerebellar nuclei during voluntary limb movements.

Molecular-genetic dissection of input and output pathways of the cerebellar nuclei are 

beginning to reveal some of the circuit-level details of cerebellar function. In many cases, 

the anatomical, electrophysiological, and behavioral findings generated by these mouse 

studies provide support for long-standing theories of cerebellar computation, while also 

raising new questions.

Future perspectives

Studies across mammalian species are clarifying how specific cerebellar output circuits 

contribute to forelimb movements. Through the recent work in mice described here, at least 

two notable properties of the cerebellar nuclei emerge: 1) Neurons in the Int nucleus that 

project to subcortical motor pathways control the kinematics of dexterous forelimb 

movements, modulating online control of the limb to ensure accuracy; 2) Cerebellar-

thalamo-cortical loops play a key role in the generation of preparatory signals that are likely 

involved in the planning and initiation of learned movements, and may be essential for 

sensorimotor adaptation in response to changing conditions.

Much remains to be explored. The cerebellar nuclei send a diversity of ascending and 

descending projections to a variety of targets (Teune et al., 2000; Liang et al., 2011; Houck 

and Person, 2015; Low et al., 2018; Fujita et al., 2020; Sathyamurthy et al., 2020). Yet while 

populations of neurons in the cerebellar nuclei can be distinguished by their target 

selectivity, the wide array of functions attributed to the cerebellum have yet to be assigned to 

individual output circuits. The identification of molecularly-defined neuronal subpopulations 

in the cerebellar nuclei suggests that, in addition to target selectivity, distinctions in the 

transcriptional identities of cerebellar nuclear neurons might correlate with functional 

specialization (Chung et al., 2009; Locke et al., 2018; Low et al., 2018; Sarpong et al., 2018; 

Fujita et al., 2020). With the rapidly growing arsenal of molecular-genetic and quantitative 

behavioral tools, cerebellar nuclear neurons can now be molecularly profiled, recorded, and 

manipulated during behavior with unprecedented resolution. This work in genetically-

tractable animals must continue to occur alongside work in animal models in which 

established experimental approaches and sophisticated behavioral assays can provide more 

direct relation to human motor function. Collectively, these ongoing efforts to understand 

how cerebellar output influences limb movement promise to provide insight into more 

general mechanisms of sensorimotor control, and clarify how motor, and non-motor, 

functions are disrupted by cerebellar injury and disease.
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Highlights

• Cerebellar dysfunction impacts the execution and adaptation of dexterous 

limb movements

• The cerebellar nuclei receive diverse sensorimotor inputs and project to many 

brain and spinal targets to influence movement

• Perturbation of distinct cerebellar nuclei produces specific limb movement 

deficits across species

• Electrophysiological approaches identify somatotopic organization and 

movement-related activity in the cerebellar nuclei

• Molecular-genetic dissection is revealing the functional organization of the 

cerebellar nuclei and their inputs and outputs

Thanawalla et al. Page 22

Neuroscience. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Cerebellar circuits for forelimb movement.
(A) During limb movement, motor commands elicit muscle contraction, generating sensory 

feedback that is used to update the estimate of limb state and adjust motor output from 

supraspinal and spinal targets. Yet sensory feedback delays imply a need for a more rapid 

internal feedback mechanism. Copies of motor commands (internal copies) are thought to be 

conveyed to the cerebellum, where a forward model generates a prediction of movement 

outcome, enabling more rapid online refinement. Reducing mismatch between predictions 

and sensory-reported outcome can also be used to adapt subsequent movements. Cerebellar 

output is thus tasked with recruiting the necessary motor structures to update motor 

commands and adjust limb movement (Azim and Alstermark, 2015). (B) The cerebellar 

cortex receives inputs that deliver sensory and internal copy signals from the spinal cord and 
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brainstem (mossy fibers), and teaching-related signals from the inferior olive (climbing 

fibers) (Huang et al., 2013; Ishikawa et al., 2015; Miall, 2016; Lang et al., 2017). Neurons in 

the cerebellar nuclei, the primary output of the cerebellum, also receive input from mossy 

fiber and climbing fiber collaterals. The activity of neurons in the cerebellar nuclei is shaped 

by inhibition from Purkinje cells located in the Purkinje cell layer (PCL). Granule cells 

located in the granular layer (GL) receive mossy fiber signals and provide excitatory input to 

Purkinje cells via parallel fibers that extend through the molecular layer (ML). Purkinje cells 

also receive strong excitatory input from climbing fibers, as well as inhibitory input from 

molecular layer interneurons. Mossy fiber inputs to granule cells are regulated by inhibitory 

Golgi cells. Neurons in the cerebellar nuclei send inhibitory nucleo-cortical fibers (iNC) to 

Golgi cells, and excitatory nucleo-cortical fibers (eNC) to granule cells and Golgi cells. 

Cerebellar nuclear neurons project to many subcortical and spinal targets (Miall, 2016).
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Figure 2. Reaching and grasping deficits in patients with cerebellar ataxia.
(A) When asked to perform fast, accurate reaches toward a target (filled black circles), 

control subjects exhibit straight trajectories, while patients with cerebellar ataxia display 

dysmetria, in this case showing a tendency to overshoot the target (traces show the trajectory 

of the index finger). Patients also exhibit curved trajectories, increased shoulder flexion 

(blue traces), and inappropriate flexion and extension of the elbow (red traces), as compared 

to controls (Bastian et al., 1996). (B) During reach-to-grasp movements (left), patients with 

cerebellar ataxia show abnormal grip force relative to load force during the grasp (top), and 

exaggerated grip aperture (bottom) compared to control subjects (traces show two example 

trials) (Brandauer et al., 2008).
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Figure 3. Major targets of the cerebellar nuclei.
(A) Schematic of pathways originating from the cerebellar nuclei. (B) Targets of the 

fastigial/medial nucleus include the thalamus (VL: ventrolateral, VM: ventromedial, CL: 

centrolateral, MD: mediodorsal, PF: parafascicular), midbrain nuclei (PAG: periaqueductal 

gray, SC: superior colliculus, SNc: substantia nigra pars compacta), brainstem reticular 

nuclei, spinal cord, lateral vestibular nucleus, and other regions described in (Fujita et al., 

2020). Targets of the interposed nuclei include the thalamus (VA-VL: ventral anterior-

ventrolateral, VPL: ventral posterolateral, VM: ventromedial), midbrain nuclei (SC: superior 

colliculus, RMC: magnocellular red nucleus, ZI: zona incerta), brainstem reticular nuclei, 

and spinal cord (Houck and Person, 2015; Low et al., 2018; Sathyamurthy et al., 2020). 

Targets of the dentate/lateral nucleus include the thalamus (AM: anteromedial, VL: 

ventrolateral, VM: ventromedial, VPM: ventral posteromedial: VPL ventral posterolateral, 

CL: centrolateral) and midbrain nuclei (VTA: ventral tegmental area, SNr: substantia nigra 

pars reticulata, RN: red nucleus) (Carta et al., 2019; Dacre et al., 2019; Sakayori et al., 

2019). For simplicity, schematics are restricted to tracing studies performed in mice.
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Figure 4. Reversible inactivation of the Int nucleus results in abnormal forelimb movement.
(A) Cats exhibit dysmetric trajectories when reaching toward a target (filled black circles) 

and during limb retraction after muscimol inactivation of the Int nucleus (Bracha et al., 

1999). (B) During a grasp, lift, and hold task (left), muscimol inactivation of the Int nucleus 

in monkeys results in reduced grip force during the hold phase (top) and ataxic movement 

with dynamic tremor visible in the load force (bottom) (Monzee et al., 2004).
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Figure 5. Organization of forelimb areas in the IntA nucleus.
(A) The IntA nucleus is topographically organized based on Purkinje cell termination from 

microzones with specific climbing fiber receptive fields. Shown here are forelimb and 

hindlimb cutaneous and nociceptive receptive fields (Garwicz and Ekerot, 1994; Ekerot et 

al., 1997). (B) Microstimulation of the nuclear zone receiving indirect cutaneous input from 

the ulnar side of the forelimb results in flexion of the elbow, moving the limb region 

corresponding to the receptive field away from the putative stimulus (Ekerot et al., 1995).
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Figure 6. The IntA nucleus ensures endpoint precision during skilled reaching.
(A) Schematic summarizing strategy for selective ablation of Ucn3+ IntA neurons using a 

viral diphtheria toxin receptor-mediated strategy (left). Ablation of Ucn3+ IntA neurons 

results in increased pellet reach-to-grasp errors and reduces pellet retrieval success (right) 

(Low et al., 2018). (B) Contour density plots depict the endpoint position of the wrist with 

respect to the pellet. Arrows depict the direction of reach and the red box indicates the 

position of the pellet. Ablation of Ucn3+ IntA neurons results in hypermetric reaching and 

overshooting the target (Low et al., 2018). (C) Schematic of the behavioral setup for real-

time kinematic analysis and closed-loop optogenetic manipulation of the IntA nucleus (top). 

Averaged velocity traces from a single animal illustrate that optogenetic activation of IntA 

neurons during reaching reduces outward velocity of the limb (bottom) (Becker and Person, 
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2019). (D) Tetrode recordings in IntA during reaching reveal that the amplitude of IntA 

neuronal activity (top) peaks during abrupt reductions in limb outward velocity (Becker and 

Person, 2019).
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