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Abstract Salinity is one of the most vicious environmen-

tal constraints that hamper agricultural production. Exper-

iments were done to explore the significant role of sole and

synergistic supplementation of kinetin (100 lM KN) and

putrescine (100 lM PUT) on Luffa acutangula in NaCl

(100 mM) treatment. The harmful effects of salinity on

growth were manifested by decreased seedling length,

biomass, and pigment contents. We studied the effect of

KN, and PUT in preventing salt (NaCl) induced physio-

logical disorders and oxidative damages in 20-day-old

Luffa acutangula seedlings. The individual application of

KN and PUT increased growth and biochemical parame-

ters, whereas combined KN ? PUT treatment showed

significant enhancement in growth, photosynthetic pigment

content, and osmolyte accumulation in salt-affected plants.

Application of KN and PUT also prevented hydrogen

peroxide and superoxide production as confirmed by inhi-

bition in electrolyte leakage and lipid peroxidation. Kinetin

and PUT application upregulated the antioxidant defense

system by enhancing antioxidant enzymes and non-enzy-

matic contents. Luffa seedlings treated with NaCl ?

KN ? PUT showed 79, 26, 74, and 73% rise in superoxide

dismutase, catalase, ascorbate peroxidase, and glutathione

reductase enzymes, respectively, in comparison to NaCl-

stressed Luffa acutangula. Findings revealed that

synergistic utilization of KN and PUT modulate growth

and biochemical processes in seedlings efficaciously in

comparison to the individual application under salt stress,

and it may be due to a regulatory crosstalk mechanism.

Keywords Antioxidants � Phytohormones � Polyamine �
Priming � ROS � Osmoprotection � Salinity

Introduction

Soil salinity is a serious problem that adversely influence

crop production and sustainable development all over the

world. Salinity, because of salt accretion in cultivable soil,

is a major threat to agricultural activities (Negrao et al.

2017; D’Amelia et al. 2018; Liu et al. 2020). Application

of fertilizers and excessive irrigation have enhanced

salinity in crop fields out of which twenty percent of total

global irrigated area is adversely impacted by NaCl stress,

and more than half of fertile land is anticipated to be

salinized by 2050 (Fischer et al. 2012; Shokat and

Grosskinsky 2019). Salinity exerts a detrimental effect on

the development of plants as the presence of excessive Na?

in soil alters the texture of the soil, checks soil porosity and

aeration, reduces microbes and availability of nutrients on

the earth surface, and negatively affects water uptake by

plants (Vimal et al. 2017; Hmaeid et al. 2019). Soil con-

taining salts gives rise to osmotic shock due to water

deficiency, nutrient imbalance, ion toxicity, and oxidative

stress, which may cause malfunctioning of metabolic

pathways and finally, death of plant cells (Wu et al. 2013).

Salinization increases reactive oxygen species (ROS) pro-

duction, which degrades biomolecules and initiates lipid

peroxidation and changes in nucleic acid (Yang et al.

2019). ROS induced oxidative stress hinders redox

& Mirza Hasanuzzaman

mhzsauag@yahoo.com

1 Plant Physiology Laboratory, Amity Institute of

Biotechnology, Amity University,

Noida 201 313 Uttar Pradesh, India

2 Department of Agronomy, Faculty of Agriculture, Sher-e-

Bangla Agricultural University, Sher-e-Bangla Nagar,

Dhaka 1207, Bangladesh

123

Physiol Mol Biol Plants (November 2020) 26(11):2125–2137

https://doi.org/10.1007/s12298-020-00894-z

http://orcid.org/0000-0002-0461-8743
http://crossmark.crossref.org/dialog/?doi=10.1007/s12298-020-00894-z&amp;domain=pdf
https://doi.org/10.1007/s12298-020-00894-z


homeostasis which indirectly cause loss of photosynthetic

efficiency, mineral absorption capacity, level of phytohor-

mones, and gene expression in plants (Hasanuzzaman et al.

2013; Fallah et al. 2017; Ma et al. 2018). However, to

combat the adverse impact of salt stress, plants develop

complex antioxidant defense machinery composed of

enzymatic and non-enzymatic components like ascorbate

(AsA), glutathione (GSH), superoxide dismutase (SOD),

catalase (CAT), ascorbate peroxidase (APX), glutathione

reductase (GR), etc., which keep ROS under control and

contribute to stress endurance mechanism (Hasanuzzaman

et al. 2019b).

Phytohormone priming has been reported as a potent

method for growth enhancement in plants in adverse

environmental constraints (Sytar et al. 2019). The growth

hormones of plants take part in the modulation of key

metabolic pathways in the state of adverse conditions as

they crosstalk with other biomolecules to evoke protection

mechanisms (Ahmad et al. 2016). Kinetin (KN) promotes

growth of different crop plants exposed to salinity (Wu

et al. 2012), heavy metals (Singh and Prasad 2014), and

waterlogging (Younis et al. 2003). Kinetin has been

reported to regulate cell division, morphogenesis, seed

germination, nutrients absorption, and delay senescence in

plants (Ahanger et al. 2020). Polyamines show significant

functions against abiotic stresses, and because of the

presence of cations, they preserve different biomolecules

containing negative charges (Lopez-Gomez et al. 2017;

Hasanuzzaman et al. 2019a). Polyamines have been found

to linked with salt stress tolerance mechanisms as they help

in scavenging of ROS and affect antioxidant activity at

molecular and gene expression levels (Sang et al. 2016).

The exogenous supplementation of polyamines protects

cell membrane integrity, maintains ion balance in cells,

minimizes inhibition of morphological parameters induced

by NaCl stress, and restricts ROS generation by controlling

the defense mechanism of plants under natural constraints

(Lopez-Gomez et al. 2017). Putrescine (PUT; C4H12N2), a

ubiquitous low-molecular-weight polyamine, contains two

amino groups (Baniasadi et al. 2018). It is a central product

of the polyamine biosynthetic pathway and acts as a pre-

cursor of spermidine (Spd) and spermine (Spm; Xu et al.

2009). Putrescine inhibits accumulation of Na? and Cl-

ions in cells of Atropa belladonna under salt stress (Ali

2000) and also reduces superoxide levels in plant cells in

order to check oxidative stress (Ali et al. 2020). PUT

increased the growth and viability of Oryza sativa leaves

under salt stress (Lutts et al. 1996). This may be due to the

inhibition of ethylene biosynthesis as PUT checks NaCl-

induced conversion of aminocyclopropane-1-carboxylic

acid to ethylene.

Luffa acutangula L. belongs to the Cucurbitaceae family

and is also widely used in traditional medicinal system to

treat various ailments. It exhibits several therapeutic

properties and is used to cure dysentery, headache, jaun-

dice, diabetes, fungal infections, and leprosy. However,

during the initial growth phase, this plant is sensitive to

salinity. Remediation of saline soil is a challenging task,

but the application of phytohormones and polyamines can

be an environmentally safe and sustainable approach for

crop production under salinity. The function of KN and

PUT in diminishing the adverse impact of abiotic stresses

has been well documented, but the synergistic application

by which they alleviate salinity-induced changes in Luffa

plants has not been studied yet. It was hypothesized that the

interaction between KN and PUT might trigger an effective

defense mechanism against NaCl stress as observed by

Ahanger et al. (2018, 2019). The present study may open

new avenues by kinetin and putrescine synergistic appli-

cation for the regulation of the salt tolerance mechanism in

crop plants, specifically those cultivated in saline areas, and

to increase the crop production via low-cost additives such

as KN and PUT. Hence, the present investigation was

executed to explore individual and synergistic effects of

KN and PUT on L. acutangula grown under salt stress as a

combined application can enhance salt tolerance capacity

by modulating physiological, biochemical, and antioxidant

enzyme responses.

Materials and methods

Cultivation of Luffa acutangula plants

and treatment

Sponge gourd (Luffa acutangula cv. Pusa Sneha) seeds

were sterilized with 10% NaOCl for 7 min, then proper

cleaning was done with autoclaved distilled water. Kinetin

(6-furfurylaminopurine, KN; molecular weight:

215.21 g mol-1) and putrescine (PUT; molecular weight:

161.07 g mol-1) were procured from Merck. Seeds of

Luffa were immersed in distilled water and KN solution

(100 lM) for 7 h. The sowing of seeds was done in plastic

pots contained disinfected sand with a full-strength Hoag-

land solution. In a growth chamber, pots with germinated

seedlings were placed under photo-synthetically active

radiation of 150 lmol photons m-2 s-1 in 16:8 h day and

night duration at 26 ± 2 �C with 90% moisture and

sprayed with full-strength Hoagland solution after two

days. After a week, two seedlings were kept in each pot.

Application of modified Hoagland solution with NaCl

(100 mM) was induced, and a mixture of 100 lM PUT

with tween-20 (spreading agent) was applied on the foliage

and the seedlings which were sprayed with distilled water

considered as untreated. Total of eight groups were made:

(1). Control (full-strength Hoagland solution with distilled
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water) (2). 100 mM NaCl (3). 100 lM KN (4). 100 lM
PUT (5). 100 lM KN ? 100 lM PUT (6). 100 mM

NaCl ? 100 lM KN (7). 100 mM NaCl ? 100 lM PUT

(8). 100 mM NaCl ? 100 lM KN ? 100 lM PUT.

Twenty day old seedlings, after 10 days of KN and PUT

supplementation, and 100 mM NaCl treatment, respec-

tively were used for the assessment of physiological

processes.

Determination of growth parameters and relative

water content

Growth parameters were examined in terms of seedling

length and biomass. In relative water content assessment,

the same size round shaped Luffa leaves were collected

from control and treated samples and fresh weight was

evaluated. After 12 h floating in distilled water at

25 ± 2 �C under dark conditions, turgid weight was ana-

lyzed for dry biomass measurement, and leaves were put at

80 �C in an electric oven for 2 days. RWC was analyzed

with the formula: RWC (%) = Fw - Dw/

Tw - Dw 9 100.

Determination of pigment content

Luffa acutangula leaves (100 mg) were ground with 80%

acetone and optical density of the extracted chlorophyll and

carotenoid pigments were measured at 663, 646, and

470 nm by UV–visible spectrophotometer. Chlorophyll a,

b, total chl and carotenoids were measured following the

procedure of Lichtenthaler (1987).

Estimation of sugar, proline, and glycine betaine

Hedge and Hofreiter (1962) method was applied for the

analysis of sugars. Leaves (0.1 g) were ground with 95%

ethanol (5 ml), and after centrifugation, anthrone reagent

(4 ml) was added in the supernatant (1 ml), and the mixture

was kept for heating for 15 min. At 620 nm, absorbance

was noted, and the sugar amount was analyzed by standard

curve prepared from glucose.

The proline amount was calculated by Bates et al.

(1973). Luffa leaves were treated with sulphosalicylic acid

(3%), and acid ninhydrin and acetic acid were mixed in

aliquot and boiled at 100 �C for 1 h. The absorbance was

assessed at 520 nm after the addition of toluene (4 ml).

The content of glycine betaine was measured by the

procedure proposed by Grieve and Grattan (1983). The

periodide crystals were observed due to reaction with KI–I2
reagent at low pH, absorbance was noted at 365 nm, and

concentration was measured by standard curve.

Estimation of protein and nitrate reductase activity

The fresh Luffa leaves (10 mg) were grounded with 1 N

NaOH at 100 �C for 5 min. After 10 min of adding alka-

line copper reagent (5 ml) in the test tubes, Folin–Ciocal-

teau reagent (0.5 ml) was mixed in the sample. After 30

min, absorbance was taken at 650 nm, and protein amount

was recorded by Bovine Serum Albumin standard curve

(Lowry et al. 1951).

Nitrate reductase enzyme activity was measured fol-

lowing the protocol of Jaworski (1971). Luffa leaves

(250 mg) were treated with the medium (4.5 ml) contain-

ing 100 mM phosphate buffer, 3% potassium nitrate and

5% propanol and the aliquot (0.4 ml) was treated with 3%

sulphanilamide (0.3 ml) in 3 N HCl and 0.02% N-1-NEDD

(0.3 ml). At 540 nm, absorbance was calculated and nitrate

reductase activity was analyzed by sodium nitrite standard

curve.

Estimation of electrolyte leakage, hydrogen

peroxide, superoxide

Electrolyte leakage was estimated by the method of

Dionisio-Sese and Tobita (1998).

Electrolyte leakage (%) = (EC1 - EC0)/

(EC2 - EC0) 9 100.

Hydrogen peroxide was determined by the method of

Velikova et al. (2000). At 390 nm, absorbance was taken

and concentration of hydrogen peroxide was measured by

the standard curve.

Superoxide concentration was measured by fusing fresh

leaves with potassium phosphate buffer (65 mM, pH 7.8)

and centrifugation for 10 min at 5,000 9 g. The hydrox-

ylamine hydrochloride (10 mM) was added to the super-

natant and sulphanilamide and naphthylamine were also

added after 20 min. Absorbance was noted at 530 nm and

concentration was assessed by standard curve prepared

from sodium nitrite (Yang et al. 2011).

Lipid peroxidation and lipoxygenase activity

Malondialdehyde content was determined to identify

oxidative damage of lipids in Luffa leaves (Heath and

Packer, 1968). Two hundred milligrams luffa leaves were

mashed in trichloroacetic acid (0.1%) and centrifuged at

10,000 g for 10 min. Filtrate (1 ml) was added in 0.5%

TBA (4 ml) and kept at 95 �C temperature for 30 min and

after proper cooling, centrifugation was done. The optical

density of filtrate was calculated at 532 nm and a correc-

tion was made by reducing non-specific absorbance at

600 nm. MDA concentration was determined by applying

155 mM–1 cm–1extinction coefficient.
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Doderer et al. (1992) method was applied for calculation

of lipoxygenase activity. Absorbance was taken at 234 nm

and the calculation was done with an extinction coefficient

of 25 mM-1 cm-1.

Assay of antioxidant enzymes

The enzyme extracts were produced by fusing leaves of

Luffa (500 mg) with 0.1 M sodium phosphate buffer with

polyvinyl pyrrolidone. The mixture was centrifuged at

14,000g at 4 �C for 30 min in a cooling centrifuge and

filtrate was taken for analysis of various enzymatic com-

ponents which are given below:

Superoxide dismutase was measured by nitroblue tetra-

zolium photochemical assay with the method of Beyer and

Fridovich (1987). The enzyme (0.4 ml) was mixed with

20 mM methionine, 0.15 mM EDTA, 0.12 mM NBT,

13 lM riboflavin and 0.05 M sodium carbonate. Test tubes

containing samples were kept under fluorescent lamps for

30 min and the same set which was unilluminated con-

sidered as blank. The purple-colored formazan shows NBT

reduction under light, and it was calculated at 560 nm and

analyzed with those samples which were without enzyme.

One unit of enzyme activity is elucidated as the content of

the enzyme needed to show 50% suppression in NBT

reduction.

The activity of CAT was analyzed by separation of

hydrogen peroxide at 240 nm for 1 min by applying an

extinction coefficient of 39.4 mM–1 cm–1 (Cakmak and

Marschner, 1992). Enzyme extract (0.2 ml) was mixed

with 50 mM potassium phosphate buffer, 1 mM EDTA,

and 10 mM H2O2. The one unit of CAT activity is known

as 1 nmol H2O2 dissociated min-1.

Ascorbate peroxidase was determined by following

Nakano and Asada (1981). Two millilitres of reaction

mixture was composed of 25 mM potassium phosphate

buffer (pH 7.0), 0.1 mM EDTA, 0.25 mM ascorbate,

enzyme extract (0.2 ml) and hydrogen peroxide (1 mM).

Absorbance was calculated at 290 nm with an extinction

coefficient of 2.8 mM-1 cm–1.

Foster and Hess (1980) method was used for the analysis

of GR. The reaction mixture (3 ml) was composed of

potassium phosphate buffer (100 mM), EDTA (1 mM),

NADPH (50 lM), oxidized glutathione (100 lM) and

enzyme (100 ll) and change in absorbance was calculated

at 340 nm.

Determination of ascorbate and reduced glutathione

The procedure of Mukherjee and Choudhuri (1983) was

applied for the calculation of ascorbate content. The fresh

leaves were crushed with 6%TCA and dinitrophenylhy-

drazine (2%) and thiourea (10%) were added. The samples

were kept in a water bath for 15 min, then after proper

cooling 80% H2SO4 (5 ml) was added, and absorbance was

measured at 530 nm, and a standard curve of ascorbate

with known concentration.

The reduced glutathione content was analyzed by Ell-

man (1959). Luffa leaves (100 mg) were macerated with

phosphate buffer and filtrate (500 ll) was mixed with 5,5-

dithiobis(2-nitrobenzoic acid). Absorbance was measured

at 412 nm and GSH content was analyzed by its standard

curve.

Statistical analysis

Treatments were organized as a randomized block design

with three replicates. The data were calculated using

ANOVA and SPSS software and mean was calculated by

using Duncan’s multiple range test (DMRT) at P\ 0.05.

Results

Growth parameters and relative water content

Luffa acutangula seedlings under the influence of NaCl

stress, showed an obvious decrease in root and shoot length

and weight in comparison to control. Under salt stress

(100 mM), 49, 55, 60, and 64% decrease in lengths of root

and shoot and fresh and dry weight, respectively, were

observed over control (Fig. 1). Supplementation of KN and

PUT reflected enhancement in seedling length and biomass

and synergistic treatment of KN ? PUT showed 32 and

38% rise in length of shoots and fresh weight in compar-

ison to control. As compared to salt treated Luffa seedlings,

NaCl ? KN ? PUT treatment reflected 66 and 137%

stimulation in the length of roots and dry weight. Relative

water status showed 25% reduction in NaCl treated seed-

lings, but RWC was elevated to 33, 34, and 36% in KN,

PUT, and KN ? PUT treated seedlings in comparison to

salt treated seedlings alone. The kinetin priming and PUT

spray improved relative water content in control along with

salt stress. Relative turgidity was elevated by 25% in Luffa

leaves treated with NaCl ? KN ? PUT in comparison to

NaCl stressed seedlings (Fig. 1).

Pigment content

Pigments are indispensable component for the develop-

ment of plants. NaCl stress adversely affected chl contents

(a, b and total) and carotenoids. Seedlings either primed

with kinetin or foliar sprayed with PUT showed an increase

in chl and carotenoids contents. Supplementation of KN

and PUT individually enhanced total chl by 5 and 14% and

carotenoids content by 19 and 34%, respectively (Table 1).
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Fig. 1 Effect of salt stress on seedling length, biomass, and relative

water content of Luffa acutangula L. with or without kinetin and

putrescine. Data are mean ± standard error of three replicates. In a

bar, different letter(s) indicate a significant mean difference at

P\ 0.05 according to Duncan’s multiple range test (DMRT)

Table 1 Effect of salt stress on pigment contents of Luffa acutangula
L. seedlings with or without kinetin and putrescine. Data are

mean ± standard error of three replications. Values in a column with

different letter(s) show significant mean difference at P\ 0.05 as per

DMRT

Treatment Chl a (mg g-1 FW) Chl b (mg g-1 FW) Chl (a ? b) (mg g-1 FW) Carotenoids (mg g-1 FW)

Control 2.98 ± 0.14b 0.96 ± 0.01b 3.94 ± 0.64b 0.62 ± 0.08b

NaCl 1.31 ± 0.12c 0.54 ± 0.07c 1.85 ± 0.19d 0.39 ± 0.03d

KN 3.10 ± 0.07a 1.04 ± 0.10b 4.14 ± 0.11a 0.74 ± 0.08b

PUT 3.24 ± 0.11a 1.26 ± 0.10a 4.50 ± 0.19a 0.83 ± 0.03a

KN ? PUT 3.56 ± 0.13a 1.38 ± 0.06a 4.94 ± 0.13a 0.88 ± 0.03a

NaCl ? KN 1.87 ± 0.11c 0.66 ± 0.01c 2.53 ± 0.24c 0.45 ± 0.09c

NaCl ? PUT 2.15 ± 0.04b 0.75 ± 0.09c 2.9 ± 0.19c 0.49 ± 0.03c

NaCl ? KN ? PUT 2.43 ± 0.19b 0.89 ± 0.07c 3.32 ± 0.33b 0.54 ± 0.11c

Physiol Mol Biol Plants (November 2020) 26(11):2125–2137 2129

123



The combined application of KN ? PUT remarkedly

stimulated chl (a ? b) and carotenoids by 25 and 42%,

respectively, as compared to control. Thus, KN priming or

PUT use inhibited reduction in pigment content with

maximum improvement in salt affected Luffa seedlings

exposed to KN ? PUT.

Oxidative stress indicators

Salt stress increased H2O2, superoxide, electrolyte leakage,

MDA, and LOX activity by 140, 145, 251, 358, and 157%,

respectively, in seedlings in comparison to control. Kinetin

and PUT application inhibited electrolyte leakage by 74

and 77%, respectively, over NaCl stress. Synergistic

application of KN ? PUT markedly decreased H2O2 and

O2
�- production and checked oxidative stress due to the

lipid peroxidation and electrolyte leakage (Fig. 2).

Salinity exhibited notable stimulation in MDA content

358% and lipoxygenase activity 157% in Luffa leaves as

compared to control. The exposure to KN or PUT reflected

a reduction in LOX activity with 80% decline in KN ?

PUT administration over NaCl treatment in Luffa leaves

(Fig. 2).

Protein content and nitrate reductase activity

Protein amount and NR activity were significantly affected

by salt exposure. In protein content, 29% reduction was

found in Luffa leaves with NaCl stress in comparison to

control while it was stimulated to 3 and 8% with KN and

PUT supplementation (Fig. 3). The 2 and 6% stimulation

in NR activity was achieved in KN, and PUT treated

seedlings in comparison to control. The 11% rise was

recorded in NR activity in combined treatment, i.e.,

KN ? PUT.

Activities of antioxidant enzymes

Enzymatic antioxidants showed different responses in

Luffa acutangula during treatment with KN or PUT sole or

in combination. Treatment of seedlings with KN or PUT

individually and synergistically revealed enhancement in

antioxidant activity over control and NaCl stress (Fig. 4).

Salt stress promoted the activities of antioxidant enzymes

as compared to untreated leaves, but stimulation was

recorded when KN and PUT were applied to Luffa acu-

tangula under NaCl stress. Seedlings exposed to NaCl ?

KN ? PUT reflected augmentation of 79, 26, 74, and 73%

in SOD, CAT, APX, and GR, respectively over salt-stres-

sed leaves.

The synergistic impact of KN and PUT was more

prominent in comparison to sole treatment. Salt stress

inhibited AsA accumulation and enhanced GSH content,

both KN and PUT increased AsA and GSH in control and

salt-stressed Luffa seedlings. The KN ? PUT application

improved 21% AsA and 19% GSH over control seedlings

(Fig. 5).

Osmolytes content

Kinetin and PUT supplementation alone or, in combina-

tion, enhanced the levels of osmolytes (Fig. 6). The treat-

ment of NaCl to Luffa acutangula increased contents up to

42, 79, and 50% of sugar, proline, and glycine betaine in

comparison to control. Enhancement in osmoprotectants

concentration was recorded by KN and PUT application

with a significant rise 495, 155, and 330% was reported in

Luffa seedlings treated with NaCl ? KN ? PUT in com-

parison to control (Fig. 6).

Discussion

High salt concentration in soil restricts seed germination,

water, and nutrients uptake, reduces hydraulic conductiv-

ity, pigment synthesis, and other metabolic processes

required for plant development (Gong et al. 2018). The

inhibition in seedling length, as well as the reduction in

biomass of Luffa acutangula because of NaCl stress was

observed (Manai et al. 2014; Martinez et al. 2018). Salt

stress impelled growth restriction might be due to inhibi-

tion in the elongation of plant cells (Queiros et al. 2011).

Imbalance in the homeostasis of nutrients was another

aspect of NaCl-induced damage in Luffa seedlings. Zhao

et al. (2007) stated that alteration in the root plasma

membrane by ion channels disruption and removal of

nutrients by excessive Na? influx was responsible for

decreased nutrient uptake and imbalance in metabolic

processes under NaCl stress. In this study, salinity induced

decrease in growth was mitigated by KN priming or PUT

or by their combined application (Ali et al. 2020). Our

findings of the mitigation of salt-induced reduction in

seedling length and biomass by kinetin are similar, as

recorded by Kaya et al. (2010). Hamayun et al. (2015)

observed kinetin increased resistance in soybean against

salt stress by its interaction with growth hormones.

Polyamines have been proved to be efficient to increase salt

resistance by modifying membrane permeability, ion

transport mechanism, ion channels, root and shoot growth

(Lutts et al. 1996), Na? intrusion and extrusion (Pottosin

et al. 2012), photosynthesis (Shu et al. 2012), increase in

nitrate reductase enzyme activity (Yadav et al. 2018) and

antioxidative responses (Ikbal et al. 2014).

Relative water content is applied to check water content

and osmotic adjustment by the plants under different

environmental conditions (Ravikumar et al. 2014). More
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relative water content sustains the structure of proteins and

improves photoassimilates mobilization. Gurmani et al.

(2018) found that seeds of wheat primed with kinetin

increased water status.

Salt enhances chlorophyllase activity and decreases the

stability of the pigment–protein complex, whereas ROS

produced due to NaCl stress degrades pigments (Shu et al.

2012; Martinez et al. 2018). Salt stress decreased pigment

content might be due to decreased ribulose 1,5 bisphos-

phate carboxylase/oxygenase activity, disorganization of

chloroplast structure or thylakoid membrane and loss of

membrane proteins in the chloroplast (Gengmao et al.

2015).

Kinetin increases protochlorophyllide-synthesizing

enzyme concentration (Demetriou, 2008). Significant

stimulation in chl synthesis and number of chloroplasts

have been reported in leaves of cowpea and maize by KN

application (Tounekti et al. 2011; Acidri et al. 2020).

Enhanced growth of Luffa seedlings with KN and PUT

treatment was associated with its positive impact on pho-

tosynthesis. Ahanger et al. (2018) observed an increase in

chl synthesis due to the foliar application of KN. Behera

et al. (2002) reported that kinetin triggered carotenoids

synthesis and protected photosynthetic apparatus from

ROS by upregulating pigment synthesizing enzymes.

Chattopadhayay et al. (2002) revealed that polyamine
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Fig. 2 Electrolyte leakage, hydrogen peroxide, superoxide, MDA

content and lipoxygenase activity in Luffa acutangula seedlings

grown under salt stress with and without kinetin and putrescine. In a

bar, different letter(s) indicate a significant mean difference at

P\ 0.05 according to DMRT

Physiol Mol Biol Plants (November 2020) 26(11):2125–2137 2131

123



application on rice plants inhibited chl loss and leaf

senescence. Shu et al. (2013) observed that PUT increased

polyamine levels in chloroplast and managed negative

impacts of salinity on photosynthesis. The interaction of

polyamines with PSII proteins stabilized protein structure

and enhanced chloroplast function in cucumber under NaCl

stress. Kinetin and PUT supplementation promoted

photoprotection, which influenced other attributes such as

maintenance of water potential, antioxidant system, min-

eral assimilation, and metabolite accumulation (Oliveira

et al. 2019). The role of KN and PUT might be oxidative

stress reduction, maintenance of pH in the cells, protection

of thylakoid membranes and pigment-protein complexes
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and maintenance of pigment synthesis and catabolic

processes.

Osmolytes act as signaling molecules that reduce unfa-

vorable effects of NaCl stress on biochemical pathways by

preserving enzyme activities, photosynthetic oxygen-

evolving complex and control redox balance and energy

status during salt-induced stress (Khan et al. 2014; Ahanger

and Agarwal 2017). Gharsallah et al. (2016) and Ahanger

and Agarwal (2017) reported an increase in osmolyte

concentration under NaCl stress. Plants with a higher

amount of osmolytes show better stress withstanding

ability and fast free radicals elimination (Slama et al. 2015;

Ahanger et al. 2019). High relative water content improves

photoassimilate mobility and stabilizes protein structure.

More osmolytes accumulation exhibited maintenance of

water potential in tissues which leads to lowering of water
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potential to facilitate continuous uptake of water (Ahanger

et al. 2020). Application of KN and PUT significantly

enhanced sugar, proline, and glycine betaine contents in

NaCl-treated seedlings by inhibiting the efflux of K? by

improving ROS scavenging and preventing photoinhibition

(Cuin and Shabala 2007).

The high electrolyte leakage indicates damage in the

membrane as noted in Luffa plants during treatment with

salt stress (Hussain et al. 2017). The rise in MDA level

because of salinity indicates oxidative stress owing to

excessive reactive oxygen species production in Luffa

seedlings but KN and PUT application significantly

decreased the lipid peroxidation.

Seedlings treated with NaCl showed H2O2 production

which was responsible for the peroxidation of lipids,

however KN and PUT treatment significantly mitigated salt

incited lipid peroxidation by decreasing the concentration

of H2O2 (Ahanger et al. 2018). Kinetin and PUT protect the

photosynthetic electron transport chain by modulation in

NADP? and NADPH contents and check electrons move-

ment to molecular oxygen and restricts O2
�- production as

observed in our results (Wu et al. 2012). Under NaCl stress,

LOX enzyme activity increased, but a decline in LOX

activity was found in plants exposed to KN and PUT (Sofo

et al. 2004). The reduction in LOX activity was an indi-

cation of enhanced proteins and lipids stability in KN and

PUT treated seedlings and improved oxidative stress tol-

erance capacity.

The decrease in protein content in seedlings with NaCl

treatment was due to the decrease in protein synthesis or

increased protein degradation (Hussain et al. 2017).

Nitrogen metabolism is related to carbon metabolism. In

the form of nitrate, nitrogen is absorbed by the plants

which promotes development. Nitrate reductase, a sub-

strate-incited enzyme, converts nitrate to nitrite. Significant

reduction in NR activity in leaves under NaCl stress may

be due to a reduced rate of carbon fixation or reduced

nitrate uptake by roots (Kleinhofs and Warner 1990). The

notable escalation was reported by the supplementation of

KN and PUT may be due to improved photosynthetic

ability and NO3
- uptake by roots (Yadav et al. 2018).

Salt stress causes a reduction of osmosis, ion cytotoxi-

city, and overproduction of free radicals which causes

oxidative stress and hampers biochemical processes in

plants (Kamran et al. 2020). The enzymatic and non-en-

zymatic components are an integral components of plant

defense mechanism and can scavenge ROS in order to

stabilize membrane structure and prevent membrane lipid

peroxidation. SOD converts O2
�- to H2O2, whereas CAT

removes the H2O2 by converting H2O2 to H2O. APX

scavenges H2O2 in cytosol and chloroplast and prevents its

entry into different cells to avoid injury. The supplemen-

tation of KN and PUT either individually or synergistically

prevented salt-induced changes by triggering of antioxidant

enzymes (Ahanger et al. 2018). Ascorbate and GSH are

vital constituents of AsA-GSH radical scavenging cycle.

This cycle contains APX and GR enzymes which play a

significant role in AsA and GSH production. Ascorbate is

water-soluble, low molecular weight antioxidant, and helps

in removal of H2O2. The maintenance of AsA and GSH by

upregulation of APX and GR activities results in inflow of

electrons to oxygen in the chloroplast, thereby preventing

superoxide radical production (Noctor and Foyer 1998).

Polyamines function in the regulation of the AsA-GSH

cycle and antioxidants might contribute to stress resistance

(Nahar et al. 2016). Supplementation of spermidine to

salinized nutrient solution stimulated SOD and CAT

activities and mitigating NaCl-incited membrane injury

and pigment synthesis reduction and polyamine content

was enhanced (Duan et al. 2008). The increased Luffa

seedling resistance against salt stress was correlated with

enhanced antioxidant activity. Wu et al. (2012) and Sid-

diqui et al. (2015) stated that kinetin incited the upregu-

lation of antioxidants. Acidri et al. (2020) observed that

KN-treated coffee plants upregulated the non-enzymatic

antioxidants and it was associated with enhanced free

radicals scavenging capacity. Kinetin and PUT interact

with other molecules and provide coordinated action

towards stress resistance (Hasanuzzaman et al. 2019a).

Ahanger et al. (2018) observed that kinetin treated tomato

plants exhibited an increase in osmolyte content, regulation

in AsA-GSH cycle with a robust antioxidant system. Nahar

et al. (2016) observed that polyamine supplementation to

salt-stressed mung bean increased GSH and AsA contents

and antioxidant enzymes activities and inhibited oxidative

stress. Hence, synergistic KN and PUT application induced

up-regulation of osmolytes and antioxidant components

which strengthens endurance strategies in Luffa acutangula

against salt stress.

Conclusion

Salt stress markedly reduced the morphological parame-

ters of Luffa acutangula seedlings. It reduced the contents

of pigment and protein and nitrate reductase enzymes. It

stimulated the accumulation of osmolytes and caused

electrolyte leakage and lipid peroxidation. Significant

enhancement in seedling length and biomass has been

observed with KN, PUT, and their combined treatment,

i.e. KN ? PUT. Application of KN and PUT alleviated

unfavorable effects of salt stress on morphological and

biochemical components such as pigment and protein

contents and NR activity of Luffa acutangula by trig-

gering the up-regulation of osmolytes and antioxidants.

The increase in antioxidant enzymes due to kinetin and
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putrescine supplementation exhibited a defensive role

against salt stress. Thus, KN and PUT ameliorate the

unfavorable impact of salt stress by strengthening the

defense system of Luffa seedlings. Kinetin and PUT

mediated growth promotion in Luffa seedlings under NaCl

stress may be due to the development of a detoxifying

system against ROS by incorporation between various

signaling constituents. The present study shows probable

crosstalk between KN and PUT in preventing NaCl stress.

Further investigations are required to unravel the molec-

ular mechanism in relation to KN and PUT application

for plant stress resistance.
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