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Systems-based proteomics to resolve the biology
of Alzheimer’s disease beyond amyloid and tau
Sruti Rayaprolu1,2, Lenora Higginbotham1,2, Pritha Bagchi 2,3, Caroline M. Watson1,2, Tian Zhang2,3, Allan I. Levey 1,2,
Srikant Rangaraju1,2 and Nicholas T. Seyfried 1,2,3

The repeated failures of amyloid-targeting therapies have challenged our narrow understanding of Alzheimer’s disease (AD)
pathogenesis and inspired wide-ranging investigations into the underlying mechanisms of disease. Increasing evidence indicates
that AD develops from an intricate web of biochemical and cellular processes that extend far beyond amyloid and tau
accumulation. This growing recognition surrounding the diversity of AD pathophysiology underscores the need for holistic systems-
based approaches to explore AD pathogenesis. Here we describe how network-based proteomics has emerged as a powerful tool
and how its application to the AD brain has provided an informative framework for the complex protein pathophysiology
underlying the disease. Furthermore, we outline how the AD brain network proteome can be leveraged to advance additional
scientific and translational efforts, including the discovery of novel protein biomarkers of disease.

Neuropsychopharmacology (2021) 46:98–115; https://doi.org/10.1038/s41386-020-00840-3

INTRODUCTION
Alzheimer’s disease (AD), the most common cause of dementia
worldwide, is characterized by progressive declines in cognition
and everyday function [1]. An estimated 40 million people across
the globe have AD and, due to extending lifespans, this number is
only expected to increase [1, 2]. Therefore, without effective
disease-modifying therapies, AD poses a uniquely devastating
threat to the health and welfare of the elderly.
For the past several decades, AD research and biomarker

development have centered around two proteins, amyloid-beta
(Aβ) and tau. A wealth of evidence suggests these proteins play a
pathogenic role in disease. Aβ, which begins accumulating over a
decade prior to clinical symptoms, comprises the cortical
extracellular plaques characteristic of AD [3]. In addition, gene
mutations that directly enhance Aβ aggregation underlie rare
familial forms of the disease [4, 5]. Meanwhile, tau accumulation as
intracellular neurofibrillary tangles (NFTs) is another hallmark
feature of AD and strongly associated with progressive neuronal
loss and cognitive decline [3]. For these reasons, a definitive AD
diagnosis requires the postmortem presence of both Aβ and tau
pathologies in the cerebral cortex [6]. Antemortem diagnosis also
relies heavily on the presence of Aβ and tau, either as measured in
the spinal fluid or imaged using positron emission tomography
(PET) [7–10].
However, mounting evidence indicates that Aβ and tau

represent only a fraction of the complex and heterogeneous
biology of AD. Large clinical trials of Aβ-targeting therapies have
repeatedly failed, suggesting that amyloid-centric therapy is
insufficient to quell disease [11]. Simultaneously, a growing
number of genetic, cellular, and biochemical studies have linked
AD pathogenesis to a more diverse array of biological mechanisms

involving a variety of cell types. Thus, some have postulated that
AD maintains two pathogenic phases, including a proteopathic
“biochemical” phase characterized by the direct toxic effects of Aβ
and tau aggregation and a “cellular” phase encompassing a web
of complex feedback and feedforward cell-mediated mechanisms
that promote irreversible degeneration [12]. This pathogenic
framework argues that the dynamic interaction of both phases is
critical for disease progression and cognitive decline.
The growing complexity of AD pathogenesis has highlighted

the need for additional biomarkers that fully reflect underlying
pathophysiology and effectively promote advancements in
diagnostic profiling, disease monitoring, and treatment. In
response to this urgent need for biomarker discovery, the
Accelerating Medicines Partnership (AMP)-AD initiative was
launched in 2014. This multidisciplinary effort between the
National Institutes of Health (NIH), academia, and industry aims
to leverage systems-based scientific strategies to better char-
acterize AD pathophysiology and identify effective therapeutic
targets [13]. Amidst this partnership, unbiased network-based
proteomics has emerged as a powerful tool for unraveling the
intricate biology underlying AD. In this review, we discuss recent
large-scale, multidimensional, network proteomic analyses of the
AD brain and the applications of these results to additional
scientific and translational efforts.

EXPANDING AD PATHOGENESIS BEYOND AMYLOID AND TAU
The “amyloid hypothesis” proposes that AD is caused by a linear
series of events initiated by Aβ and culminating in progressive
neuronal loss and cognitive decline [14]. Though never universally
accepted, this hypothesis remained the most prominent
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theoretical framework for understanding AD for over two decades.
However, the repeated failures of Aβ-targeting drug trials have
recently bolstered critics of this hypothesis and broadened
investigations of AD pathophysiology. Increasing evidence now
suggests that AD features a diverse non-linear pathogenic
landscape encompassing a variety of cellular mechanisms with
equally prominent roles in disease progression [12].

The amyloid hypothesis controversy
Aβ peptide is the main component of extracellular plaque
pathology in the AD brain [15]. Aberrant Aβ deposition begins
over a decade before the onset of clinical symptoms and spreads
diffusely throughout the cerebral cortex [16, 17]. According to the
“amyloid hypothesis”, progressive Aβ accumulation triggers a
cascade of detrimental processes, including intracellular NFT
formation, synaptic dysfunction, neuronal death, and finally
irreversible dementia [18, 19]. This hypothesis gained favor in
the 1990s after several gene mutations directly responsible for
aberrant Aβ accumulation (APP, PSEN1, PSEN2) were found to
underlie rare familial forms of early-onset AD [20–22]. These
genetic findings led to several transgenic mouse models that
successfully recapitulated Aβ plaque formation, increasing support
for the hypothesis (Table 1) [23–29]. Though familial AD cases
account for <5% of the AD population, this amyloid-centric
framework was promptly extended to sporadic late-onset AD
(LOAD) given its identical hallmark pathology [3]. Subsequent
genetic association studies of LOAD bolstered this framework,
identifying risk factors such as APOE that modulate Aβ processing,
trafficking, and clearance [19, 20, 30]. This was followed by
evidence indicating that soluble oligomeric Aβ mediates synaptic
dysfunction and neuronal toxicity [31–33]. For these reasons,
enormous research efforts were expended toward Aβ-targeting
drug therapies that either inhibited production or facilitated the
removal of Aβ from the brain [11].
Yet, the repeated failures of these drugs have brought the

amyloid hypothesis under fire [19, 31, 34]. While many argue that
these trial failures are due to poor study design or patient
selection, critics of an amyloid-centric framework maintain that Aβ
is simply not the key to disease pathogenesis. Its tendency to
accumulate for years without causing symptomatic disease (i.e.,
asymptomatic AD or AsymAD) supports this conclusion [35, 36]. In
one notable case, even harboring an autosomal dominant PSEN1
mutation was insufficient to cause overt dementia [36]. Moreover,
the growing recognition of overlapping pathologies (e.g., Lewy
body inclusions, TDP-43 pathology, vascular lesions, etc.) among
dementia patients indicates a wide range of biological hetero-
geneity within AD that necessitates a broader approach to
scientific investigations of its pathophysiology [37–39].

The evolving role of tau
Hyperphosphorylated tau accumulates as intraneuronal NFTs, a
hallmark feature of AD pathology [3]. Though the amyloid
hypothesis places NFTs downstream of Aβ deposition, increasing
evidence suggests that aberrant tau accumulation is a complex
multifactorial process that can occur independent of amyloid.
Such observations date back to the pathological descriptions of
Heiko and Eva Braak in 1991, who found that AD-related tau
deposition followed a stereotypical pattern of progression
regardless of variations in Aβ distribution [40]. Subsequent studies
identified the locus coeruleus as the first site of pathology in AD
subjects, with NFTs preceding cortical tau or Aβ deposits [41–43].
More recently, Crary et al. coined the term “primary age-related
tauopathy” (PART) after observing that the postmortem brains of
many elderly individuals harbor NFTs indistinguishable from those
of AD but in the absence of Aβ plaques or cognitive decline [44].
Furthermore, aggregated hyperphosphorylated tau is a well-
described pathological hallmark of several other non-AD dis-
orders, such as frontotemporal lobar degeneration (FTLD) [45].

Together, these findings argue against tau accumulation as a
linear consequence of Aβ deposition.
As many critically question the amyloid hypothesis, tau has

begun to receive more attention as a potential therapeutic target.
Compared to amyloid burden, tau levels correlate much more
strongly to cognitive symptoms, suggesting a more direct link to
disease progression [46]. However, the efficacy of these tau-
targeting strategies has yet to be demonstrated. In many
instances, success in animal models has not translated into
cognitive benefits in humans. Clinical trials of methylene blue-
derived tau inhibitors in AD have generally yielded disappointing
results [47–49]. Select tau immunotherapies currently employed in
AD trials have previously failed to demonstrate any effect on
disease progression in the primary tauopathy progressive supra-
nuclear palsy (PSP), fueling reservations about their utility in other
neurodegenerative disorders [49]. Indeed, many remain skeptical
that targeting tau alone will be the key to successful AD
modification, especially given the increasing evidence of other
cell-mediated pathogenic processes. Nevertheless, numerous tau-
targeting trials are currently on-going, tackling a variety of
mechanisms that contribute to tauopathy development. The next
several years should reveal much more about the utility of this
approach and in turn, the role of tau in AD pathogenesis.

The cellular phase of AD
In a 2016 review, De Strooper and Karran discuss the over-
whelming evidence for a “cellular phase” of AD, a decades-long
period of complex feedback and feedforward mechanisms
between neurons, glia, and the endothelium that ultimately
precipitates the irreversible damage underlying cognitive decline
[12]. In this framework, AD begins with a “biochemical phase”,
characterized by aberrant amyloid precursor protein (APP)
processing, Aβ accumulation, and tau hyperphosphorylation.
These biochemical changes exert proteopathic or “aggregate”
stress on surrounding tissues, sparking a cell-mediated phase of
disease. Initially, this “cellular phase” maintains homeostasis
amidst the growing proteopathic disruption. However, as the
diseased individual ages, these compensatory cellular mechan-
isms evolve into increasingly dysfunctional and detrimental
processes. Defective Aβ clearance, mediated by the brain’s
perivascular circulation and glymphatic system, is considered
one of the first events in this biochemical to cellular transition [12].
Dysfunction of the astrocytes and specialized endothelium
comprising this clearance system not only contributes to
increasing amyloid accumulation but also promotes irrevocable
disruption of other neurovascular and glioneuronal functions,
including lipid metabolism, myelin turnover, and immune regula-
tion. Cell-mediated feedback and feedforward mechanisms allow
this dysfunction to thrive independently of accumulating amyloid
and tau, precipitating chronic inflammation and circuitry imbal-
ances that result in cell failure and death.
It is this cellular transition, argue De Strooper and Karran, that

propels the onset of cognitive symptoms. Thus, the hallmark
proteinopathy of AD does not directly cause symptomatology but
instead serves as an upstream trigger for destructive cellular
processes. There is strong evidence to support the causative role
of cell-mediated dysfunction in the pathogenesis of AD. Several
genes encoding proteins intimately associated with the endothe-
lium and Aβ clearance are highly validated AD risk factors, such as
APOEε4, PICALM, and CLU [50, 51]. Likewise, genome-wide
association studies (GWAS) have identified several single-
nucleotide polymorphisms (SNPs) in immune genes as indepen-
dent risk factors for LOAD [52–55], directly implicating microglia-
mediated mechanisms in sporadic AD progression. In addition,
two groups of investigators independently identified variants of
the microglial TREM2 gene that increase susceptibility to LOAD
with an odds ratio similar to that of APOEε4 [56–58]. These genetic
findings are further supported by the common observation of
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aberrantly activated microglia in pathologically relevant AD brain
regions, including within and surrounding Aβ plaques [59, 60].
The wealth of evidence indicating the causative role of these

cellular processes in AD pathogenesis strongly supports a more
holistic approach to AD investigation and biomarker discovery. In
the remainder of the review, we discuss how global network-
based proteomic approaches to the AD brain have helped
characterize these cellular changes, their roles in disease, and
associated protein biomarkers. This unbiased strategy does not
ignore or discount the proteopathic biochemical phase, but
instead puts this protein accumulation and its direct effects into
the larger context of neurovascular and glioneuronal dysfunction.

A GLOBAL NETWORK PROTEOMIC APPROACH TO THE AD
BRAIN
The expanding framework of AD pathophysiology has necessi-
tated more holistic network-based “-omic” approaches to scientific
investigation. The multidisciplinary AMP-AD initiative has sprung
to the forefront of these systems-based efforts, leveraging over
2000 brain tissues across its participating institutions to perform
large-scale integration of network genomic, epigenomic, RNAseq,
and proteomic data [13]. Under this initiative, network proteomic
analysis has emerged as a valuable tool for assessing pathophy-
siological changes in both AsymAD and later stages of disease.
This approach organizes complex proteomic data into unbiased
groups or “modules” of protein co-expression that reflect various
molecular, cellular, and circuit-level phenotypes.
This shift toward systems-level proteomic analysis mirrors

efforts in AD transcriptomics, a field that has employed similar
network strategies to contextualize the many genetic variants now
associated with LOAD [61]. Yet, protein-level analyses have
demonstrated disease-related alterations not readily measured
in transcriptomic networks. Only 30–40% of modules in the AD
brain network proteome overlap with those of the network
transcriptome [62, 63]. While differential protein expression within
these overlapping modules is reasonably concordant (R~0.5), we
have repeatedly observed targets among these modules with
highly discordant changes at the protein and RNA levels [62–64].
Furthermore, only half of the disease-related variance observed in
the AD network proteome is reflected in gene expression at the
transcriptome level, the remainder representing post-
transcriptional and post-translational effects [64]. These findings,
consistent with previous comparisons of protein and mRNA data
[65], strongly support the utility of protein profiling in AD and its
complementarity with transcriptomic studies. In the remainder of
this section, we will discuss the mass spectrometry-based
pipelines and computational methods used to conduct global
network proteomic analyses of human AD brain tissue.

Strategies for mass spectrometry-based quantification
Network proteomic analyses of the AD brain have relied heavily
on traditional “bottom-up” mass spectrometry (MS)-based techni-
ques for protein identification and quantification (Fig. 1). This
workflow typically comprises enzymatic protein digestion (e.g.,
trypsin) followed by liquid chromatography (LC) separation and
tandem MS (MS/MS) measurement of peptides. Data-dependent
acquisition (DDA) is commonly utilized, in which a limited number
of precursor peptides are stochastically selected in the first stage
of MS (MS1) to be fragmented and analyzed in the second tandem
stage (MS2). These quantified peptides are subsequently identified
by spectral matching and analyzed using well-validated statistical
and bioinformatic strategies [66–71]. This workflow has proven
robust and accurate in its protein profiling of complex mixtures,
explaining its popularity among MS-based approaches.
A variety of technological strategies have further enhanced this

workflow, bolstering the quantification and depth of resulting
proteomic datasets. For example, there has been an increasingTa
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transition from label-free to isobaric-labeling approaches. In label-
free quantitation (LFQ), each sample is prepared and analyzed
individually by LC-MS/MS. Though MS1 peptide selection is biased
toward the most intense signals [72], the inherently stochastic
nature of DDA impacts the consistency of peptides chosen and

analyzed across samples. Variability in mass measurements and LC
peptide retention times may also introduce inconsistencies in
precursor peptide selection and quantification. This creates a well-
described “missing value” problem that ultimately limits the
number of quantifiable proteins in a given LFQ dataset [72–75].

Quantitative proteomics
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Multiplex isobaric peptide labeling, as with tandem mass tags
(TMTs) and isobaric tags for relative and absolute quantitation
(iTRAQ), helps to mitigate the issue of missing values by enabling
the analysis of multiple samples simultaneously within a single LC-
MS/MS analysis, as many as 16 with TMT [76, 77]. This strategy,
when coupled to off-line fractionation, can result in the
quantification of thousands of additional proteins and has
permitted remarkably deep proteomic analysis of AD brain tissue
[74, 75, 78, 79]. Johnson et al. demonstrated this advantage in one
of the first TMT-MS network proteomes of the AD brain [74], which
quantified 6533 proteins across 47 brain tissues compared to just
2736 proteins quantified by LFQ-MS when applied to the same
samples. However, despite these achievements in quantification,
TMT-MS may still yield missing values across multiplexed batches
when analyzing large numbers of samples [80].
To better address the problem of missing values, data-

independent acquisition (DIA) has emerged as an alternative to
the stochastic nature of DDA proteomics. Instead of selecting a
limited number of MS1 peptides for analysis, DIA performs MS2
quantification on the entire MS1 spectrum. Therefore, DIA results
in the identification of nearly all detectable peptides within a
selected mass range, allowing for comprehensive and accurate
quantification of identified proteins in the sample with minimal
missing values [81, 82]. Due to complex chimeric mixtures of
MS2 spectra, DIA data is more difficult to analyze compared to
DDA spectra and typically requires more sophisticated computa-
tion. Yet, as DIA technology advances, such roadblocks to its
widespread use in discovery-driven analyses will likely recede. For
instance, sequential window acquisition of all theoretical mass
spectra (SWATH-MS), a relatively user-friendly technology capable
of deep proteome coverage and high quantitative accuracy
[72, 83], stands to significantly advance the application of DIA to
complex tissue analyses. Efforts to adapt this strategy for the
quantification of bulk brain proteomes are already underway [84].
Meanwhile, targeted DIA approaches, such as selected or multiple
reaction monitoring (SRM/MRM) and parallel reaction monitoring
(PRM), have already become widely used in research settings for
more robust quantification of pre-specified individual peptides
and post-translational modifications (PTMs) [81]. The use of these
targeted approaches in the validation and clinical translation of
discovery-driven data is discussed later.

Principles of network building and module identification
Organizing such deep discovery proteomic datasets into modules
of protein co-expression requires well-validated statistical algo-
rithms. Widely validated in transcriptomic studies, weighted gene
correlation network analysis (WGCNA) has been the statistical
algorithm of choice among AD proteomic network analyses
[61, 62, 85–87], though various alternatives are rapidly emerging
[87, 88]. Using graph theory principles, these algorithms identify
modules of proteins with highly correlated abundance levels
across samples. The protein co-expression within each module
may be driven by a variety of biological, physiological, and/or
technical factors. Thus, it is important to comprehensively
investigate individual module characteristics (Fig. 1). First,

assessing connectivity within each module can identify module-
specific hubs, or those proteins that are most central to module
function [61]. In addition, co-expression modules can be analyzed
for enrichment with markers of specific cell types, organelles,
biological pathways, and genetic risk factors. Finally, abundance
changes at the module level, often reported as eigenproteins or
average expression levels, can be correlated with disease status,
clinical features, and neuropathological measures. In this way,
differential protein expression within a complex mixture can be
effectively contextualized within the global biochemical and
molecular pathways driving disease.
Network analyses of AD brain tissue demonstrate the most

reproducibility at the module level, followed by the hub protein
level, and then finally at the level of precise protein connectiv-
ity rankings and module protein membership [61, 89–94]. To
obtain module-level reproducibility, 20 independent samples are
typically considered adequate; however, systematic consistency at
the more granular hub and module membership levels may
require hundreds of samples [61, 93, 94]. In a typical proteomic
pipeline, protein abundances are regressed for effects of age, sex,
and postmortem interval (PMI) prior to building the network, but
this decision will often depend on the goals of the analysis. Batch
correction for technical variance can be performed using a variety
of statistical approaches, each with its own strengths and
weaknesses depending on the nature of the expression data
[95, 96].
Module-level abundance profiles are often statistically corre-

lated to various phenotypic traits of disease, such as amyloid
burden, tangle deposition, and cognitive decline. These module-
trait correlations indicate those protein groups with strong
positive or inverse relationships to disease. Module-enrichment
profiles can also offer important insights into proteomic composi-
tion. These analyses are achieved using well-validated reference
databases and are designed to detect the over-representation of
module proteins with known cell type, biological, or genetic risk
factor associations. Cell type enrichment is typically performed by
cross-referencing module proteins with marker lists derived from
existing reference proteomes or transcriptomes of purified murine
brain cells [62, 97, 98], although single-cell human datasets also
hold promise in this regard [99]. Meanwhile, various resources
exist for pathway and ontology analysis [100–102], such as GO-
Elite. This flexible analytical tool allows users to incorporate a
variety of reference and custom databases to examine ontological
over-representation at the biological, molecular, and organellar
levels [101]. Finally, genetic risk factor enrichment is performed
using integrative algorithms like Multi-marker Analysis of GenoMic
Annotation (MAGMA) [103], a powerful gene-set analysis tool that
allows for module integration with AD GWAS data [62, 64, 74, 96].
Modules enriched with AD risk factors are considered reflective of
causal, rather than reactive, disease mechanisms.

Limitations of proteomic analysis in human brain tissue
Despite a variety of technological advancements, proteomic
analysis of bulk human brain tissue has its limitations. Perhaps
the biggest challenge is the inter- and intra-regional variability

Fig. 1 Unbiased network-based proteomics to characterize the complex biochemical and cellular endophenotypes of Alzheimer’s disease
(AD). Traditional “bottom-up”mass spectrometry (MS)-based techniques, such as label-free quantitation (LFQ) or isobaric labeling, are used for
protein identification and quantification in a large cohort of postmortem brain tissues from control, asymptomatic AD (AsymAD), and AD
cases. Following fractionation, the deep discovery proteomic data generated from these large cohorts are organized into biologically
meaningful groups, or modules, of proteins with sophisticated analytical methods, such as weighted gene correlation network analysis
(WGCNA). The co-expression modules are assessed for enrichment with specific cell types, organelles, biological pathways, and genetic risk
factors generated from genome-wide association studies (GWAS). In addition, abundance changes at the module level can be correlated with
disease status, clinical features, and neuropathological measures. Using this framework, six core and highly conserved modules across
AsymAD and AD cohorts with reproducible links to specific cell types, organelles, and biological functions have been identified. Three of the
modules are consistently increased in the AD brain network proteome: inflammatory, myelination, and RNA binding/splicing, while the
remaining three are consistently decreased: synaptic, mitochondrial, and cytoskeleton.
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found throughout brain tissue. Due to differences in neurode-
generative vulnerability, one cortical region rich in disease
pathology may not reflect the protein pathophysiology of a
relatively spared distant region. Intra-regional tissue heterogeneity
in cell type densities or pathological burden may also yield poorly
representative results. These challenges necessitate large-scale
consensus proteomic comparisons involving multiple brain
regions to draw confident conclusions regarding global findings.
As discussed in the next section, collaborative efforts, such as
AMP-AD, and advances in high-throughput proteomics
have allowed the field to overcome many of these challenges
and identify a systems-based proteomic organization conserved
across brain samples from a variety of different AD cohorts and
cortical regions.
While the network proteomic analysis of bulk tissue can provide

an invaluable view of global cell type-specific changes in disease,
this approach is limited in examination of the cellular microenvir-
onment and its effects on protein levels. Cell populations display a
wide dynamic range of protein concentrations driven by their
immediate surroundings. Bulk tissue analysis averages these
variations in microenvironment and their contributions to protein
levels. In addition, reference data for cell type-specificity, derived
from healthy brain tissues, may not fully reflect disease-related
shifts in cellular protein expression. As detailed later, cell type-
specific proteomics can combat many of these limitations by
resolving individual communities of glial, endothelial, and
neuronal cells and examining the protein expression of each cell
population relative to disease state, brain region, and local
microenvironment. Such studies promise to uncover the
biological subtleties of the cellular phase not readily apparent in
the global AD proteome.
Finally, one major limitation of discovery-driven bulk tissue

proteomics is its inability to directly probe disease mechanisms.
Indeed, additional molecular studies will be required to deduce
the biological mechanisms underlying module changes and the
precise roles of these protein communities in AD. Yet, a variety of
analytical strategies commonly employed in network proteomics
may offer valuable insights that effectively guide these additional
studies. For example, genetic risk factor enrichment can identify
those modules more likely to have causative, rather than reactive,
roles in disease and support further investigations into the
potential disease-related mechanisms associated with these
protein communities. The identification of modules altered in
AsymAD also provides a window into the earliest drivers of AD
and may help guide the mechanistic evaluation of preclinical
disease. Furthermore, as discussed below, the application of
network approaches to protein interactomes has helped char-
acterize key aggregation mechanisms underlying the biochemical
phase of AD.

ORGANIZATION OF THE AD BRAIN NETWORK PROTEOME
Nearly a dozen informative network-based analyses of the AD
proteome have been performed in the human brain
[62–64, 74, 78, 96, 104–108], including the dorsolateral prefrontal
cortex (DLPFC), temporal cortex, and other cortical regions heavily
affected in AD. Using high-throughput MS techniques, these
studies have revealed highly reproducible modules across the AD
proteome, several of which consistently demonstrate strong
correlations to AD diagnosis, Aβ burden, and other phenotypic
traits of disease. Alterations in these disease-associated modules
are strongly conserved across cohorts and cortical regions,
allowing for the recent construction of a large consensus AD
brain network derived from hundreds of brain samples [96]. Cell
type-specific perturbations appear to drive many of these disease-
associated network changes with glia-enriched modules most
increased in AD and neuronal modules most decreased in disease
(Fig. 1). Yet, these network studies have also yielded AD-associated

modules with no apparent links to specific cell types, suggesting
these protein changes reflect the biochemical phase of AD. The
following sub-sections discuss several of the most highly
conserved modules of the AD brain network proteome and the
insights they provide into disease. Of note, these consensus
observations have been largely regressed for age, sex, and
postmortem interval (PMI). Given the potential sex differences in
AD, the AMP-AD consortium recently performed a large-scale
analysis of sex influences on proteomic data and found no
statistically significant contribution of sex to protein module
alterations [96], though this remains an active area of study.

An early anti-inflammatory glial response
Microglia and astrocytes, glial cell populations that mediate the
innate immunity and inflammatory responses of the central
nervous system (CNS), have been linked in numerous studies to
AD pathogenesis. Microglia are phagocytic immune cells that
comprise ~10% of adult CNS cells with density varying across
brain regions [109–112]. Variants of the microglial TREM2 gene
have been found to increase the risk of sporadic AD by
approximately 3- to 5-fold [56, 57]. Moreover, emerging evidence
suggests that APOE, a potent immune modulator and strongest of
genetic risk factors for LOAD [113–115], may regulate neurode-
generation in a TREM2-mediated fashion [116, 117]. Meanwhile,
astrocytes are known components of many processes implicated
in AD, including synaptogenesis, lipoprotein metabolism, and
blood–brain barrier (BBB) regulation [12]. In the AD brain,
astrocyte populations undergo a series of pathophysiological
changes characterized by hypertrophy, proliferation, and
increased expression of intermediate filaments. This “reactive”
astrogliosis can be found throughout AD progression, including in
early prodromal phases of disease.
Whether this heightened inflammation serves a primarily

protective or detrimental purpose in AD remains a central
question of disease pathogenesis. TREM2, APOE, and other
microglial-expressed genes are thought to have protective,
homeostatic roles in disease [118]. Yet, single-cell RNA sequen-
cing, which enables the profiling of individual microglial cells with
high-throughput datasets, has revealed significant functional
heterogeneity among microglial subtypes and their inflammatory
profiles in the neurodegenerative setting [109, 119]. Similarly, data
examining the effects of microglia and inflammatory mediators on
Aβ deposition in APP transgenic mice are mixed, with some
studies demonstrating reduced and others exacerbated Aβ
accumulation [120–122]. Indeed, it is becoming increasingly clear
that glial-mediated inflammation is likely a complex process
featuring a variety of disease-associated anti-inflammatory and
pro-inflammatory components.
Network proteomics has provided insight into the complexity

surrounding AD inflammation, supporting a predominantly
protective, anti-inflammatory glial response in the earliest stages
of disease. Multiple network proteomes have resolved a large
module enriched with microglial and astrocytic proteins
that demonstrates progressively increasing abundance levels
throughout AsymAD and AD. This highly conserved module
features hub proteins implicated in neuroprotection, such as the
membrane receptor-cytoskeleton cross-linking protein moesin
(MSN) [62–64, 96]. Its activation in association with proteins ezrin
and radixin has been implicated in the neuroprotective non-
amyloidogenic processing of APP [123, 124]. Peroxiredoxin 1
(PRDX1), another hub of this module, is a family member of
antioxidant enzymes also implicated in protective cellular
responses [125]. These module associations with neuroprotection
are not only limited to hub proteins. In a recent network analysis
comprising nearly 500 control, AsymAD, and AD brain tissues
(DLPFC, precuneus, temporal cortex), Johnson et al. demonstrated
enrichment of anti-inflammatory, neuroprotective markers
throughout the MSN module [96]. In a comparison with prior
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proteomic studies, the authors also found several of these module
proteins are decreased in rapidly progressive AD compared to
sporadic disease, suggesting that a failure to activate this module
may lead to more aggressive cognitive decline [96, 126].
Accordingly, this study and others have noted that the MSN
module is enriched with AD genetic risk factors, suggesting it
maintains a causal role in disease pathogenesis [62, 64, 74, 96].
The precise mechanisms employed by the MSN module are
unclear, though many of its microglial proteins have known roles
in phagocytosis, and module ontology analyses have demon-
strated strong associations with glucose metabolism [96].
In addition to this early neuroprotective module, the AD

network proteome features a second inflammatory module co-
enriched with microglia, astrocytes, and endothelial cell type
markers that is consistently elevated later in disease. This module
contains extracellular matrix (ECM) proteins responsible for
mediating cell–cell interactions, with its most preserved hubs
including scaffolding (CAV1) and collagen proteins (COL6A1,
COL6A3). The co-expression of glial and endothelial proteins
supports the role of vascular-mediated inflammation in AD
pathogenesis. The growing depth and complexity of proteomic
networks may result in modules more specific to the endothelium
and better define this vascular biology. We recently performed an
unbiased network analysis on a remarkably deep AD brain
proteome (DLPFC) of >8000 quantified proteins generated by
TMT-MS coupled with off-line fractionation [63, 75]. Among the
resulting 44 modules, we resolved an ECM-associated module
with highly significant endothelial enrichment and relatively weak
glial co-expression. This module was strongly associated with
wound healing and other aspects of humoral immunity and
featured modest upregulation in AD dementia. While these
findings further imply a vascular contribution to AD pathogenesis,
such disease-related alterations in vascular proteins could also
reflect the impact of atherosclerosis or other cerebrovascular risk
factors on the AD proteome [107].

A link between oligodendrocytes and AD risk
The AD brain network proteome also features conserved
upregulation of oligodendrocyte-enriched modules associated
with myelination (Fig. 1). Comprising ~75% of all glial cells in the
brain, oligodendrocytes generate and maintain the lipid-rich
myelin sheaths that insulate neuronal axons and facilitate signal
transmission [12]. Despite their abundance, oligodendrocytes are
perhaps the least studied of non-neuronal brain cells in the
context of AD. Yet, a growing body of evidence suggests that
myelin dysfunction is an early and essential component of AD
pathogenesis. For instance, white matter lesions attributable to
aberrant myelin breakdown have been widely reported in the
brains of individuals with mild cognitive impairment (MCI) [127].
Furthermore, magnetic resonance imaging (MRI) data indicate
that individuals with the risk allele APOEε4 have accentuated
myelin breakdown in AD [128, 129]. This association with genetic
risk and early disease indicates that myelin dysfunction may be an
inciting event in the pathogenesis of disease.
Accordingly, proteomic network analyses of the AD brain have

demonstrated modest upregulation of a highly conserved
oligodendrocyte-enriched myelination module in both asympto-
matic and symptomatic disease [62–64, 74, 96]. In addition, a
handful of studies have found that like the MSN module, this
myelin module features over-representation of AD GWAS candi-
dates, suggesting a causal role for oligodendrocyte processes in
disease [62, 96]. In an examination of APOE genotype on the brain
network proteome, Johnson et al. found that the most significant
effect was exerted by the APOEε2 allele on the oligodendrocyte
module, suppressing its disease-related changes in those with AD
[96]. Dai et al. also observed this APOEε2 effect on oligodendrocyte
and other cell type markers in a separate network proteome of the
AD brain [104]. These associations between AD risk and

oligodendrocyte function mirror the results of a recent large-
scale transcriptomic network analysis in the human AD brain
(DLPFC, visual cortex, cerebellum), which demonstrated significant
enrichment of AD GWAS candidates in conserved disease-
associated oligodendrocyte-enriched modules, including BIN1,
PICALM, and several others [130]. In a comparison of this
transcriptome network to an independently constructed proteo-
mic network from AD brain tissue, the authors found at least 50%
overlap between oligodendrocyte modules of the two datasets.
Additional transcriptomic network analyses have similarly found
enrichment of genes associated with either AD risk or Aβ
processing among oligodendrocyte-specific modules [131, 132].
The mechanisms by which oligodendrocyte dysfunction con-

tribute to AD pathogenesis remain unclear. In an intriguing
network proteomic analysis of over 400 brains (DLPFC), Wingo
et al. found that cerebral atherosclerosis may be the missing link
between oligodendrocytes and AD dementia [107]. In this study,
cerebral atherosclerosis was pathologically assessed by visual
inspection of Circle of Willis vessels and proximal branches and
graded independently of gross infarcts, microinfarcts, or other
white matter lesions. The oligodendrocyte-enriched myelin
module was one of only two protein communities in the co-
expression network associated with both cerebral atherosclerosis
and AD dementia, independent of Aβ, tau tangles, infarct burden,
and a variety of other pathologies. These associations also
persisted after adjustment for hypertension, diabetes, and other
cerebrovascular risk factors. In addition, the authors observed no
similar statistical correlations between cerebral atherosclerosis and
Aβ accumulation or tau burden. Overall, these findings suggest
that cerebral atherosclerosis, a common occurrence among the
elderly, contributes to AD through oligodendrocyte dysfunction
and injury to the myelin sheath, regardless of hallmark proteino-
pathy, gross ischemic disease, or cerebrovascular risk factors.

A role for RNA binding in the biochemical phase
Modules enriched with RNA binding and splicing proteins are also
consistently upregulated in the AD network proteome (Fig. 1). In
contrast to the inflammatory and myelination modules, these
RNA-binding/splicing modules are not enriched with glial or other
cell type-specific markers. In a deep proteomic network analysis of
control, AsymAD, and AD DLPFC tissues, Johnson et al. identified
several AD-associated RNA-binding/splicing modules notably
increased in asymptomatic and symptomatic AD. The disease-
associated alterations in these protein modules were independent
of cell type, persisting even after the dataset was regressed for cell
type-specific effects [74]. The authors subsequently concluded
that RNA-binding proteins may drive the proteopathic “biochem-
ical” phase of AD.
These findings correlate well with previous analyses of the AD

brain detergent-insoluble proteome, which have repeatedly
demonstrated the association of U1 small nuclear ribonucleopro-
teins (U1 snRNPs) and other RNA-binding proteins with tau
tangles [133–137]. These ribonucleoproteins, constituents of the
spliceosome complex responsible for RNA processing, are
mislocalized in AD to the cytoplasm of neuronal cell bodies
where they aggregate with NFTs and contribute to widespread
alterations in RNA processing [134]. Consistent with network
proteomic findings, these aggregated U1 snRNPs have been
observed in asymptomatic AD brains [135], providing further
support for aberrant RNA processing in early disease. Interestingly,
this aggregation of U1 snRNPs with tau appears to be unique to
the AD brain and absent among other primary tauopathies, such
as FTLD [134, 138].
In a recent study of U1-70K, an snRNP consistently associated

with NFTs in the AD brain, Bishof et al. utilized a network-based
proteomic approach to functionally characterize the co-
immunoprecipitated interactome of U1-70K and identify those
protein–protein interactions most dependent on U1-70K domains
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implicated in aggregation and AD pathogenesis [138]. This
analysis successfully organized the U1-70K interactome into seven
biologically meaningful modules, two of which demonstrated a
strong association with pathogenic U1-70K domains. These two
modules, both linked to RNA splicing ontologies, were enriched in
proteins with structural and aggregation properties similar to
those of U1-70K that could serve as additional AD biomarkers,
such as pre-mRNA splicing factor LUC7L3. These findings under-
score the utility of unbiased network-based analysis in the

characterization of protein–protein interactions and their depen-
dence on sub-molecular domains.
In contrast to cell type-enriched modules, RNA-binding/splicing

modules demonstrate limited overlap with the transcriptomic
network of the AD brain. This observation suggests that global
protein-level analyses will maintain a uniquely valuable role in
unraveling the proteopathic biochemical phase of AD. In addition
to RNA-binding/splicing modules, network proteomics has
revealed one other highly conserved AD-associated module with
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Fig. 2 Local proteomics approaches to define the cellular basis of Alzheimer’s disease. Summary of approaches: Laser capture
microdissection (LCM) is a method that can procure subpopulations of cells or very small regions of interest under direct microscopic
visualization. LCM (pink panel) has been used to micro-dissect neurons from both fresh frozen human brain and formalin-fixed paraffin
embedded tissue sections for proteomic analyses. Prior to dissection, immunohistochemical or histological staining of fixed tissue
sections is performed to identify a specific cell type or population of cells in a region of interest without compromising protein quality. For
acute isolation of brain cell types (green panel), a fresh brain sample needs to be processed to yield a single-cell suspension which is then
subjected to magnetically-activated cell sorting (MACS) or fluorescent-activated cell sorting (FACS). For MACS, the desired cell type is
labeled with a 50 nm magnetic microbead conjugated to an antibody specific to cell-surface receptor. After incubation, the sample is
placed on a magnet to drain unbound cells and retain desired cell type within the column. Once the column is removed from the magnet,
the bound cells are released and collected for downstream analyses. Analogous to MACS, in FACS, the single-cell suspension is incubated
with a fluorophore-conjugated antibody specific to a cell-surface receptor. Subsequently, the desired cell type is sorted based on their size
and fluorescent signal directly into a buffer amenable for downstream proteomic analyses. In vivo biorthogonal amino acid tagging
(BONCAT) of proteins (purple panel) is achieved by expressing MetRS* under a cell type-specific promoter in a mouse (Camk2a-Cre-
MetRS*). MetRS* harbors a mutation (L247G) in the amino acid binding site which preferentially tags nascent proteins with an azide-
tagged methionine analog, azidonorleucine (Anl). After treating the mice with tamoxifen (Tmx) to facilitate Cre-mediated recombination,
Camk2a cells express MetRS* and nascent proteins are tagged with Anl. The azide residue of Anl is amenable to copper-catalyzed azide-
alkyne cycloaddition or “click” chemistry. Following protein extraction, Anl-tagged proteins residues are “clicked” with a PEG-biotin-alkyne
and then purified using avidin beads or avidin resin for subsequent MS analyses. Proximity labeling (orange panel) is achieved by various
enzymes that biotinylate proximal endogenous proteins. The BioID approach uses the Escherichia coli biotin ligase, BirA*, with a catalytic
site mutation (R118G). The mutation destabilizes the enzyme, facilitating active biotin molecules (biotinoyl-5′-AMP) to dissociate and bind
to primary amines of exposed lysine residues on adjacent proteins. APEX catalyzes the oxidation of biotin-phenol to the short-lived (<1
ms) biotin-phenoxyl radical in the presence of hydrogen peroxide, which then reacts with electron-rich amino acids, such as tyrosine, in
neighboring proteins. TurboID was developed by taking advantage of yeast display-based directed evolution. TurboID retains the
promiscuous biotinylation property of BioID, but rapidly labels proteins in 10 min compared to the 18–24 hrs by BioID. Subsequent to
biotin labeling and protein extraction from a sample, proteins can be affinity captured by streptavidin beads or matrices for downstream
proteomic analyses by MS.
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possible links to this phase of disease. Unlike the RNA-binding/
splicing modules, this module is consistently downregulated
throughout AD and strongly associated with the cytoskeleton
(Fig. 1) [62, 63, 96]. Its hub proteins often include tubulin subunits
or tubulin-associated proteins, such as dynactin subunit 1
(DCTN1). As microtubule stability is one emerging means of
targeting tau pathology [49], this module may also yield promising
disease-associated biochemical phase markers for therapeutic
targeting.

A link between synaptic and mitochondrial dysfunction
It is well-known that synaptic loss is one of the strongest correlates
of cognitive decline in AD, even more so than Aβ plaques and tau
tangles [139]. While neuronal death contributes substantially to
this synaptic decline, it is increasingly clear that other mechanisms
may also play a role in AD synaptic dysfunction. A growing body
of evidence in mouse models indicates alterations in synaptic
networks, prior to the onset of gross neuronal loss in the cerebral
cortex [140, 141]. This is reflected in the global AD network
proteome, which consistently demonstrates the progressive
downregulation of synaptic modules in asymptomatic and
symptomatic AD brains, a finding that appears to be preserved
across various cortical brain regions [62, 96, 105]. In addition,
emerging cerebrospinal fluid (CSF) proteomic data has revealed

alterations in a number of synapse-associated proteins in
preclinical disease [63]. The mechanism underlying these early
synaptic protein changes remains unclear, with possibilities
including morphological remodeling, regional changes in dis-
tribution, and immune-mediated synaptic pruning, among others.
Furthermore, it has yet to be determined whether these preclinical
synapse changes represent a homeostatic, protective, or detri-
mental event in AD pathogenesis.
In a proteome-wide association study of nearly 150 subjects,

Wingo et al. used co-expression network analysis to demonstrate
the increased abundance of synaptic proteins in the postmortem
brain tissues (DLPFC) of individuals with antemortem stable
cognitive trajectories, regardless of the burden of Aβ plaques or
tau tangles [106]. This suggests that the downregulation of
synaptic proteins in AsymAD may ultimately prove detrimental to
cognitive stability, promoting conversion to symptomatic disease.
Interestingly, this study also found heightened levels of mitochon-
drial proteins among cases with preserved cognition, perhaps
reflecting the close relationship between neuronal synapses and
mitochondria. Synapses are markedly enriched with energy-
producing mitochondria, which fuel both pre- and post-synaptic
signaling processes. Therefore, mitochondria are critical for
maintaining synaptic integrity and function, explaining why an
over-abundance of both module types may be observed in

Table 2. Summary of the advantages and disadvantages of local proteomics approaches.

Approach Advantages Disadvantages

Laser capture
microdissection (LCM)

• Ability to image cell type and structure and acquire
cell count

• A wide range of tissues can be used: unfixed frozen
postmortem brain tissue, formalin-fixed paraffin
embedded brain tissue, hematoxylin & eosin stained
or immunostained tissues

• One tissue section can be dissected several times for
different regions

• Dissection does not disturb cells’ molecular state
• Area size of 1.5 mm2 is sufficient for MS

• Tissue drying during dissection
• Dissection process can be time-consuming: 5 min to
8 hrs depending on the size, cell type, and number of
areas or cells to be collected

• Inability to confidently exclude cells that are not of
interest

• Protocol not optimized for smaller, non-neuronal cell
types or single cells

• Lower proteome coverage compared to bulk brain
proteomics

Magnetic-activated cell
sorting (MACS)

• High throughput
• High purity
• Selective and rapid method
• Enrichment can be scaled up or down to desired yield

• Contamination by acellular debris or unbound cells
• Immunomagnetic beads might cause mechanical shear
• Sequential isolations significantly reduce yield
• Cannot isolate intact neurons

Fluorescence-activated cell
sorting (FACS)

• High sensitivity, throughput, and purity
• Isolate multiple cell types simultaneously based on
immunopheno type alone

• Sort complex cell types with multiple markers
• Separate cells based on cell size, density, and
morphology, cell cycle status, intracellular cytokine
expression, and metabolic profile

• Capture immunophenotyping data for 12 surface
epitopes

• Minimum of 12,000 cells are sufficient for MS

• Long isolation procedure (3+ hrs)
• Shear stress from the FACS instrument
• Slow sorting process – depends on number of cell
populations that need to be collect

• Recovery is 50–70% on most sorters, need a high
number of cells at the beginning

• Fluorophore spillover into non-specific channels
between cells with closely related immune phenotypes

• Cannot isolate intact neurons

Bio-orthogonal non-canonical
amino acid tagging (BONCAT)

• Identification of low abundance, low copy number
newly synthesized proteins with higher magnitude

• Click chemistry procedure is modular and relatively
simple

• Lineage tracing of proteins
• Established transgenic mouse line under the Cre/
Lox system

• Cost of Anl and special diet for mouse studies
• Obtaining a good signal-to-noise ratio between
endogenously biotinylated proteins and biotin clicked
Anl-tagged proteins

• Depth of proteome is lower than traditional proteomics
• Reduced labeling efficiency due to competition
between endogenous MetRS and MetRS*

Proximity labeling (BioID, APEX,
TurboID)

• Rapid kinetics of biotinylation without click
chemistry

• Detect weak or transient protein interactions as well
as soluble and insoluble proteins

• Ready bioavailability of biotin in the brain after
peripheral administration

• Acquire a more global proteome unlike the nascent
proteins in BONCAT

• Noise introduced by endogenous biotinylation
• APEX approach is limited to in vitro experiments since
biotin-phenol is toxic

• TurboID can sequester endogenous biotin and cause
toxicity

• Saturation of proximal labeling sides with prolonged
biotin supplementation

• Lack of mouse models for BioID and TurboID approaches
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individuals with high levels of cognitive resilience. In a more
recent proteomic analysis, Yu et al. paralleled these network
results, identifying associations between cognitive resilience and
cortical proteins involved in synaptic, metabolic, and neurogenic
functions [142].
Overall, the AD brain network proteome suggests close links

between synaptic and mitochondrial modules. It is not uncommon
for modules linked to synaptic ontologies to feature a variety of
metabolic proteins [63]. As demonstrated in Fig. 1, ATPase
subunits can be found among the preserved hubs of both
synaptic and mitochondrial modules. As discussed later, this close
link between synaptic and metabolic protein expression is also
reflected in CSF, which features stark elevations in both types of
proteins in the asymptomatic stages of disease [63]. These early
CSF protein derangements suggest the aberrant exocytosis of
neuronal components into the extracellular space, which could be
explained by synaptic pruning. Emerging evidence in AD mouse
models indicates this homeostatic, microglia-mediated synaptic
phagocytosis may be one of the earliest events in AD progression
and contribute to synaptic losses during asymptomatic stages of
disease [143]. This mechanism would also explain, at least in part,
the glial protein elevations observed in the early AD brain,
providing a mechanistic framework for a variety of proteomic
network changes during the cellular phase of disease.

EMERGING TECHNOLOGIES FOR CELL TYPE-SPECIFIC
PROTEOMICS
Proteomic profiling of human brain tissue has indirectly revealed
potential cell type-specific mechanisms of AD. The next challenge
for proteomic research is gaining the cellular and temporal
resolution to further define the causative role of cell-mediated
dysfunction in AD pathogenesis. In this section, we review several
approaches for localizing the AD proteome to a brain region or
cell type to advance our understanding of the cellular phase
of disease (Fig. 2). Cell type-specific proteomics in the human
brain is currently in its infancy, primarily due to the inability to
isolate live, pure cell populations from frozen brain and limited
access to fresh postmortem tissue. Thus, extending localized
proteomic approaches to mouse models of AD pathology (Table 1)
will be critical for confirming the network architecture and
investigating causal molecular changes during the cellular phase
of disease. Furthermore, cell type-specific proteomics in disease
and aging mouse models can serve to de-convolute com-
plex human brain data and provide cellular-level resolution to
peripheral biomarkers. In addition, this work will significantly
enhance our understanding of the aging-dependent course of cell
type-specific perturbations, thus allowing us to pinpoint possible
opportunities for therapeutic intervention and enhance biomarker
development.

MS-coupled laser capture microdissection
Laser capture microdissection (LCM) is a method that can procure
subpopulations of cells or very small regions of interest under
direct microscopic visualization (Fig. 2). LCM has been used to
micro-dissect neurons from both fresh frozen human brain and
formalin-fixed paraffin embedded tissue sections for proteomic
analyses [144, 145]. Prior to dissection, immunohistochemical or
histological staining of fixed tissue sections is performed to
identify a specific cell type or population of cells in a region of
interest. Protein yield for LC-MS/MS analysis is not impacted,
suggesting that LCM-based approaches are very powerful and
underutilized for cell type-specific proteomics of archival human
brain samples. Drummond et al. [144] used LCM to comprehen-
sively characterize the protein composition of Aβ plaques
microdissected from the hippocampus of two AD subtypes:
rapidly progressive AD and sporadic AD. LCM coupled to LFQ-
MS of these samples revealed proteins increased in rapidly

progressive AD plaques (e.g., α-synuclein) to be decreased or have
no known involvement in sporadic AD [144]. This study is a
powerful example of how an unbiased, localized proteomics
approach can further our understanding of proteins involved in
AD pathogenesis that would otherwise be diluted in a global
proteomics analysis of bulk tissue. Due to recent technological
advancements (e.g., optical resolution), LCM can capture areas or
cells of interest with much higher precision and speed, though the
time it takes to do the dissection is subjective (Table 2). In
addition, LCM-based MS results in a lower proteome coverage
compared to bulk brain proteomics, and the inability to
confidently exclude contamination by cells that are not of interest
poses a challenge (Table 2).

Acute isolation of brain cell types
Unlike transcriptomic studies that can be performed on intact
nuclei from frozen brain (mouse or human), proteomic analyses of
brain cell types require isolation of intact cells from the brain, for
which fresh unfrozen brain is a pre-requisite. Several strategies
exist to isolate the cell type(s) of interest in a highly pure form with
minimal contamination by other cells or acellular elements.

Magnetic-activated cell sorting (MACS). MACS aims to facilitate
the rapid, high-throughput, immunomagnetic separation of a pure
cell type population from a heterogeneous population (Fig. 2). The
MACS approach has been successfully applied to enrich four brain
cell types (neuronal progenitors, microglia, astrocytes, and
oligodendrocytes) from adult mice for high-resolution MS-based
proteomics [97]. This in-depth analysis resulted in the largest
assortment of cell type-resolved proteomic data of the brain and is
frequently used for cell type enrichment analyses [97]. Recently,
quantitative TMT-MS was performed on acutely isolated CD11b+

MACS-enriched microglia from adult (6–7mo) mice of normal,
acute neuroinflammatory (lipopolysaccharide (LPS)-treatment), or
chronic neurodegenerative (5xFAD model) states [146]. Of 4133
proteins identified, 187 microglial proteins were differentially
expressed in 5xFAD mice, including proteins with known (e.g.,
Apoe) and novel (e.g., Cotl1) relevance to AD biology. Cotl1 was
identified as a novel microglia-specific marker with increased
expression and strong association with AD neuropathology. Apoe
protein was also detected within Aβ plaque-associated microglia,
suggesting a role for Apoe in phagocytic clearance of Aβ. Several
proteins increased in human AD brain were also upregulated by
5xFAD microglia (e.g., Aβ peptide) [146]. This deep and
comprehensive proteomic study of isolated mouse microglia
revealed shared neuroinflammatory disease mechanisms between
mouse models of AD pathology and human AD, emphasizing the
value of state-of-the-art proteomics methods for resolving cell
type-specific contributions to disease [146]. One key strength of
the MACS is the ability to rapidly isolate cells of interest with
relatively high purity without dependence on cell sorters;
however, despite high cellular purity, MACS suffers from
contamination by acellular debris or unbound cells (Table 2) [147].

Fluorescence-activated cell sorting (FACS). FACS is another highly
sensitive and high-throughput procedure for isolating cells from a
heterogeneous population (Fig. 2). Fluorescent-conjugated anti-
bodies against cell-surface epitopes are used to label cell type(s) of
interest. The fluorescently labeled cells can be sorted directly into
a buffer amenable for LC-MS/MS (Fig. 2). The FACS approach has
been applied for transcriptomic studies [148–152] and proteomic
applications are now gaining momentum. A recent study
compared the proteomic profiles of MACS-enriched microglia
and FACS-isolated microglia from adult mouse brain and found
that the FACS-isolated microglia proteome was significantly
enriched in canonical microglial proteins (e.g., Ctsd) and contained
much lower levels of non-microglia proteins (e.g., Gfap) [153]. Also,
FACS coupled to LC-MS/MS was employed to characterize
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neuronal and non-neuronal nuclear proteomes. Intact nuclei were
purified from frozen human brain tissue and sorted based on the
expression of a neuron-specific splicing factor, NeuN. Comparative
analysis of NeuN-positive and NeuN-negative nuclear proteomes
revealed a number of transcription and splicing factors not
previously known to be expressed in a cell type-specific manner in
human brain [154]. This method provides a unique opportunity to
identify cell type-specific nuclear proteins, as well as histone
modifications and regulation networks, that may be altered in AD.
FACS is an ideal method for simultaneously sorting multiple cell
types based solely on immunophenotype. Recently, a cell isolation
methodology termed concurrent brain cell type acquisition
(CoBrA) was used to isolate microglia, endothelial cells, astrocytes,
and oligodendrocytes from mouse brain for RNAseq studies [152].
This FACS pipeline can be easily optimized for proteomic analyses
of multiple cell types with >95% purity by confidently excluding
debris. Moreover, utilizing FACS for high-throughput single-cell
proteomics by MS (SCoPE-MS) [155], a fairly new method, holds
great promise and potential for integration with single-cell
RNAseq. Yet, FACS is not without limitations (Table 2). The
prolonged handling of live cells for FACS and the shear stress
imposed on them by the sorter can spuriously activate sensitive
cells such as microglia. One inherent limitation of MACS and FACS
is that live neurons cannot be sampled from adult brain,
tremendously limiting our ability to understand neuron-specific
proteomic changes occurring in vivo, as described below.
Realistically, both approaches can be considered complementary
and their relative strengths and weaknesses (Table 2) should guide
rigorous study design with appropriate controls.

In vitro and in vivo protein labeling strategies
Bio-orthogonal non-canonical amino acid tagging (BONCAT). Pro-
teins within a specific cell type can be uniquely labeled in vivo via
BONCAT (Fig. 2) and isolated from a complex tissue, such as the
brain, for MS-based proteomics. BONCAT leverages the L274G
mutant of mouse methionine-tRNA synthetase (MetRS*) to tag
newly synthesized “nascent” proteins with an azide-tagged
methionine analog, azidonorleucine (Anl) [156–158]. Anl residues
are “clicked” with a PEG-biotin-alkyne and then purified using
avidin beads or avidin resin for subsequent MS analyses. Recently,
BONCAT was utilized to characterize excitatory and inhibitory
neuronal proteomes in adult mice [158, 159]. MetRS* knock-in
mice were crossed with Camk2a-Cre-ert2 mice followed by
tamoxifen treatment to induce Cre-mediated recombination.
Consequently, only Camk2a cells expressed MetRS* and
could incorporate Anl into their proteome. Brain homogenate
from these mice underwent click chemistry, affinity purification,
and MS to obtain the proteomic profile of excitatory hippocampal
neurons. The Camk2a hippocampal proteome was significantly
enriched with proteins represented by neuronal components,
such as synaptic transmission and synaptic plasticity. Several key
proteins (e.g., APP, Grm5) linked to neurodevelopmental or
neurodegenerative disorders were also identified [158]. Interesting
data from this study showed that when mice were exposed to an
environment with enriched sensory cues, there was a change in
the neuronal proteome, which represented a response or
adaptation to the external stimuli. The fidelity of in vivo BONCAT
has thus far only been shown in mouse excitatory neurons;
however, it represents a highly promising new strategy to derive
nascent proteomes from heterogeneous brain tissue in a cell type-
specific manner. Depth of proteome coverage, labeling efficiency,
and obtaining a good signal-to-noise ratio between endogenously
biotinylated proteins and biotin clicked Anl-tagged proteins are
important factors to take into consideration when using this
approach (Table 2).

Proximity labeling. Proximity labeling with enzymes is another
strategy to achieve cell type-specific global proteomic labeling

[160]. The enzymes catalyze the formation of reactive biotin
species, which diffuse out of the active site to biotinylate proximal
endogenous proteins (Fig. 2). Subsequently, biotinylated proteins
can be enriched through affinity capture and characterized via MS.
There are three proximity labeling technologies: BioID, APEX, and
TurboID. The BioID approach uses the Escherichia coli biotin ligase,
BirA*, to biotinylate proteins within ~10 angstroms [161]. BioID
has been used extensively in vitro [162–166] to define interacting
protein partners and proteins in subcellular compartments, but its
application in vivo is limited. By fusing BirA* to a bait protein with
a synaptic localization signal or nuclear pore signal, BirA*
expression was specifically guided to the synapse or nuclear pore
complex to achieve biotinylation of the respective proteomes
[167, 168]. More recently, BioID was used to effectively label
proteins within flies (Drosophila melanogaster) or worms (Caenor-
habditis elegans) [169]. Similar to the BioID approach, an
engineered ascorbate peroxidase, or APEX, could also be used
for efficient proximity labeling of proteins [160] (Fig. 2). With APEX,
researchers have been able to profile the mitochondrial matrix
proteome and characterize the structure of a mitochondrial
uniporter [170, 171]. A major advantage of APEX over BioID, is
the rapid kinetics and high efficiency of labeling; however, APEX is
not suitable for in vivo studies due to the toxicity of biotin-phenol.
A rapid and non-toxic labeling technology, TurboID, was devel-
oped by taking advantage of yeast display-based directed
evolution. TurboID retains the promiscuous biotinylation property
of BioID, but rapidly labels proteins in 10 minutes compared to the
18–24 hours required by BioID (Fig. 2). TurboID-based proteome
labeling has been successfully applied in flies and worms without
much toxicity and with high labeling efficiency [169]. However,
the levels of endogenous biotinylation in the rodent brain is a
disadvantage of in vivo proximity-dependent biotinylation strate-
gies (Table 2). This can be partly overcome by omitting regions
with known elevated levels of endogenous biotinylation or
subtracting out known endogenously biotinylated proteins
from proteomic analyses. One significant advantage of these
approaches (Table 2) is the ability to capture weak or transient
protein interactions as well as soluble and insoluble proteins
because of the high affinity of biotin for avidin, a challenge often
faced with the use of classic antibody-based affinity purification/
MS methods.

TRANSLATING THE BRAIN NETWORK PROTEOME INTO AD
BIOMARKERS
We have outlined the proteomic evidence showcasing AD as a
vastly complex, multi-system disorder that extends beyond
“hallmark” pathology to include a variety of cellular mechanisms
with potentially central roles in disease progression. Yet, the
intricate pathology observed among meticulously categorized
autopsy research cohorts likely reflects only a fraction of the vast
biological complexity found in clinical AD populations. It is
becoming increasingly clear that most demented elderly indivi-
duals harbor more than one “hallmark” dementia pathology [37].
Indeed, up to 90% of individuals with the classic amyloidosis of AD
may feature concurrent vascular disease, TDP-43, or other
degenerative pathologies [39]. These high rates of overlapping
pathologies combined with additional biological heterogeneity
introduced by individual genetic and environmental factors make
for an overwhelmingly complex pathophysiological landscape
among the over 40 million individuals thought to be living with
AD worldwide.
Our current diagnostic framework for clinical AD fails in

capturing this biological diversity. The limited number of clinically
established AD biomarkers, such as amyloid PET imaging and CSF
Aβ and tau levels, reflect only “hallmark” pathology. Such a
reductionist approach to AD stands to hinder advancements in
diagnostic subtyping, disease monitoring, and therapeutic
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development. Approaching such a biologically heterogenous
disease as a single entity in clinical trials may account for many
of the AD drug failures we have encountered to date. Thus, AD
requires a new diagnostic framework, one reliant on more diverse
biomarker assays reflective of a wide range of pathophysiology. A

tool of this nature could not only allow for detailed biological
subtyping, but also usher in a new age of patient-tailored
therapeutics in neurodegeneration. For these reasons, systems-
based approaches to biomarker discovery, as championed by the
AMP-AD initiative, are growing in popularity among
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neurodegenerative disorders. In the following section, we describe
early efforts to translate the network AD brain proteome into
systems-based, physiologically diverse, multiplex biomarker assays
capable of advancing our clinical framework of disease.

Integration of brain and biofluid proteomes
To increase the pathophysiological diversity among CSF biomar-
kers of AD, we have developed a novel approach that integrates
the global AD brain network with proteomic analysis of CSF
(Fig. 3). The direct proximity of CSF to the brain presents a strong
rationale for discovery-driven integration of these two proteomes.
Johnson et al. recently found that ~20 proteins from the highly
conserved MSN module demonstrated significant elevations in AD
CSF [96]. These CSF protein elevations were consistent across two
different AD cohorts comprising a total of nearly 400 spinal fluid
samples. As discussed previously, the anti-inflammatory microglia-
enriched MSN module is elevated in the AsymAD brain and
thought to play a causative role in disease pathogenesis. The
reflection of such disease-associated cellular processes in the CSF
could provide a means of detecting and monitoring treatment
responses.
In another recent large-scale study, Higginbotham et al. used an

integrative proteomic approach to examine the statistical overlap
of the AD brain network proteome (DLPFC) with differential
expression in the AD CSF proteome [63]. Fifteen of the 44 brain
modules identified in this study strongly overlapped with the CSF
proteome. These 15 brain modules were also high-yield sources of
markers differentially expressed in AD CSF, collectively harboring
nearly 300 proteins with significantly altered levels in AD spinal
fluid compared to controls. Based on their corresponding brain
modules, these ~300 CSF AD targets were then segregated into
five systems-based biomarker panels representing a wide range of
brain pathophysiology, including synaptic transmission, vascular
biology, myelination, glial-mediated inflammation, and energy
metabolism. Using high-throughput TMT proteomic analysis,
proteins from these five panels were validated in multiple
additional CSF cohorts, totaling >500 spinal fluid samples. The
results of these validation studies were then used to narrow down
these biomarker panels from roughly 300 to 60 proteins across the
five panels. Target prioritization was based on a variety of criteria,
including significance and magnitude of change in disease,
reproducibility of these disease-related alterations, and the ease
of mass spectrometry detection and quantification (Fig. 3).
Interestingly, the final CSF marker panels demonstrated AD-
specificity and altered levels in AsymAD spinal fluid, indicating a
potential role for these panels in preclinical disease stages. In two
separate smaller analyses of AD CSF, many of the same AD-
associated synaptic and metabolic biomarkers were identified,
further supporting the reproducibility these systems-based CSF
marker panels [78, 172].
Plasma biomarker discovery represents another potential

extension of AD brain network analysis. The rationale for using
plasma biomarkers as proxies for brain processes [173] has been
demonstrated for multiple neurodegenerative diseases [174, 175].
While targeted proteomic approaches have been primarily used to
measure plasma Aβ [176, 177] and phosphorylated tau [178, 179],

recent improvements in MS technology and chromatography
have renewed interest in discovery plasma proteomics in AD [180].
For example, discovery TMT proteomics was recently applied to
plasma samples of two independent cohorts to predict Aβ burden
in preclinical disease with high accuracy [181]. Moving forward,
integrative analyses that successfully correlate proteomic signa-
tures across brain, CSF, and plasma will prove key for the
advancement of ideal network-based biomarkers of disease
(Fig. 3).

Targeted validation and assay development
Following discovery-driven proteomics, targeted assays are
typically employed in large numbers of clinical samples to validate
specific candidate biomarkers or multiplexed biomarker panels
(Fig. 3). Antibody- or aptamer-based immunoassays are often
used as a strategy for target validation [182, 183]. These assays are
capable of high-fidelity validation, versatile in application, and
easier to execute than MS-based assays. However, immunoassay
validation can present certain challenges. First, the costs of
commercially available antibody or aptamer reagents necessary
for large-scale studies of hundreds or thousands of proteins in
sizeable clinical research studies can be prohibitive, limiting
validation and translation efforts. Second, in the absence of high-
quality, commercially available antibodies or aptamers, assays
must be generated de novo, optimized, and validated separately,
a process that can also be costly and time-consuming. Finally,
immunoassay approaches are often unable to specifically
detect biologically or pathologically relevant isoforms or PTMs of
a protein.
As an antibody-free platform with robust sensitivity, high

accuracy, and an exceptional multiplex capacity, targeted MS
technologies such as SRM/MRM and PRM offer a promising
alternative to the challenges of immunoassay validation [184–
187]. As Cilento et al. argue in a recent review of targeted MS in
AD biomarker discovery, these approaches provide a cost-effective
means of systematically verifying large panels of protein
biomarker candidates prior to more expensive and large-scale
validation testing [187]. This workflow typically begins with the
synthesis of unique and protein-specific peptides to facilitate the
direct detection of candidate biomarkers and development of
multiplex assays. These targeted MS assays, which are capable of
measuring hundreds of peptide biomarkers simultaneously, are
then applied to a small set (~10–50) of patient samples and
critically analyzed for reproducibility and assay adaptability. Once
verified, a smaller panel of the most promising candidates can
enter the validation stage, in which they are analyzed in several
hundred (~100–500) samples to critically assess sensitivity and
specificity. This validation analysis represents the final preclinical
stage, after which chosen candidates can be further investigated
for clinical application [187, 188].
Targeted MS approaches have been increasingly employed for

the detection and quantification of protein biomarkers from
biofluids [187]. Several studies have successfully used targeted MS
strategies to quantify Aβ, tau, and APOE protein levels in CSF with
similar disease-association efficacy to that of traditional ELISA
assays [189–191]. More recently, targeted MS was applied to a

Fig. 3 Conceptual framework for translating brain protein networks into clinical biomarkers. In this framework, multidimensional
discovery-driven proteomics data collected from local cell type-specific approaches and antemortem biofluids will be integrated with the AD
brain network proteome to identify systems-based panels of promising CSF and/or plasma biomarkers. Target prioritization will rest on the
significance, magnitude, reproducibility, and ease of detection of the candidate biomarker in disease. Prioritized targets will also require links
to disease mechanisms, informed in part by localized and cell type-specific proteomics. These network-based biomarker panels will then be
validated using targeted quantitation approaches, including mass spectrometry (MS) and immunoassays. Both validation methods offer
highly sensitive and accurate quantitation, though MS may offer certain advantages, such as highly selective target detection using unique
peptides and the ability to cost-effectively analyze large panels of proteins in an initial verification phase prior to more expensive validation
efforts. Validated biomarker panels representing a wide range of pathophysiologies could serve a variety of clinical uses, including preclinical
profiling, disease monitoring, measuring therapeutic response, and confirming target engagement.
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more diverse panel of promising AD CSF biomarkers reflecting a
much wider array of disease pathophysiologies [192]. In this study,
Zhou and colleagues used PRM to quantify a panel of brain-
derived proteins significantly altered in a discovery-driven
proteomic analysis of AD CSF. Several proteins, including tau
and neurofilaments, were significantly increased in AD CSF and
capable of distinguishing AD cases from controls and non-AD
dementia. Protein targets mapping to synaptic, metabolism, and
neuroinflammation modules in brain [96] were quantified with
high precision, showcasing their potential for future biomarker
translation. SMOC1, YWHAZ, ALDOA, and MAP1B emerged as
biomarkers that could best discriminate between individuals with
AD and non-AD cognitive impairment, correlating well with Aβ
and tau levels [192]. Overall, these results further illustrate the
utility of targeted MS strategies to significantly advance AD
biomarker discovery toward network-based protein assays with
multiple clinical uses in disease (Fig. 3), including preclinical
profiling, disease monitoring, measuring therapeutic response,
and confirming target engagement.

FUTURE DIRECTIONS
In summary, global network proteomics has revealed a highly
reproducible and holistic window into the complex biochemical
and cellular alterations in the brains of individuals with asympto-
matic and symptomatic AD. As the network landscape of the AD
proteome continues to emerge, future directions will include the
(a) exploration of local cell type-specific proteomes to better
elaborate the disease mechanisms implicated in these global
studies, (b) integration of these brain networks and hubs
with protein analyses of CSF and plasma, and (c) large-scale
verification and validation of the most promising brain-linked
biomarkers in additional human samples using targeted proteo-
mic strategies. This validation will also include the longitudinal
measurement of promising biomarkers in large cohorts, such as
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the
Dominantly Inherited Alzheimer Network (DIAN), to define their
reactivity to disease progression and treatment. Together these
efforts promise to not only expand our understanding of AD
pathogenesis, but also fulfill many unmet clinical needs in AD
diagnostics, disease monitoring, and therapeutics.
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