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Large genome-wide association study identifies
three novel risk variants for restless legs syndrome
Maria Didriksen et al.#

Restless legs syndrome (RLS) is a common neurological sensorimotor disorder often

described as an unpleasant sensation associated with an urge to move the legs. Here we

report findings from a meta-analysis of genome-wide association studies of RLS including

480,982 Caucasians (cases= 10,257) and a follow up sample of 24,977 (cases= 6,651). We

confirm 19 of the 20 previously reported RLS sequence variants at 19 loci and report three

novel RLS associations; rs112716420-G (OR= 1.25, P= 1.5 × 10−18), rs10068599-T (OR=
1.09, P= 6.9 × 10−10) and rs10769894-A (OR= 0.90, P= 9.4 × 10−14). At four of the 22 RLS

loci, cis-eQTL analysis indicates a causal impact on gene expression. Through polygenic risk

score for RLS we extended prior epidemiological findings implicating obesity, smoking and

high alcohol intake as risk factors for RLS. To improve our understanding, with the purpose of

seeking better treatments, more genetics studies yielding deeper insights into the disease

biology are needed.
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Restless legs syndrome (RLS) is a common sensorimotor
disorder that is known to impact quality of life and
health1,2. The prevalence ranges from 5 to 18.8% in Eur-

opean populations3–5 with approximately 2 to 3% of the general
population thought to benefit from medical treatments that
ameliorate symptoms5–7. RLS symptoms include uncomfortable
sensations predominantly localized in the legs that are experi-
enced as pain in at least one-third of subjects, which elicit a strong
urge to move for symptomatic relief. The symptoms increase in
the evening and at night. Consequently, the onset and main-
tenance of sleep are negatively impacted in most RLS patients,
which in turn, is thought to impair daytime cognition and mental
well-being8. The majority of RLS patients experience involuntary
leg movements at transitions to sleep, and during sleep (periodic
leg movements in sleep (PLMS)). Many also have social activities
and work productivity interrupted by RLS symptoms2.

One of the underlying pathophysiological mechanisms of RLS
involves impaired re-uptake of synaptic dopamine and reduced
D2 receptor density, explaining why the disorder can sometimes
be treated with dopamine-based therapies9. It is hypothesized that
the re-uptake of synaptic dopamine is affected by brain iron
level9. Supporting this, in RLS patients low brain iron has been
found in the substantia nigra and the striatum, whose roles in
regulating reward, motivation, and movement are well estab-
lished10–12.

Moreover, a variety of modifiable health and lifestyle risk
factors that accompany or aggravate RLS have been reported,
including obesity, smoking, high alcohol intake, and sedentary
lifestyle3,13. The prevalence is greater in individuals with reduced
iron reserves14. Even though iron supplementation can be effec-
tive in relieving symptoms, especially in patients with iron defi-
ciency, there are currently limited treatment options for RLS15,16,
which also appears to be underdiagnosed17. Existing treatments
address symptoms rather than the underlying cause of the dis-
ease. A fundamental reason for this is our relatively limited
knowledge of the pathogenesis of the disorder. One way to
increase our understanding of RLS is to expand knowledge of the
genetic architecture of the disorder, which is complex and poly-
genic in nature6. Genome-wide association studies (GWAS) of

European ancestry populations have yielded 20 single nucleotide
polymorphisms (SNPs) in 19 loci that associate with RLS6,18–24.

The aim of the present study was to search for additional RLS-
associated loci that might provide new insights into the disease
pathophysiology and be useful in the discovery of new drugs or
repurposing of existing drugs for RLS treatment. To this end, a
meta-analysis of GWAS of RLS including 480,982 adults of
European ancestry (recruited from Iceland, Denmark, United
Kingdom (UK), Netherlands and the United States (USA)) was
conducted. Following this, novel findings were tested for repli-
cation in two additional case-control sets of European ancestry,
the EU-RLS-GENE and RBC-Omics cohorts. Subsequently, all
cohorts were meta-analyzed. Finally, to search for traits associated
with RLS, we calculated polygenic risk scores for RLS (RLS-PRS)
for the UK Biobank subjects and tested associations between RLS-
PRS and 12,075 traits (binary and quantitative). The UK Biobank
is one of the largest and most widely used recourses for studying
health and well-being. The biobank sample is population-based,
and the 500,000 volunteer participants provide health informa-
tion to approved researchers by allowing the UK Biobank to link
to existing health records, such as those from general practice and
hospitals25,26. This study confirms 19 of the 20 previously
reported RLS sequence variants at 19 loci and identifies three
novel RLS-associated variants. Cis-eQTL analysis indicates a
potential causal impact on gene expression at four of the 22 RLS
loci. Finally, investigating traits associated with polygenic risk
score for RLS, this study confirms and adds to prior epidemio-
logical findings by implicating among other factors obesity,
smoking and high alcohol intake as lifestyle risk factors for RLS.

Results
Genome-wide association study: discovery and replication. The
discovery meta-analysis confirmed 19 of the 20 previously reported
RLS variants6 (Fig. 1 and Supplementary Tables 1–3). The
remaining SNP, rs12962305-T, had an effect size that was sig-
nificantly smaller than previously reported meta-analyses (Table 1).
The P-values of association with five sequence variants, at loci not
previously associated with RLS, were below 5 × 10−8 in the dis-
covery sample and were tested in a follow up sample, including the

Fig. 1 Manhattan plot displaying results from the RLS discovery meta-analysis for N= 480,982 independent biological samples. Variants labeled
orange are previously reported variants. Variants labeled blue and green are novel variants (five) that were tested in a follow-up sample. Of the five novel
variants, three were confirmed (green diamond shape) in the follow up analysis and met the genome-wide significance threshold27,28, whereas two did not
(Table 1). (see Supplementary Table 1 for details; See Supplementary Figs. 1–5 for regional Manhattan plots displaying the five novel RLS-associated
variants).
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EU-RLS-GENE cohort (6228 cases and 10,992 controls) and the
RBC-Omics cohort (423 cases and 7,334 controls) (Supplementary
Table 1 and Supplementary Figs. 1–5 for regional association plots).
Three of the tested variants surpassed genome-wide significance in
the meta-analysis of all samples27,28 (Table 1). The novel RLS-
associated sequence variants are; rs10068599-T in an intron of
RANBP17 on 5q35.1 (OR= 1.09, P= 6.9 × 10−10, 95% CI:
1.06–1.12), rs112716420-G in close proximity of MICALL2 on
7p22.3 (OR 1.25, P= 1.5 × 10−18, 95% CI: 1.19–1.31) and
rs10769894-A near LMO1 and STK33 on 11p15.4 (OR= 0.90, P=
9.4 × 10−14, 95% CI: 0.88–0.93) (Table 1).

Cis-co-localization analysis of RLS variants using GTEx. To
identify the RLS variants acting as cis-expression quantitative trait
loci (cis-eQTL) sharing the same signal with top eQTL of
respective gene and tissue, we performed stepwise pairwise co-
localization analysis. We investigated cis-eQTL of RLS variants in
54 tissues reported in the GTEx database. Of the 23 tested RLS
variants (20 previously reported and three novel), we found cis-
eQTL data for 11 impacting 17 genes (Supplementary Tables 4
and 5). Of the 11 with data, 10 strongly associate with cis-gene
expression (P < 3.3 × 10−06, Supplementary Table 6). Six of these
10 variants are in LD (r2 > 0.3) with top-eQTL for the respective
gene (Supplementary Table 4). To ascertain that RLS variants and
top-eQTLs share the same signal, we further evaluated these six
variants by two-way approximate conditional analysis, which was
implemented in COJO29. Therein, conditional analysis using RLS
effect sizes showed that four RLS variants and eQTLs share the
same signal (Supplementary Table 5). Additionally, conditional
analysis using GTEx effect sizes also confirmed these as the same
associated signals (Supplementary Table 6). Hence, four RLS
variants (rs10068599-T, rs1063756-CACAG, rs12450895-A, and
rs3784709-T) co-localize with top eQTLs for five genes respec-
tively (RANBP17, CASC16, HOXB2, MAP2K5, and SKOR1)
(Fig. 2) (for all RLS-associated variants see Supplementary Fig. 2).

rs10068599-T is associated with a lower expression of
RANBP17 in brain subcortical regions, mainly in the basal
ganglia and in the liver, thyroid and heart left ventricle.
rs3784709-T is associated with a lower expression of SKOR1 in
pituitary, pancreas, and mammary tissues, while the variant also
is associated with a lower expression of MAP2K5 in the left
ventricle of the heart. Moreover, rs10653756-CACAG appears to
be associated with a specific effect on CASC16 expression in
testes. rs12450895-A affects the expression of HOXB2 by lowering
it in suprapubic skin, fibroblasts cells, and in the omentum
(visceral adipose tissue) (Fig. 2).

Genetic risk and LD regression analysis. We used RLS-PRS to
predict RLS clinical cases (N= 1916 with the ICD10:G25.8 diag-
nostic code) in UK Biobank data. The analysis showed that RLS-
PRS explains 0.97% of the phenotypic variance (Supplementary
Fig. 7). One SD increase in RLS-PRS increases the odds of RLS
1.40-fold over that in population controls (P= 4.4 × 10−46, OR=
1.40, 95% CI: 1.35–1.45). Area under the curve and receiver
operator curve analysis show that the risk for RLS increases for
ascending quartiles (Supplementary Table 7 and Supplementary
Fig. 8). RLS-PRS was used to identify traits associated with the
score in the UK Biobank. Our analysis showed that higher RLS-
PRS burden is negatively associated with educational attainment
(P= 2.7 × 10−25, regression coefficient (β, continuous trait)=
−0.02, standard error (SE): 0.002) and cognitive performance
(P= 4.4 × 10−07, β=−0.01, SE: 0.002) and age at first time giving
birth (P= 5.9 × 10−16, β=−0.02, SE: 0.003). The-PRS
score furthermore associates positively with neuroticisms (P=
8.0 × 10−23, β= 0.01, SE: 0.002), as well as fat percentage in legs

(P= 1.4 × 10−10, β= 0.01, SE: 0.002), and in the whole body (P=
4.7 × 10−07, β= 0.008, SE: 0.002) (Supplementary Tables 8 and 9).
Results from LD score regression30 and PRS-association analysis
are in keeping (Supplementary Tables 10 and 11). The gene-set
enrichment/pathway analysis using MAGMA31 on a molecular
signature database32 recourse did not reveal any significant
associations after correction for multiple testing (Supplementary
Table 12).

Discussion
Several sequence variants have been shown to associate with RLS,
although causal variants at the associated loci and their functional
relevance remains largely unknown. In a previous meta-analysis
of RLS, 20 sequence variants at 19 loci were associated with RLS6.
Here, we confirm associations with 19 of the 20 variants and
report three novel associations bringing the number of RLS-
associated variants to 23 at 22 loci. The three novel variants are
rs112716420-G, rs10068599-T, and rs10769894-A.

The known protein-coding genes closest to rs112716420-G on
chromosome 7 are MICALL2 and UNCX. Variants in these genes
are associated with red blood cell count and volume (i.e., hema-
tocrit values), hemoglobin concentration and glomerular filtra-
tion rate33–35. rs112716420-G, however, does not associate
significantly with these phenotypes in our samples. Hence, it does
not appear that rs112716420-G impacts iron homeostasis, which
is thought to be involved in the pathogenesis of RLS11. It is
known that peripheral iron deficiency affects brain iron avail-
ability, although the specific mechanisms explaining how iron
moves between the periphery and the nervous system remain
unclear9. Moreover, the homeobox comprising transcription
factor Uncx4.1 has been found to be expressed in glutamatergic,
GABAergic and dopaminergic neurons in the mouse midbrain36.

rs10068599-T is in an intron of RANBP17 (Ran-binding protein
17) on chromosome 5, which is a protein-coding gene of the
exportin family. The cis-gene expression analysis showed that the
rs10068599-T lowers the expression of RANBP17 mainly in the
basal ganglia and in the cerebral cortex. Previous studies have
found that variants in RANBP17 are associated with visceral fat37,
body mass index (BMI)38, high-density lipoprotein (HDL) cho-
lesterol39, smoking status40 and alcohol consumption41.

The closest protein-coding gene to rs10769894-A on chro-
mosome 11 is LMO1. This gene encodes the protein rhombotin-1,
which is normally expressed in neural lineage cells42,43. Variants
in LMO1 have been associated with BMI44 and neuroblastoma
and T-cell leukemia45,46, which is of interest since the strongest
genetic predictor for RLS is a variant inMEIS1 that affects cancers
such as leukemia and neuroblastoma47–49.

By integrating association statistics with gene expression data,
we identified potential causal variants and genes affected at four
of the 22 loci. As mentioned, the variant rs10068599-T lowers the
expression of RANBP17 in brain subcortical regions. rs3784709-T
lowers the expression of SKOR1 in pituitary, pancreas and
mammary tissues. MEIS1 is considered an upstream activator of
SKOR150, while rs12450895-A lowers the expression of HOXB2 in
adipose tissue and skin. Finally, we found that rs10653756-
CACAG affects the expression of CASC16 in testis. Hence, these
variants may exert their causal effects through their impact on
gene expression.

Our analysis showed that RLS-PRS, the aggregated genetic
predisposition for RLS, correlates negatively with years of edu-
cation and performance on cognitive tests but positively with
neuroticism score. The RLS-PRS also correlates negatively with
age at first birth and positively with several anthropometric
measures, including whole body fat, percentage fat in trunk, legs
and arms and waist-to-hip ratio. These findings extend prior
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epidemiological studies3 and both confirm and extend those of
Schormair et al.6 who searched for diseases and other traits
associating with RLS-PRS. RLS has consistently been associated
with modifiable lifestyles broadly considered to be unhealthy. In a
prospective cohort study including 55,540 US adults, for example,
RLS prevalence was lower among individuals who had a normal
body weight, who were physically active, who were non-smokers,
and who had an alcohol intake below the medium amount13.

RLS is a complex polygenic sensorimotor disorder strongly
influenced by lifestyle. This study increases the number of known
independent RLS-associated genes to 23 in 22 loci, and cis-eQTL
highlights genes at four of the loci giving more insights into RLS
etiology. Future studies investigating the effect of drugs targeting
the implicated physiological pathways and behavioral lifestyle
changes on RLS as a therapeutic regime may provide valuable
knowledge on the pathophysiology and the most prudent treat-
ment modalities for RLS.

Methods
RLS status in the discovery samples. The GWAS meta-analysis included 480,982
(10,257 cases and 470,725 controls) adults of European ancestry. Mean ages in
included cohorts: Iceland 47.2 (SD, 14.06); Demark, 41.1 (SD, 12.3); the UK
(Interval), 43.3 (SD, 14.1); the UK Biobank 60.0 (SD, 8.70); the Netherlands, 45.0
(14.0); and the US 56.5 (SD, 16.6). In total the analysis comprised 14,084 subjects
from deCODE Genetics (Iceland) (2636 cases and 11,448 screened controls)51,
26,565 subjects from The Danish Blood Donor Study (DBDS) (Denmark) (1379
cases)52,53, 27,988 subjects from the INTERVAL study (UK) (3065 cases)54,
408,565 subjects from the UK Biobank (UK) (1916 cases)55, 2363 subjects from the
Donor InSight-III cohort (The Netherlands) (565 cases)56 and 1417 subjects from
the Department of Neurology and Program in Sleep at Emory University (Emory
cohort) (US) (696 cases) (Fig. 3).

We used clinical diagnosis or questionnaire data to assess RLS status in the
participants, either applying questions based on the International RLS Study Group
(IRLSSG) diagnostic criteria for RLS57,58 or the Cambridge-Hopkins RLS
questionnaire (CH-RLSq), which is also based on these criteria. Definite and
probable RLS cases were combined into one group59,60 (questionnaires are
displayed in “Questionnaires used to assess RLS” on page 4 in Supplementary
material). For subjects in the UK Biobank, the clinical diagnostic code ICD10:
G25.8 was used to inform affectation status, whereas for the Emory cohort, gold
standard diagnosis derived from face-to-face clinical evaluations by RLS specialists
was used and the controls were determined for those lacking symptoms and signs
associated with RLS.

Discovery meta-analysis. In total, we tested 15,838,848 sequence variants (1000
Genome phase 3 panel markers) for association with RLS (For a more detailed
description of the included cohorts, see section “Cohorts included in the discovery
meta-analysis” on page 2 in Supplementary material and section “Genotyping,
imputation, and association analysis of cohorts included in the discovery meta-
analysis” on page 7 for a detailed description of the methods). The GWAS results
from the six cohorts (Iceland, Denmark, UK INTERVAL, UK Biobank, US Emory,
and the Netherlands) were combined using a fixed effect inverse variance model61

allowing different allele frequencies (of genotypes) in each populations, i.e., based
on the effect estimates and standard error. Moreover, to control for a heterogenetic
effect of the markers tested in the populations, we used a likelihood ratio test
(Cochran’s Q) and so evaluated their test statistics.

Before conducting the meta-analysis, variants in each dataset were mapped to
NCBI Genome reference Consortium Build 38 (GRCh38) positions and matched to
the Icelandic variants based on position and alleles. We included variants that were
properly imputed in all datasets and which have a minor allele frequency >0.1% in
more than one cohort. For the suggestive associations we used conventional
genome-wide P-value threshold of P < 5 × 10−08 to find lead associations and to
test those for replication. To claim a novel genome-wide association the sequence
variants used in the meta-analysis (N= 15,838,848) were split into five classes
based on their genome annotation and the weighted significance threshold for each
class was used28 (for QQ-plot see Supplementary Fig. 9, and for principal
component analysis plots see Supplementary Figs. 10 and 11).

Replication of novel variants. Novel variants identified in the discovery phase of
our study were tested for association in two replication datasets consisting of
subjects of European ancestry, the EU-RLS-GENE consortium6 (6228 cases and
10,992 controls) and the RBC-Omics cohort (423 cases and 7334 controls)62. In
both replication tests, analyses were adjusted for age, sex, and the first 10 principal
components of ancestry in a logistic regression model (For a more detailed
description of the included cohorts, see section “Cohorts used for follow-up/
replication analysis” on page 6 in Supplementary material) (Fig. 3). For the sug-
gestive associations we used conventional genome-wide threshold (P < 5 × 10−08)
to find lead associations, which were tested for replication. To claim a novel
genome-wide association the sequence variants used in the meta-analysis (n=
15,838,848) were split into five classes based on their genome annotation, and the
weighted significance threshold for each class was used28.

Gene expression. We assessed cis-eQTL effects of the variants associated with
RLS. RNA sequencing data from 54 human tissues was obtained from the
Genotype-Tissue Expression (GTEx) portal63. We tested all genes in a one Mb
window centered on the 23 variants. In total 15,153 tests were performed, and
Bonferroni threshold was applied to the P-value. Therefore, P < 0.05/15,153=
3.3 × 10−06 was considered statistically significant.

Genetic risk. To assess the impact conferred by the confluence of common RLS
variants we calculated a RLS-PRS for each of the 500,000 UK Biobank subjects. The
RLS-PRSs were calculated using summary statistics from a subset of the RLS-
GWAS meta-analysis (UK participants from the INTERVAL and the UK Biobank
excluded). Briefly, to generate the RLS-PRS for the UK Biobank sample we used
630,000 informative SNPs across the genome and constructed locus allele-specific
weightings by applying LDpred to the summary data from the subset meta-analysis
GWAS64. Constructing individual weightings, we were able to calculate an
aggregated score of genetic susceptibility for RLS in all included individuals.

Fig. 2 Cis-co-localization of RLS variants using 54 GTEx tissues.
Displaying eQTL variants. We found cis-eQTL data for 11 of the 23 RLS
variants impacting 17 genes. Figure 2 displays the four variants that are
significantly associated with cis-gene expression at least in one tissue
tested are in linkage disequilibrium (LD) (r2 > 0.30) and share the same
causal signal (as confirmed through approximate conditional analysis) with
the top eQTL variant of the respective genes (results for the remaining
variants are displayed in Supplementary Fig. 6). Cis-eQTL effect estimates
(normalized) are provided and those sharing same causal signal (COJO
conditional analysis, results from this are displayed in Supplementary
Table 5) with eQTL and are Bonferroni significant (P < 3.3 × 10−06) are
labeled with an asterisk.
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Subsequently, we assessed the impact of RLS-PRS on 12,075 traits (binary and
quantitative) resulting in a Bonferroni significant threshold of P < 0.05/12,075=
4.14 × 10−06.

URLs. GTEx, https://www.gtexportal.org/. The Genotype-Tissue Expression
(GTEx).

COJO, https://cnsgenomics.com/software/gcta/#Overview.
SHAPEIT, https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.

html.
PLINK2, https://www.cog-genomics.org/plink/2.0/
IMPUTE 2, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#download

Ethics. All sample identifiers were encrypted in accordance with the regulations
of the Icelandic Data Protection Authority and written informed consent was
collected from all study participants. The deCODE dataset was approved by the
National Bioethics Committee of Iceland. The DBDS dataset was approved by
The Scientific Ethical Committee of Central Denmark (M-20090237) and by the
Danish Data Protection agency (30-0444). GWAS studies in DBDS were
approved by the National Ethical Committee (NVK-1700407). The INTERVAL
dataset was approved by the National Research Ethics Service Committee East of
England - Cambridge East (Research Ethics Committee (REC: 11/EE/0538). The
Emory dataset was approved by an institutional review board at Emory Uni-
versity, Atlanta, Georgia, US (HIC ID 133-98). The Donor InSight-III dataset
was approved by the Medical Ethical Committee of the Academic Medical
Center (AMC) in the Netherlands, and Sanquin’s Ethical Advisory Board
approved DIS-III and all participants gave their written informed consent. UK
Biobank is approved by the North West Multi-center Research Ethics Com-
mittee, and by the Patient Information advisory Group, the National Informa-
tion Governance Board for Health and Social Care, and from the Community
Health Index Advisory Group. UK Biobank also holds a Human Tissue
Authority license65.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used in the present study is whole blood samples that have been genotyped. For this
study, summary statistics from different RLS-GWAS’s were collected and combined in a
meta-analysis. The RLS meta-analysis summary statistics will be made available at https://
www.decode.com/summarydata/. Data is available upon request. For access to data
included in the meta-analysis, please contact the authors in charge of the respective
cohorts. Henrik Ullum for data from the Danish Blood Donor Study (henrik.
ullum@regionh.dk), Hreinn Stefansson for data from the Icelandic cohort (hreinn.
stefansson@decode.is), David B. Rye for data from the Emory cohort (rlsrye@gmail.com),
Emanuele Di Angelantonio for the INTERVAL cohort (ed303@medschl.cam.ac.uk), and
Katja Van Den Hurk for data from the Donor Insight-III (k.vandenhurk@sanquin.nl). For
UK Biobank please register on https://bbams.ndph.ox.ac.uk/ams/ and apply for the data
through there.

Code availability
Statistical codes are available upon request from corresponding author. No custom codes
were used.
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