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Abstract 

Background:  Access as a primary indicator of Emergency Medical Service (EMS) efficiency has been widely studied 
over the last few decades. Most previous studies considered one-way trips, either getting ambulances to patients 
or transporting patients to hospitals. This research assesses spatiotemporal access to EMS at the shequ (the smallest 
administrative unit) level in Wuhan, China, attempting to fill a gap in literature by considering and comparing both 
trips in the evaluation of EMS access.

Methods:  Two spatiotemporal access measures are adopted here: the proximity-based travel time obtained from 
online map services and the enhanced two-step floating catchment area (E-2SFCA) which is a gravity-based model. 
First, the travel time is calculated for the two trips involved in one EMS journey: one is from the nearest EMS station 
to the scene (i.e. scene time interval (STI)) and the other is from the scene to the nearest hospital (i.e. transport time 
interval (TTI)). Then, the predicted travel time is incorporated into the E-2SFCA model to calculate the access measure 
considering the availability of the service provider as well as the population in need. For both access measures, the 
calculation is implemented for peak hours and off-peak hours.

Results:  Both methods showed a marked decrease in EMS access during peak traffic hours, and differences in spatial 
patterns of ambulance and hospital access. About 73.9% of shequs can receive an ambulance or get to the near-
est hospital within 10 min during off-peak periods, and this proportion decreases to about 45.5% for peak periods. 
Most shequs with good ambulance access but poor hospital access are in the south of the study area. In general, the 
central areas have better ambulance, hospital and overall access than peripheral areas, particularly during off-peak 
periods.

Conclusions:  In addition to the impact of peak traffic periods on EMS access, we found that good ambulance access 
does not necessarily guarantee good hospital access nor the overall access, and vice versa.
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Background
Emergency Medical Services (EMS) provide medical care 
to patients with serious illnesses or injuries that require 
rapid response, offering prehospital medical treatment 

and transferring them to hospital. In addition to respond-
ing to medical emergencies, EMS plays a critical role in 
the rescue activities involved in all kinds of accidents 
and disasters, protecting people’s health and safety [25]. 
An accessible EMS system is crucial to high service 
quality and favourable health outcomes [2, 15, 21, 24]. 
Understanding access to EMS can help healthcare plan-
ners to improve health resource deployment and service 
efficiency.
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Access to health services is a multi-dimensional con-
cept, which has been extensively studied by scholars 
from a range of disciplines including public policy, geog-
raphy and sociology [6, 13, 18, 32]. From the utilization 
perspective, access can be differentiated between poten-
tial and revealed access [18], where the former refers to 
the chance of using health services and the latter repre-
sents the actual utilization of health services, that is, the 
achievement of potential access. From a spatial perspec-
tive, geographic access often refers to the travel imped-
ance (e.g. travel distance or travel time) between health 
facilities (e.g. hospitals or clinics) and patients [18]. The 
non-spatial perspective primarily concerns about fac-
tors like demographic characteristics, socioeconomic 
status and health insurance schemes that could affect the 
easiness of healthcare acquisition [9]. Of interest in this 
research is the potential geographic access to EMS and 
its variation over space.

Numerous measures of potential geographic access to 
healthcare have been developed over the last few dec-
ades, which can be categorized as provider-to-population 
ratios, distance-based measures, and gravity-based mod-
els [4, 12, 16, 32]. Provider-to-population ratios are often 
calculated using data aggregated at certain spatial scales 
such as administrative units or catchment area of health 
facilities. Common distance-based measures include 
travel distance and time, where the former is often rep-
resented by Euclidean or road network distance between 
a patient residence and the nearest healthcare provider, 
and the latter is the time required to complete the jour-
ney for seeking healthcare by certain transport modes 
like walking or driving. Gravity-based models incorpo-
rate the above two methods and account for the inter-
actions between health services and potential demand, 
which generally follows a distance-decay effect. Since the 
pioneering work by Joseph and Bantock [18], two most 
well-known and established gravity-based models are the 
two-step floating catchment area (2SFCA) [23] and one 
of its extensions, namely enhanced 2SFCA (E-2SFCA) 
[22]. All three aforementioned types of methods have 
been widely adopted to measure healthcare access in a 
variety of contexts (e.g. [5, 7, 17, 38]).

With respect to EMS, the response time obviously is 
critical and can greatly affect the chance of survival. Fur-
thermore, EMS involves two related trips (Fig. 1): the first 
from the EMS station to the scene (hereafter referred to 
as trip 1) and the second from the scene to the care facil-
ity, hospital or trauma center (hereafter referred to as 
trip 2). Trip 1 plays a vital role in saving lives and trip 2 
is equally important. Ambulances can only provide basic 
medical assistance, and patients often need further treat-
ment. For a complete EMS journey, the response time 
generally consists of scene time interval (STI), patient 

access time interval (PATI), on-scene time interval 
(OSTI), and transport time interval (TTI) [28]. STI and 
TTI are directly associated with the travel impedance 
for trip 1 and trip2, respectively, as shown in Fig. 1. PATI 
is the time interval between vehicle arrival at scene and 
hands on patient, and OSTI is the time interval between 
arrival at patient and beginning moving patient. Similar 
to STI and TTI, PATI and OSTI are known to signifi-
cantly impact health outcomes [10, 11, 19, 26]. The total 
travel time for trip 1 and trip 2, represented by the sum 
of SIT and TTI, is clearly related to geographic proxim-
ity (both of ambulance to patient and then patient to hos-
pital), but will also depend on the road quality, real-time 
traffic and weather conditions among other factors.

One limitation in the studies on EMS access is that 
the travel time involved in distance and gravity-based 
approaches is often estimated by assuming a constant 
travel speed for particular land-use types (e.g. [8]), road 
classes (e.g. [5]) and transportation modes (e.g. [20]), 
or by using transportation simulation models (e.g. [17]) 
that fail to capture the variations in travel time resulting 
from real traffic conditions which undoubtedly is cru-
cial to EMS. Whilst distance is constant, the time taken 
to cover it is clearly and heavily influenced by traffic 
levels and speed which have extreme diurnal variation. 
Although some countries have a culture whereby traffic 
gives way to an ambulance, not all do. This is a particu-
lar problem in China where there are regular incidents 
in which ambulances are not allowed to pass through 
traffic by other drivers. Nowadays, travel time can be 
readily predicted through online map services such as 
Google Maps (https​://www.googl​e.com/maps) and many 
mobile applications such as TripAdvisor and TripIt pro-
vide travel planning services. Recently, such services and 
applications have been increasingly employed in meas-
uring healthcare access [30, 33], which may offer more 
accurate travel time estimation based on real-time traffic. 
Attracted by these features, we adopt online map services 
in this research to estimate the travel time involved in the 
spatiotemporal access to EMS.

Another limitation of existing healthcare access meas-
ure is that in general, only one-way trips–from the home 
to the health facility–are considered. Although this is 
usually the case for general healthcare-seeking behaviour, 
it is not applicable to EMS, which involves the two related 

Fig. 1  Common procedure of EMS
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trips (Fig. 1). The hospital or care facility may not be at 
the same location as the EMS station is. EMS teams also 
regularly bypass local hospitals to transfer the patient to 
the facility that is most adapted to their condition (angio-
plasty, trauma center, stroke unit, etc.). Some patients 
might be reached easily and quickly by an ambulance but 
have a long journey to the care locations, or vice versa. 
Existing EMS access measures generally consider either 
trip 1 (e.g. [17]) or trip 2 (e.g. [36]). Although Vander-
schuren and McKune [31] considered both trips in meas-
uring access of road fatalities to emergency care facilities, 
they employed static road network with speed limits. 
Given the importance of both trips to survival rates, one 
objective of this research is to fill a gap in literature by 
considering and comparing both trips (i.e. STI and TTI) 
in the evaluation of EMS access with online map services. 
Like any other health services, access to EMS is also sub-
ject to the availability of resources like ambulances and 
medical staff as well as population in need. In addition, 
the hospital capacity is critical as well from the planning 
perspective, which can affect EMS access particularly 
in the outbreak of major accidents, hazards (e.g. earth-
quakes) or pandemics like COVID-19. Therefore, the 
other objective of this research is to combine online map 
services and E-2SFCA to evaluate spatiotemporal access 
to EMS.

This study assesses spatiotemporal access to EMS in 
Wuhan, China. Specifically, the aim of this research is 
threefold: to measure spatiotemporal access to EMS (1) 
based on predicted travel time with online map services; 
(2) based on E-2SFCA accounting for the interaction 
of healthcare demand and provider; (3) to compare the 
EMS access between trip 1, trip 2 and both trips. Wuhan 
is the largest city as well as the hub of economy, logis-
tics, culture, education, transportation and commerce 
in Central China. It was the epicenter of COVID-19 in 
late 2019 and early 2020. In this difficult period, EMS 
played a significant role by responding to emergency calls 
and transporting patients for timely treatment. Under-
standing access to EMS can help identify the areas that 
underserved and thereby inform policy makers regarding 
healthcare planning and resource allocation.

Methods
Study area and data
The study area is Wuhan, the capital city of Hubei Prov-
ince and the largest city in Central China. It is located 
on the intersection of the Yangtze River and the Han 
River, covering an area of 8,569.2 km2 with a population 
11.2 million by the end of 2019 [35]. Wuhan nowadays is 
the central city of the urban agglomeration in the mid-
dle reaches of the Yangtze River and is one of the nine 
National Central Cities of China, leading the rise of 

Central China [29]. In recent years, Wuhan has attracted 
urban and rural migrants from across the country given 
its rapid urban development and economic achieve-
ments, which has raised the demand for public services 
such as healthcare, housing and transportation.

Wuhan includes 13 urban districts: 7 in the central 
urban area and 6 in the suburban and rural area. The 
targets for the EMS response time are different for the 
central urban districts and the suburbs: 10 and 15  min, 
respectively [34]. Considering that traffic congestions, 
which can greatly affect the travel time of ambulances [1], 
are more likely occur in the city center, we restricted our 
analysis to the seven central urban districts. Residences 
are adopted here to represent the scenes (i.e. patient ori-
gins), which is a common option in assessing potential 
spatial access to EMS in the lack of real EMS run data 
[2, 17, 33]. The data used in this research consist of 1,172 
local communities (often called Shequ in China), 41 EMS 
stations and 53 definitive care facilities (equivalent to 
hospitals in Wuhan). Shequ is the smallest administra-
tive unit in China that covers a certain geographic area 
where people have close social interaction; it is also the 
finest spatial scale at which the census population data 
are available. In our dataset, the average population per 
shequ is 5490. No readily available dataset described 
the number of ambulances based at each EMS station in 
Wuhan. We therefore assume that all EMS stations have 
the same number of ambulances (usually two to three). 
Hospitals in China are grouped into three categories: 
Grade I, II or III. Grade III hospitals have the highest 
medical capacity. In our study, only Grade II and Grade 
III hospitals are included, as they are the main definitive 
care facilities in China. The population of each shequ 
represents the demand, and EMS stations and hospitals 
are the service providers.

All data used are from open sources and freely avail-
able from the data providers. The location information 
was obtained from Baidu Map (https​://map.baidu​.com/), 
which is the largest online map service provider in China. 
There are 17 locations that contains both an EMS sta-
tion and a hospital. Thus, there are total 77 unique loca-
tions of EMS stations or hospitals. The populations of the 
shequ and hospital attribute data were derived from the 
Geographical Information Monitoring Could Platform 
(http://www.dsac.cn/), which is the most used online 
resource for geographic, natural resource, environmental, 
climate and socioeconomic data in China.

Figure  2 shows the population density of each shequ 
across the study area grouped by quartile classification. 
About 30% of shequ have density of less than 10 people/
km2, and such shequ are predominantly located in the 
periphery of the study area. About 30% of Shequ have a 
population density higher than 43 people/km2, and they 

https://map.baidu.com/
http://www.dsac.cn/


Page 4 of 14Luo et al. Int J Health Geogr           (2020) 19:52 

are mainly concentrated in the central part of the study 
area on both sides of the Yangtze River. In general, all the 
districts to the west of the Yangtze River, except Han-
yang, are densely populated whereas to the east of the 
river, only Wuchang has a relatively higher population 
density. In particular, Jianghan has the highest popula-
tion density while Hongshan has the lowest. Figure 2 also 
shows the locations of the EMS stations and hospitals, 
which are mainly situated in areas with high population 
density.

Measuring Spatiotemporal Access to EMS
Due to the lack of real EMS run data, the potential EMS 
access considered in this research will focus on SIT of 
trip 1 and TTI of trip 2, which are commonly employed 
in the estimation of potential EMS access [17, 36]. Two 
spatiotemporal access measures are adopted here: one 
is the proximity-based travel time obtained from online 
map services, and the other is the gravity-based model 
E-2SFCA. The analysis framework is presented in Fig. 3. 
First, travel time is estimated for the two trips involved in 
one EMS journey: the first trip is from the nearest EMS 

station to the scene assuming an ambulance is always 
available at the nearest station (i.e. STI), and the other 
is from the scene to the nearest hospital that provides 
definitive care (i.e. TTI), where the scene is represented 
by the centroid of each Shequ. Then, STI and TTI are 
incorporated into the E-2SFCA model to calculate the 
access measure considering the availability of the ser-
vice provider as well as the population in need. For both 
access measures, the calculation is implemented for peak 
hours and off-peak hours. We considered two peak time 
windows (7:40–8:00 and 18:00–18:20) and three off-peak 
time windows (10:00–10:20, 15:00–15:20 and 21:00–
21:20) in this study based on the peak/off-peak periods 
specified by Wuhan Traffic Management Bureau.

The travel time was calculated using the Baidu Map 
online service, which has the most updated road network 
in China and accounts for real traffic flows. Specifically, 
Java scripts were developed to call Baidu Map’s Appli-
cation Programming Interface (API) through the open 
platform of Baidu Map for route planning (https​://lbsyu​
n.baidu​.com/produ​cts/produ​cts/direc​tion). Consider-
ing that the impact of traffic congestion occurs mainly 

Fig. 2  Study area and population density in central urban districts in Wuhan
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during weekdays, we calculated travel time for the five 
days (Monday to Friday) between September 23–27, 
2019, when the weather in Wuhan was good and there 
were no big events that would affect traffic. As a result, 
there are total 58,600 trips (two trips for each Shequ on 
every weekday at each period) are analysed in this study.

The 2SFCA consists of two steps. The first step is to cal-
culate the provider-to-population or supply-to-demand 
ratio within a certain travel time of each health facility 
(i.e. EMS station or hospital). The second step is to sum 
up the provider-to-populations ratios of all the health 
facilities within the pre-defined travel distance/time of 
each population location, which is therefore a popula-
tion-based access measure. The E-2SFCA [22] adapts 
the 2SFCA by dividing the overall travel into several 
time zones, each with an associated weight that follows 
a distance-decay effect. The E-2SFCA is employed here 
because EMS often has a required minimum response 
time, such as 10 or 15  min, which can be utilized to 
define different time zones.

Using the following notation:
i, j, k: the index of EMS stations, hospitals and scenes 

(population locations), respectively;
Ei , Hj : the supply capacity at the i th EMS station and 

the j th hospital, respectively;
Pk : the population at location k;
tik , tjk : the travel time from the i th EMS station to the 

k th population location, and from the k th population 
location to the j th hospital, respectively;
r , Tr , wr : the index of travel time zones, the r th time 

zone and its associated weight, respectively.
The definition of E-2SFCA in the context of this 

research can be formulated as in (1, 2, 3):

Therefore, the provider-to-population ratio for the i th 
EMS station and the j th hospital, denoted by Ri and Rj , 
respectively, are calculated first. Then, the access meas-
ure of the k th population location in relation to EMS sta-
tions and hospitals, denoted by AE

k  and AH
k  , respectively, 

are derived by summing up the corresponding weighted 
Ri and Rj . Finally, the overall access Ak is defined as the 
sum of AE

i  and AH
i  , with higher values indicating better 

access.
Regarding the values of the parameters in (1, 2, 3), all 

the EMS stations are assumed to have the same number 
of ambulances due to the lack of data. That is, Ei = 2 for 
all i . Hj is defined as the number of inpatient beds in each 
hospital, ranging from 50 to 3300. As two EMS response 
times are adopted in Wuhan: 10 min for the central urban 
districts and 15 min for the suburbs, three time zones are 
adopted in this research. That is, r ∈ {1, 2, 3} . The value of 
wr is then determined based on those three time zones. 
Specifically, if tik or tjk is less than 10  min, wr = 1 ; if tik 
or tjk exceeds 10 min but is less than 15 min, the value of 
wr decays with the increase of tik or tjk , and is calculated 
using the Gaussian function that is commonly applied in 
healthcare access studies (see [7],if tik or tjk is more than 
15 min, wr = 0 . Finally, considering the different scales of 
Ei and Hj values used here, AE

k  and AH
k  are standardized 

(1)

Ri =
Ei∑

r

∑
k∈(tik∈Tr )

Pkwr
Rj =

Hj∑
r

∑
k∈(tjk∈Tr )

Pkwr

(2)

AE
k =

∑
r

∑
i∈(tik∈Tr )

Riwr AH
k =

∑
r

∑
j∈(tjk∈Tr )

Rjwr

(3)Ak = AE
k + AH

k

Fig. 3  Analysis Framework of Spatiotemporal Access to EMS
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using Eq. (4) before being applied to Eq. (3) to obtain Ak . 
In Eq. (4), v represents AE

k  or AH
k  , and v′ is the standard-

ized value. Thus, the values of both AE
k  and AH

k  have a 
range of 0 to 1, which are relative measures represent-
ing the ‘relative access’ in comparison with the mini-
mum (i.e. poorest access) and the maximum scores (i.e. 
best access). Specifically, a Shequ has the poorest access 
within the study area if it has a score 0, the best access 
if it has a score 1. For the Shequs with a score between 0 
and 1, higher values indicate relatively better access.

Results
Travel time‑based spatiotemporal access to EMS
For each time period of the day, travel times on the five 
weekdays were averaged for each shequ. Figure 4 shows 
the distribution of the predicted travel time for the three 
trips: trip 1 (EMS station Scene), trip 2(Scene Hospital) 
and total trip (EMS station Scene Hospital). Figure  4 
shows that the distributions of STI and TTI for the two 
peak hour periods (i.e. 7:40–8:00 and 18:00–18:20) are 
very similar and are clearly different from those for the 
three off-peak periods. The peak hour travel times have 
higher mean and median values as well as larger inter-
quartile ranges. According to the median travel time 
shown in Fig. 4a, b, over 50% of shequs can be reached 
by an ambulance from the nearest EMS stations within 
10 min, and again a patient can be transported from his/
her shequ to the nearest hospital within 9 min. On aver-
age, it takes longer for the nearest ambulance to get to a 
shequ than to travel to the nearest hospital from a shequ 
during all but evening peak periods. Figure 4c indicates 
that the total journey takes nor more than 18  min for 
more than half of the shequs.

During peak periods, for over 75% of shequs, it takes 
less than 14  min to get an ambulance and less than 
13 min to get to the nearest hospital, and the total jour-
ney takes less than 25  min. For trip 1 (Fig.  4a) and the 
total trip (Fig. 4c), the average travel time during morning 
peak hours is longer than that in the evening peak hours, 
while the opposite is true for trip 2 (Fig. 4b). During off-
peak periods, over 75% of shequs can be reached by the 
nearest ambulance within 10  min, which can get to the 
nearest hospital within another 10  min, with total trip 
taking less than 19 min.

It is not surprising that the travel time is longer during 
peak periods than that in off-peak periods for the same 
journey. For example, on average, it takes 11.0  min and 
10.6 min from the nearest EMS station to a shequ during 
the morning and evening rush hours, respectively, but it 
only takes about 7.3–8.8 min for the same journey during 

(4)v
′

= (v − vmin)/(vmax − vmin)

off-peak periods, as shown in Fig. 4a. Figure 4c indicates 
that the average travel time for total trip during peak peri-
ods is nearly 21 min but 3–6 min less in off-peak periods. 
Among all time periods of the day, the evening off-peak 
hours (21:00–21:20) have the least travel time for all three 
trips. It also should be noted that for some shequs, it can 
take much longer than the average travel time to receive 
an ambulance or get to the nearest hospital. For example, 
it can take up to 53 min for an ambulance to arrive at a 
shequ (Fig. 4a) or get to the nearest hospital from a shequ 

Fig. 4  Boxplots of predicted travel time for different times of the day: 
a trip 1 (EMS station → Scene); b trip 2 (Scene → Hospital); c total 
trip (EMS station → Scene → Hospital)



Page 7 of 14Luo et al. Int J Health Geogr           (2020) 19:52 	

in the morning peak hours (Fig. 4b). Even in the evening 
off-peak hours, it can take up to 80 min for a complete 
trip (Fig. 4c).

The travel times in the three off-peak periods were 
further averaged for each shequ. The spatial variations 
of the average travel times for the three time periods of 
the day (i.e., off-peak, morning peak and evening peak) 
are depicted by Fig. 5. Most shequs with good ambulance 
and hospital access (i.e. STI or TTI ≤ 10 min) as well as 

overall access (i.e. STI + TTI ≤ 20 min) are concentrated 
in the central part of the study area. In particular, Lianhe 
shequ in Jiang’an district has the best ambulance access 
and overall access, and Hongwei shequ in Qingshan dis-
trict has the best hospital access. In contrast, most shequs 
with relatively poorer access (i.e. STI or TTI > 15 min or 
STI + TTI > 30  min) are located in the periphery of the 
study area. Particularly, the three shequs in Hongshan 
district, Kuailing, Yangling and Xiejia, have the poorest 

Fig. 5  Average travel time for single and total trips at different times of the day (Off-peak periods: a ambulance access, b hospital access, c overall 
access; Morning peak periods: d ambulance access, e hospital access, f overall access; Evening peak periods: g ambulance access, h hospital access, 
i overall access)
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ambulance, hospital and overall access, respectively. Also, 
fewer Shequs can receive an ambulance or get to the 
nearest hospital within 10 min (Fig. 5d, e, g, h) or com-
plete the total trip within 20 min (Fig. 5f, i) during peak 
periods compared with the off-peak period (Fig.   5a–c). 
For the same Shequ, STI and TTI can be different. For 
example, some shequs in Hongshan district that are close 
to the only EMS station in the southwest of the study 
area (see Fig. 2) can get an ambulance within 10 min dur-
ing all times of the day (Fig. 5a, d, g), but it takes more 
than 15 min from the same shequ to the nearest hospital 
(Fig. 5b, e, h).

Table  1 summarizes the percent of shequs in each 
travel time group during peak and off-peak periods. Sim-
ilar to Fig. 5, Table 1 suggests that traffic congestion dur-
ing peak hours has a marked impact on the travel time. 
For example, most shequs (about 73.9%) can receive an 
ambulance or get to the nearest hospital within 10  min 
during off-peak periods. This proportion decreases to 
45.5% and 45.9% for the two peak periods. Only 8.3% 
of the shequs need to wait more than 15  min to get an 
ambulance or carry a patient to the nearest hospital dur-
ing off-peak periods, but the proportion increases to 
12.2% and 11.5% during the morning and evening peak 
periods, respectively.

Figure  6 highlights the shequs (in grey) within differ-
ent travel time groups for STI and TTI. Specifically, the 
highlighted shequs have STI less than or equal to 15 min 
and TTI larger than 15 min, and vice versa. Figure 6a–c 
indicate that most shequs, which can be reached by an 
ambulance within 15 min but are more than 15 min away 
from the nearest hospital, are largely in the northern and 
southern periphery of the study area. Comparatively, 
most shequs, for which it takes more than 15 min for the 
nearest ambulance to arrive but no more than 15 min to 
get to the nearest hospital, are closer to the central areas, 
with a few scattered in the northern and western periph-
ery of the study area (see Fig. 6d–f). Also can be observed 
is that the number of highlighted shequs increases if the 
trips occur during peak periods. In the case where only 
STI is within 15 min (Fig. 6a–c), the shequs affected by 

peak periods are mainly located in Jiang’an, Hangyang, 
Qingshan and Hongshan districts. In comparison, there 
are more affected shequs when only TTI is within 15 min 
(Fig. 6d–f), and there are primarily located in Hangyang, 
Jianghan and Hongshan districts.

E‑2SFCA‑based spatiotemporal access to EMS
The variations of standardized E-2SFCA access scores for 
different times of the day are presented in Fig. 7. Given 
the range of values (i.e. 0–1), most of the scores are rela-
tively low, with over 75% of shequs having a value lower 
than 0.4 for single trip and 0.8 for the total trip. Most 
average scores for the different periods are less than 0.2 
for a single trip and 0.4 for the total trip. Among the 
five periods, the evening off-peak period seems to gen-
erate the highest score, indicating the best access. Simi-
lar to the travel time in Fig. 5, there are clear differences 
between the results of the peak and off-peak periods. For 
example, over 75% of shequs have a score lower than 0.2 
for both trip 1 and trip 2 during peak periods, while this 
proportion reduces to below 50% for off-peak periods. 
Comparing the two peak periods, access in the morning 
peak hours seems better than that in the evening peak 
hours for trip 2 (Fig. 7b) and the total trip (Fig. 7c) but 
worse for trip 1 (Fig.  7a). Also, it can be observed that 
there are more variations (a larger quartile) in the access 
scores for the morning off-peak periods in trip 1 (Fig. 7a) 
than in trip 2 (Fig. 7b).

Figure  8 depicts the spatial variations of the aver-
age E-2SFCA access scores for the single and total trips 
during different times of the day, where the shequs hav-
ing travel time longer than 15 min for both trips are left 
blank (i.e. AE

i  = 0, AH
i  = 0 or Ai = 0). Considering the 

distribution of the E-2SFCA scores in Fig. 7, the E-2SFCA 
scores higher than 0.2 are considered here representing 
“relatively good access” and the classification in Fig. 8 is 
used to clearly describe the spatial variations of E-2SFCA 
based access. Similar to the pattern observed in Fig. 5, the 
central areas have better ambulance, hospital and overall 
access than peripheral areas, particularly during off-peak 
periods. Again, Lianhe shequ in Jiang’an district has the 
highest AE

i  and Ai scores in the off-peak periods, indicat-
ing best ambulance access and overall access. Jianqiao 
shequ in Hongshan district has the best hospital access. 
When comparing access between the off-peak and peak 
periods, it can be seen that the access score for all three 
types of access (ambulance, hospital and overall) in gen-
eral decreases for most of the shequs during peak peri-
ods. In other words, only some shequs along the Yangtze 
River and a few in Qingshan and Hongshan have con-
sistently good access (i.e. AE

i  and AH
i  > 0.2 and Ai > 0.4) 

for a single trip and the total trip during any time of the 
day. The shequs to the east of Yangtze River and within 

Table 1  Proportion of  shequs in  each travel time group 
(off-peak, peak (AM), peak (PM))

Trip 2 travel time

≤ 10 min 10–15 min  > 15 min

Trip 1 travel 
time

≤ 10 min (73.9, 45.5, 
45.9)

(4.3, 6.7, 10.2) (0.3, 0.9, 1.3)

10–15 min (4.4, 15.8, 
14.1)

(5.0, 9.0, 7.8) (1.5, 2.0, 3.1)

 > 15 min (0.8, 3.8, 2.8) (1.5, 4.1, 3.3) (8.3, 12.2, 11.5)
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Wuchang are most affected by the traffic during rush 
hours with evident decrease in access scores.

Figure 9 highlights the shequs that have distinctly dif-
ferent access for the two single trips indicated by the 
E-2SFCA. That is, if a selected shequ in Fig. 9 has rela-
tively good access in trip 1 with a score higher than 0.2 
(see Fig. 7), it has relatively poor access in trip 2 with a 
score 0, and vice versa. Specifically, the five shequs that 
have good ambulance access but poor hospital access 
(i.e. more than 15  min away from the nearest hospi-
tal) are located mainly in the south of Hongshan. In 
particular, Fig. 9c indicates that there is one less shequ 
affected in the evening peak periods compared with 
off-peak (Fig.  9a) and morning peak periods (Fig.  9b). 
The shequs that have good hospital access but cannot 
be reached by an ambulance with 15 min are primarily 
located in the northeast of Qingshan and southeast of 
Hongshan. In this case, more shequs are affected: 14, 21 

and 23 for the off-peak (Fig. 9d), morning (Fig. 9e) and 
evening (Fig. 9f ) peak periods, respectively.

Discussion
The results illustrate the impact of real traffic on EMS 
access and the differences in spatial patterns of ambu-
lance and hospital access. Both methods show a marked 
decrease in EMS access during peak periods. About 
73.9% of shequs can receive an ambulance or get to the 
nearest hospital within 10  min during off-peak periods, 
and this proportion decreases to about 45.5% for peak 
periods. The areas that are close to both sides of Yang-
tze River in the central parts of the study area are most 
affected by traffic. In general, the central areas have bet-
ter ambulance, hospital and overall access than periph-
eral areas, particularly during off-peak periods. Most 
shequs with good ambulance access but poor hospital 
access are in the south of the study area.

Fig. 6  Locations of the Shequ within different travel time groups for STI and TTI (STI ≤ 15 min and TTI > 15 min: a off-peak periods, b morning peak 
periods, c evening peak periods; STI > 15 min and TTI ≤ 15 min: d off-peak periods, e morning peak periods, f evening peak periods)
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The results highlight the importance of incorporating 
real traffic data as well as integrating both related trips 
(i.e. STI and TTI) in measuring access to EMS, which is 
supported by the empirical findings of previous studies 
using real EMS records. For example, the overall spatial 
accessibility of EMS is significantly reduced when traffic 
congestion is considered [17]. Regarding the significance 
of STI in EMS access and associated outcomes, it was 
estimated that the odds of patient survival with out-of-
hospital cardiac arrest could be increased by 24% for a 
1-min reduction of ambulance response time (O’Keeffe 

et  al., 2001). Similarly, the probability of death in road 
accidents could be reduced by one third if the ambulance 
could arrive 10  min earlier [25]. In terms of the impor-
tance of and TTI, stroke victims should be transferred to 
hospitals as soon as possible to receive specialized medi-
cal treatment that is difficult to provide in the ambulance 
[3]. In the UK, historical data indicates that around half of 
the deaths caused by traffic crashes occurred at the scene 
or in the ambulance, that is, prior to receiving advanced 
medical treatment in definitive care locations [14].

In addition to the common findings with respect to 
the impact of peak periods, the two approaches, namely 
travel time and E-2SFCA, also suggest different spatial 
patterns in EMS access. For example, Fig.  5 indicates 
that most areas with better access are in the central parts 
of the study area and on both sides of Yangtze River. 
When incorporating the supply-to-population ratio, the 
results from E-2SFCA indicate that most areas with bet-
ter access are located to the east of Yangtze River (see 
Fig. 8). The three districts in the west (i.e. Jiang’an, Jiang-
han and Qiaokou) have a large population, which might 
offset the advantages of having many surrounding EMS 
stations and hospitals. In contrast, although there is only 
one EMS station and one hospital to the east of Qingshan 
(see Fig. 2), the region has far fewer people, thus sharply 
increasing the likelihood of better access.

Considering the timeliness of rescue in emergencies, 
travel time is the most common indicator of EMS access. 
There are several advantages of using predicted travel 
times in measuring access to EMS. First, such meas-
ures can be obtained directly from online map services 
without the need of GIS software and preparing road 
network dataset. Second, the road network information 
provided by online map services is often more updated. 
Third, online map services usually account for real traf-
fic conditions (e.g. road work or traffic congestion), 
which thus can offer more accurate travel time estima-
tion. One major limitation of online map services, how-
ever, is that free calculation of predicted travel times is 
only available for a certain subset of origin–destination 
(OD) pairs, beyond which a payment must be made. For 
example, Google Maps offers 10,000 free OD calculations 
per month for each account and requires USD 5 for every 
additional set of 1,000 calculations. Comparatively, Baidu 
Map offers more free calculations–30,000 per day for 
each account and unlimited calculations per month for a 
fee of about USD 2800.

There are some limitations of this research. First, due 
to the lack of the real-world EMS run data, the resi-
dence was adopted in this research as the scene where 
patients receive an ambulance and then get transported 
to the hospital. As the central urban areas are often 
more densely populated with more health services (i.e. 

Fig. 7  Boxplots of E-2SFCA access scores for different times of the 
day: a trip 1 (EMS station Scene); b trip 2 (Scene Hospital); c total trip 
(EMS station Scene Hospital)
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EMS stations and hospitals), it is not surprising that 
those areas have better access to EMS when only travel 
time is considered. However, it is common for emergen-
cies to also occur at other places, such as highways or 
workplaces. Hence, it is necessary to consider additional 
scenes for EMS access. Second, the nearest hospital was 
used in measuring EMS access in trip 2. It should be 
noted that some diseases (e.g., trauma and stroke) can 

only be treated at specialized hospitals. Therefore, it 
would be useful to examine EMS access specifically with 
respect to specialized healthcare. Third, the travel time 
estimated by online map services might lack precision, 
which primarily depends on the type of path taken (small 
streets, avenues, highways). As the ambulances can over-
pass red lights and stop signs in hyper dense urban dis-
tricts, the differences between predicted and actual times 

Fig. 8  Average E-2SFCA access score for single and total trips at different times of the day (Off-peak periods: a ambulance access, b hospital access, 
c overall access; Morning peak periods: d ambulance access, e hospital access, f overall access; Evening peak periods: g ambulance access, h 
hospital access, i overall access)
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of arrival in such areas might be higher than those in 
peripheral urban/rural areas with unobstructed roads or 
highways. Forth, the potential access to EMS here does 
not consider PATI nor OSTI, which often varies depend-
ing on specific situations (e.g. types of diseases or severity 
of accidents). Finally, in addition to the peak and off-peak 
periods analysed above, it is possible that for the two trips 
(i.e. trip 1 and trip 2), one occurs during peak period and 
the other is in off-peak period, or vice versa, which again 
could be affected by the call and on-site rescue time.

Based on this research, some future work can be carried 
out to improve the EMS systems. First, the real-world 
EMS records, if available, can be utilized to validate the 
travel time estimated by online map services and improve 
the accuracy of STI and TTI prediction. In addition, the 
access measures can be improved by integrating PATI 
and OSTI if empirical data become available. Second, 
different on-scene time can be estimated from historical 

real-world EMS records for different types of diseases 
[28], which can be integrated with STI and TTI to obtain 
disease-specific access measures. Finally, empirical stud-
ies can be carried out to investigate how health outcomes 
such as mortality/morbidity is associated with access to 
EMS using proposed measures.

Regarding policy implications, first, the empirical 
results of spatial variations of ambulance and hospi-
tal access can serve as a reflection of public policies on 
EMS management and planning. For example, Figs.  5, 
8 indicate that residents on the periphery of Hongshan 
district have relatively poor access to EMS and hospi-
tals, and therefore additional health facilities can be sited 
in this area. Particularly, spatial optimization can be 
employed to identify the best spatial layout of EMS sta-
tions if health resources are limited so that ambulances 
can reach as many households as possible under given 
access constraint (i.e., 10 or 15  min for STI in trip 1) 

Fig. 9  Locations of the Shequ with good access only in one single trip ( AE
i
 > 0.2 and AH

i
 = 0: a off-peak periods, b morning peak periods, c evening 

peak periods; AE
i
 = 0 and AH

i
 > 0.2: d off-peak periods, e morning peak periods, f evening peak periods)
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[27]. Accordingly, some of existing EMS stations can be 
relocated in order to improve emergency service access 
and efficiency. Likewise, similar approaches can be used 
to obtain the minimum number and locations of new 
EMS stations that are needed for a region if any scene is 
required to be reached by an ambulance from the near-
est EMS station within certain time (i.e. STI) [37]. Sec-
ond, effective measures are required to mitigate traffic 
congestion because EMS access obviously decreased 
during traffic peak hours. Third, between the two access 
measures employed here, travel time has the advantage of 
being easy to obtain with online map services and being 
straightforward to interpret. Therefore, it can be used in 
real-time decision-making relating to emergency services 
if health resources are sufficient and EMS stations have 
similar medical resources. Because it incorporates both 
supply and demand information, the E-2SFCA method 
is more suitable for long-term planning to respond to 
major accidents, hazards or pandemics. Finally, it should 
be noted that although the empirical study was carried 
out in Wuhan, China, both access measures employed 
in this research can be applied in other contexts as well. 
Predicted travel times are readily obtained by common 
online map services such as Google Maps in many parts 
of the world, and input parameters of the E-2SFCA that 
have been validated in diverse contexts are not unique to 
Wuhan (e.g. [7, 17]. Therefore, the work presented in this 
research can be done anywhere in the world with similar 
data sets to assess EMS access outside China.

Conclusions
The EMS system is an important component of health 
services and plays a significant role in emergency and res-
cue services. Access as a primary indicator of EMS effi-
ciency has been widely studied over the last few decades 
and many EMS access measures have been proposed. 
This paper expands the literature by demonstrating the 
importance of integrating the two related trips involved 
in EMS. Our empirical study focused on EMS access in 
Wuhan, China. In addition to the impact of peak traffic 
periods on EMS access, we found that good ambulance 
access does not necessarily guarantee good hospital 
access nor the overall access, and vice versa. The find-
ings urge the need of accounting for both related trips in 
measuring EMS access as well as in planning EMS and 
hospital infrastructure.
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