Skip to main content
. 2020 Jul 6;20(6):1517–1525. doi: 10.1111/1755-0998.13210

TABLE 2.

Software packages for estimating F ST and their estimates using mock input. These input files contained fixed differences between the X‐ and Y‐chromosome for various sample sizes of males and females

Package (version) Option 5 Males and 5 females 10 Males and 10 females 20 Males and 20 females 5 Males and 15 females 15 Males and 5 females Referenced estimator
vcftools (0.1.15) weir‐fst‐pop 0.5 0.5 0.5 0.667 0.4 Weir and Cockerham, (1984)
popgenome (2.61) F_ST.stats: nucleotide.F_ST 0.444 0.474 0.487 0.444 0.483 Hudson, Slatkin, et al. (1992)
F_ST.stats: nuc.F_ST.pairwise 0.444 0.474 0.487 0.444 0.483 Hudson, Slatkin, et al. (1992)
F_ST.stats: Nei.G_ST 0.333 0.333 0.333 0.333 0.333 Nei (1973)
F_ST.stats: Nei.G_ST.pairwise 0.333 0.333 0.333 0.333 0.333 Nei (1973)
F_ST.stats: Hudson.H_ST 0.296 0.316 0.325 0.45 0.163 Hudson, Boos, et al. (1992) a
F_ST.stats: Hudson.G_ST 0.286 0.310 0.322 0.378 0.195 Hudson, Boos, et al. (1992) b , c
diversity (1.9.90) diffCalc(fst = TRUE) 0.5 0.5 0.5 0.667 0.4 Weir and Cockerham (1984)
diffCalc() 0.286 0.310 0.322 0.3023 0.3023 Nei and Chesser (1983)
hierfstat (0.04–29) pairwise.fst 0.333 0.333 0.333 0.429 0.2 Nei (1973) c
genet.dist(method = Nei87) 0.5 0.5 0.5 0.5 0.5 Nei (1987) d
pairwise.neifst 0.5 0.5 0.5 0.5 0.5 Nei (1987) d
basic.stats(fst) 0.333 0.333 0.333 0.333 0.333 Nei (1987)
genet.dist(method = WC84) 0.5 0.5 0.5 0.667 0.4 Weir and Cockerham, (1984)
pairwise.WCfst 0.5 0.5 0.5 0.667 0.4 Weir and Cockerham, (1984)
genepop (1.0.5) Fst 0.5 0.5 0.5 0.667 0.4 Weir and Cockerham, (1984)
arlequin (3.5) Compute pairwise FST 0.444 0.474 0.487 0.647 0.362 Excoffier, Smouse, and Quattro (1992)
dnasp (6.12.03) Gene Flow and Genetic Differentiation: GST 0.286 0.310 0.322 0.378 0.194 Nei (1973) b , c
Gene Flow and Genetic Differentiation: GammaSt 0.333 0.333 0.333 0.429 0.2 Nei (1982) c
Gene Flow and Genetic Differentiation: Fst 0.444 0.474 0.487 0.444 0.483 Hudson, Slatkin, et al. (1992)
a

This implementation appears to use a wi=ni2n1+n24 weighting factor.

b

These estimates are most consistent with Nei and Chesser (1983), which is also discussed in Hudson, Boos, et al. (1992).

c

These metrics appear to use a wi=nin1+n2 weighting factor, while Nei (1982) and Nei and Chesser (1983) state that in most practices the subpopulations can be assumed to be weighted equally.

d

The referenced estimator is consistent with FST in Nei (1987).