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Abstract
Purpose  To assess if autosegmentation-assisted radiomics can predict disease burden, hydronephrosis, and treatment strate-
gies in patients with renal calculi.
Methods  The local ethical committee-approved, retrospective study included 202 adult patients (mean age: 53 ± 17 years; 
male: 103; female: 99) who underwent clinically indicated, non-contrast abdomen-pelvis CT for suspected or known renal 
calculi. All CT examinations were reviewed to determine the presence (n = 123 patients) or absence (n = 79) of renal calculi. 
On CT images with renal calculi, each kidney stone was annotated and measured (maximum dimension, Hounsfield unit 
(HU), and combined and dominant stone volumes) using a HU threshold-based segmentation. We recorded the presence 
of hydronephrosis, number of renal calculi, and treatment strategies. Deidentified CT images were processed with the radi-
omics prototype (Radiomics, Frontier, Siemens Healthineers), which automatically segmented each kidney to obtain 1690 
first-, shape-, and higher-order radiomics. Data were analyzed using multiple logistic regression analysis with areas under 
the curve (AUC) as output.
Results  Among 202 patients, only 28 patients (18%) needed procedural treatment (lithotripsy or ureteroscopic stone extrac-
tion). Gray-level co-occurrence matrix (GLCM) and gray-level run length matrix (GLRLM) differentiated patients with and 
without procedural treatment (AUC 0.91, 95% CI 0.85–0.92). Higher-order radiomics (gray-level size zone matrix – GLSZM) 
differentiated kidneys with and without hydronephrosis (AUC: 0.99, p < 0.001) as well those with different stone volumes 
(AUC up to 0.89, 95% CI 0.89–0.92).
Conclusion  Automated segmentation and radiomics of entire kidneys can assess hydronephrosis presence, stone burden, 
and treatment strategies for renal calculi with AUCs > 0.85.
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ROC	� Receiver operating characteristic
AUC​	� Area under the curve
DICOM	� Digital imaging and communication in 

medicine
kV	� Kilovolt
GLCM	� Gray-level co-occurrence matrix
GLRLM	� Gray-level run length matrix
GLSZM	� Gray-level size zone matrix
NGTDM	� Neighboring gray-tone difference matrix
GLDM	� Gray-level dependence matrix
HU	� Hounsfield unit
Idmn	� Inverse difference moment normalized
Imc1	� Informational measure of correlation 1
Imc2	� Informational measure of correlation 2
Idn	� Inverse difference normalized

Introduction

Prevalence statistics from the eastern and western hemi-
spheres suggest increasing renal calculi burden over the 
last three decades [1–4]. In China, the prevalence rate of 
renal calculi rose from 5.95% in 1991–2000 to 10.63% 
in 2011–2016 [1]. The population-adjusted stone preva-
lence rate in the United States also increased to 10.3% in 
2007–2010 [2]. England reported a 20% increase in kidney 
stones over 7 years between 2006–2007 and 2013–2014 [3]. 
The rising burden of kidney stone increased intervention 
treatments and the financial costs associated with 149%, 
86%, and 26% increase in the rate of percutaneous litho-
tripsy, ureteroscopy, and shockwave lithotripsy [3]. Data 
suggest that kidney stone is a high prevalence disease with 
costs comparable to the combined cost of prostate and 
bladder cancer in the United Kingdom [5]. Analysis of the 
United States data found 2 million healthcare visits and 
177,000 hospitalizations for kidney stones responsible for 
more than $2-billion burden in the year 2000 [6]. Further-
more, multivariable analyses suggest that obesity, diabetes, 
dietary habits, and lifestyle changes are strongly associated 
with kidney stone disease [6, 7].

CT is often considered the imaging modality of choice 
for patients with renal colic and calculi. CT assessment of 
presence, burden, and complications of renal calculi enables 
physicians to determine treatment strategies for a condition 
that can result in what many patients describe as the worst 
pain they have ever experienced. There is a growing con-
sensus that abdomen-pelvis CT for primary evaluation of 
renal calculi should be performed with low radiation dose 
technique (< 3 mSv) [8–10].

Typical radiological interpretation of renal calculi 
involves qualitative description along with the measure-
ment of their largest diameter [11]. Recent studies have 
reported on the role of stone-specific radiomics and artificial 

intelligence (AI)-based algorithms for detection, differen-
tiation (from phleboliths and between different types of 
calculi), and burden of renal calculi [12–15]. To our best 
knowledge, evaluation of the stone disease burden and its 
effect on prediction presence of obstructive uropathy and 
treatment strategies has not been assessed. We hypothesized 
that automatically segmented whole kidney radiomics could 
assess the stone burden and predict hydronephrosis and treat-
ment strategies from CT images. The purpose of our study 
was to determine if autosegmentation-assisted radiomics can 
predict disease burden, hydronephrosis, and treatment strate-
gies in patients with renal calculi.

Methods

Approvals and Disclosures

Before project initiation, we obtained approval from 
the human research committee with a waiver of written 
informed consent due to the retrospective nature of the 
study. Per regulations, the study was Health Insurance Port-
ability and Accountability Act (HIPAA) compliant. All CT 
examinations were deidentified and coded to protect patient 
data privacy. Two study coauthors are employees of Siemens 
Healthineers (AP, BS); they did not participate in subject 
recruitment, data collection, or data analyses parts of the 
study. A study coauthor (MKK) has received institutional 
research grants from Siemens Healthineers and personal 
remuneration from Globus Medical Imaging for unrelated 
work.

Patients and Stone Measurements

We reviewed our radiology archive and electronic medi-
cal record (EPIC, EPIC System Corporation) to identify 
238 adult patients (> 18-years) who underwent clinically 
indicated, unenhanced abdomen-pelvis CT examinations 
for renal colic or calculi between May and June 2019. The 
exclusion criteria were the presence of ureteric and/or vesi-
cal calculi without calculus within their kidneys (n = 29 
patients), large renal cysts (> 3 cm) (n = 4 patients), in situ 
pigtail or nephrostomy (n = 2 patients), and partial nephrec-
tomy (n = 1 patients). The final sample size was 202 adult 
patients (mean age 53 ± 17 years; 103 males and 99 females) 
(Fig. 1). All patients were scanned in one of the three hos-
pitals—Massachusetts General Hospital (Site A, n = 132 
patients), Brigham and Women’s Hospital (Site B, n = 41), 
or Newton-Wellesley Hospital (Site C, n = 29). Of these, 123 
abdomen-pelvis CT demonstrated renal calculi, whereas the 
remaining 79 patients did not have renal calculi.

In addition to each patient’s age and gender, we recorded 
medical and invasive therapies (such as laser lithotripsy, 
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extracorporeal shockwave therapy, interventional, and sur-
gical stone removal) within 10 months of abdomen-pelvis 
CT exam.

Renal stone protocol CT

All abdomen-pelvis CT examinations for evaluation of 
renal colic or calculi were performed on one of the three 
multidetector-row CT (MDCT) scanners: 96-detector-row, 
third-generation, dual-source MDCT (Siemens Force, Sie-
mens Healthineers, Forchheim, Germany; n = 106 patients), 
256-detector-row single-source MDCT (GE Revolution, 
GE Healthcare, Waukesha, Wis.; n = 83 patients), and 
64-detector-row single-source MDCT (Philips IQon Spec-
tral CT, Philips Healthcare, Eindhoven, The Netherlands; 
n = 13 patients). The following scan parameters were used 

on all CT scanners: 100–120 kV, automatic exposure con-
trol (Smart mA, GE; 3D Modulation, Philips; Care Dose 
4D, Siemens), 0.5-s gantry rotation time, and 0.9–1:1 pitch. 
Reconstructed section thickness was 1–1.25 mm with a 
0.8–1 mm overlap and soft tissue reconstruction algorithm 
using vendor-specific iterative reconstruction techniques 
(ASIRv, GE; iDose 4, Philips; ADMIRE, Siemens).

Qualitative evaluation

A senior radiologist (MKK, with more than 15-year expe-
rience) reviewed all abdomen-pelvis CT images for the 
presence of renal calculi and hydronephrosis on a PACS 
workstation (Visage 7.1 Enterprise Imaging Platform, Vis-
age Imaging GmbH, Berlin, Germany). Upon detection, the 
radiologist clicked in the center of each renal calculus, which 

Fig. 1   Flow diagram summary 
of patient selection, exclu-
sion criteria, and distribution 
of patients with renal calculi, 
hydronephrosis, and invasive 
procedural treatment
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triggered the platform to segment and annotate the calculus 
using a region growing feature based on the isolation of CT 
voxels with attenuation values (Hounsfield Unit, HU) similar 
to the center of the calculus. The radiologist reviewed each 
segmented contour and edited the segmentation margins 
if necessary (in < 20% of the cases). The radiologist also 
selected side of each calculus and the absence or presence 
of hydronephrosis. The platform separately estimated the 
volume of each calculus from the number and size of seg-
mented voxels. The dominant calculus was defined as the 
calculus with the largest volume. Stone burden represented 
the volume of all calculi in each kidney.

Radiomics prototype

Another study coauthor (FH, a physician with 2-year post-
doctoral research experience in image processing) separately 
processed all 202 abdomen-pelvis CT examinations from 
a standalone radiomics prototype (FRONTIER, Siemens 
Healthineers). The prototype automatically identifies and 
segments the entire kidney volume with a single click on 
the Kidney Isolation icon (Fig. 2). The segmented renal 
volume included the entire renal parenchyma and the intra-
renal portion of the pelvicalyceal system. When present, all 
renal calculi were included within the segmentation con-
tours. The user can modify the isolated contours if needed. 
We did not need to correct any segmented renal contour in 
our study. Upon confirmation of the contours, the prototype 

estimated 1690 first-, shape, and higher-order radiomics for 
each kidney. The estimated radiomics are described else-
where (https​://pyrad​iomic​s.readt​hedoc​s.io/en/lates​t/chang​
es.html, accessed on February 22, 2020). These included 
first-order, shape, gray-level co-occurrence matrix (GLCM), 
gray-level run length matrix (GLRLM), gray-level size zone 
matrix (GLSZM), neighboring gray-tone difference matrix 
(NGTDM), gray-level dependence matrix (GLDM), as well 
as squares, square roots, logarithm, exponentials, Log with 
five (0–4 mm) sigma level, and 3D wavelet transform (mul-
tidimensional decomposition of image—multidimensional 
signal processing) of radiomics other than the shape features.

Statistical analysis

All statistical analyses were performed with the statistical 
program (R Statistical Computing: https​://www.R-proje​
ct.org, R Foundation for Statistical Computing, Vienna, 
Austria, accessed on 3.18.2020) incorporated within the 
radiomics prototype used in our study. Data were analyzed 
on both per patient and per kidney levels to assess the ability 
of radiomics to predict stone burden, hydronephrosis, and 
treatment method using multiple logistic regression analy-
ses. For the most suitable multiple logistic regression model, 
the prototype uses t test or analyses of variance (ANOVA) 
and corrects the p values for multiple testing with the Ben-
jamini–Hochberg false discovery rate (FDR). On the set of 
statistically significant features with corrected p < 0.05, a 

Fig. 2   Non-contrast abdomen-
pelvis CT of a 50-year-old 
female with a staghorn left renal 
calculus. Multiplanar reformat 
(a–c) and volume rendered (d) 
images demonstrate accurate 
volumetric autosegmentation of 
both kidneys

https://pyradiomics.readthedocs.io/en/latest/changes.html
https://pyradiomics.readthedocs.io/en/latest/changes.html
https://www.R-project.org
https://www.R-project.org
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minimum redundancy maximum relevance (mRMR) feature 
selection helps eliminate irrelevant and redundant features 
and limit selection to four features.

The receiver operating characteristics area under the 
curve (AUC) was set as the output parameter with both 95% 
confidence interval (CI) applied and p values.

Volumes of renal calculi were classified into four quar-
tiles to assess if radiomics can differentiate between adja-
cent quartiles of stone burden using analysis of variance 
(ANOVA). The inter-CT vendor comparison was limited to 
two vendors (GE and Siemens) since very few patients were 
scanned on the third scanner (Philips). In addition to the 
independent analysis of the entire and the individual hospital 
site data, we applied a machine learning (ML)-based random 
forest classifier (with 10-fold cross validation using 100 trees 
and a split quality measure of Gini impurity for identify-
ing most relevant radiomics) to assess predictive value of 
radiomics at Sites B and C when Site A data were used as 
a training dataset. When comparing performance across the 
three healthcare sites, we did not apply any specific selection 
method for selecting radiomic features. For multiple statis-
tical testing, false discovery rate (FDR) Benjamini–Hoch-
berg’s correction was applied to the p values. Radiomics 
with the highest AUC and p values < 0.05 were deemed as 
the most important predictors.

Results

Detection of renal calculi

Out of 202 patients, 79 patients (39%) did not have any renal 
calculi. Among 123 patients (61%, 123/202) with a total of 
547 renal calculi, 61 patients (50%, 61/123) had bilateral 
calculi while remaining patients (left: 28%, 35/123; right: 
22%, 27/123) had unilateral calculi. Thus, renal calculi were 
present in 184/404 segmented kidneys.

Among the 202 patients from all three sites, radiomics 
(a combination of 3D log sigma of short-run low gray-level 
emphasis, exponential of run variance, run entropy (GLRLM 

features), and GLCM maximal correlation coefficient) could 
differentiate patients with and without renal calculi (AUC 
0.84, 95% CI 0.78–0.89, p < 0.003). The AUC (AUC: 0.9, 
95% CI 0.85–0.93, p < 0.0001) was higher for detecting 
renal calculi at the kidney level with a combined inclusion 
of GLCM inverse difference moment normalized, NGTDM 
exponential of coarseness, and GLRLM 3D log sigma of 
short-run low gray-level emphasis.

The ability of radiomics to differentiate kidneys with 
or without calculi did not change based on the CT vendor 
(GE CT: AUC 0.92, 95% CI 0.87–0.97; Siemens CT: AUC 
0.93, 95% CI 0.9–0.95; p > 0.9) (Table 1). Likewise, radiom-
ics did not change substantially across the three hospitals 
for the detection of renal calculi (AUC 0.88–0.93, p > 0.8) 
(Table 2). When site A was used as a training set, the ML-
based assessment had AUCs of 0.85 (site B) and 0.91 (site 
C) for differentiating kidneys with and without calculi 
(p > 0.8).

Presence of hydronephrosis

Of the 184 kidneys with calculi, hydronephrosis was pre-
sent in 61 kidneys (right kidney—30; left kidney—29; both 
kidneys—1). There was no significant difference (p = 0.78) 
between the volume of dominant renal calculi in patients 
with (104 ± 186 mm3) and without (123 ± 512 mm3) hydro-
nephrosis. AUCs for the differentiation of patients with 
hydronephrosis with radiomics are summarized in Table 3. 
Among 404 kidneys with and without renal calculi, radi-
omics enabled detection of hydronephrosis with an AUC 
of 0.89 (95% CI 0.8–0.89, p < 0.003) with a combination 
of higher-order statistics (Table 3). For 184 kidneys with 
calculi, the AUC (AUC 0.85, 95% CI 0.77–0.87, p < 0.006) 
had a non-significant decrease for differentiating kidneys 
with and without hydronephrosis (p = 0.6). Figure 3 dem-
onstrates most relevant features for differentiating patients 
with hydronephrosis.

Detection of hydronephrosis with radiomics did not 
change between scanners from different vendors (GE CT: 
AUC 0.91, 95% CI 0.79–0.92; Siemens CT: AUC 0.9, 

Table 1   Performance of 
radiomics on scanners from two 
CT vendors

The table summarizes the best area under the curves (AUC) of radiomics for predicting invasive procedural 
management of renal calculi, presence of hydronephrosis, presence of renal calculi, and median volume of 
renal calculi (Key: CI confidence interval)

GE CT scanners Siemens CT scanners

AUC​ 95% CI AUC​ 95% CI

Patient management (in all 202 patients) 0.94 0.87–0.97 0.93 0.79–0.95
Hydronephrosis (in all 202 patients) 0.91 0.79–0.92 0.9 0.81–0.92
Hydronephrosis (in 123 patients with calculi) 0.86 0.77–0.89 0.86 0.81–0.92
Renal calculi detection (in all 404 kidneys) 0.92 0.87–0.97 0.93 0.9–0.95
Median volume of calculi (in all 404 kidneys) 0.95 0.9–0.99 0.93 0.91–0.97
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95% CI 0.81–0.92; p > 0.9) (Table 1). Likewise, there was 
no significant difference in performance of radiomics for 
detecting hydronephrosis in patients from different hospitals 
(Site A, AUC 0.88, 95% CI 0.79–0.9; Site B, AUC 0.9, 95% 
CI 0.74–0.95; Site C 0.996, 95% CI 0.94–1.0). With ML-
based random forest classifier, the respective AUCs at site 
B and C were 0.72 and 0.84 for detection of hydronephrosis 
(Table 2).

Patient management

Of the 202 patients, 28 patients had invasive procedural 
treatment for renal calculi (25 patients with lithotripsy and 
three patients with flexible ureteroscopy). The remaining 
patients were managed with conservative medical treatment. 
Radiomics predicted patients managed with invasive proce-
dural treatment therapy with the best differentiating features 
represented by a combination of the exponential of the first-
order minimum, GLRLM 3D log sigma of short-run low 
gray-level emphasis, and GLCM inverse difference moment 

normalized 1 and 2 (AUC 0.91, 95% CI 0.85–0.92, p < 0.02). 
There was no difference in performance of radiomics in pre-
dicting invasive treatment in those scanned with different CT 
vendors (GE CT: AUC 0.94, 95% CI 0.87–0.97; Siemens 
CT: AUC 0.93, 95% CI 0.79–0.95 or at different hospitals 
(Site A, AUC 0.93, 95% CI 0.84–0.95; Site B, AUC 0.99, 
95% CI 0.99–1.0; Site C 0.96, 95% CI 0.84–0.96) (Table 1). 
The respective AUCs for ML-based prediction of patient 
management were 0.87 and 0.80 at sites B and C.

Stone burden

The average volume of dominant renal calculi was 
158 ± 468 mm3 with a skewed preponderance of kidneys 
with larger calculi (147/184 kidneys (80%) with calculi 
volume > 158 mm3 and 37/184 kidneys (20%) with calculi 
volume < 158 mm3). The quartile volumes of renal calculi 
were < 12.7 mm3 (1st quartile), 12.7–33.75 mm3 (2nd quar-
tile), 33.75–101.1 mm3 (3rd quartile), and > 101.1 mm3 
(4th quartile). Radiomics differentiated between adjacent 

Table 2   Performance of radiomics at the three independent participating sites (Sites A, B, C) and with machine learning-based radiomics at two 
sites (ML-Site B and ML-Site C)

The table summarizes the best area under the curves (AUC) of radiomics for predicting invasive procedural management of renal calculi, pres-
ence of hydronephrosis, presence of renal calculi, and median volume of renal calculi (Key: CI confidence interval)

AUC (95% CI) Machine learning

Site A Site B Site C ML-Site B ML-Site C

Patient management (in all 202 patients) 0.93 (0.84–0.95) 0.99 (0.99–1.0) 0.96 (0.84–0.96) 0.87 0.8
Hydronephrosis (in all 202 patients) 0.88 (0.79–0.9) 0.9 (0.74–0.95) 0.996 (0.94–1.0) 0.72 0.84
Hydronephrosis (in 123 patients with calculi) 0.87 (0.78–0.89) 0.85 (0.75–0.98) 0.99 (0.95–1.0) 0.71 0.8
Renal calculi detection (in all 404 kidneys) 0.93 (0.87–0.95) 0.88 (0.87–0.93) 0.93 (0.89–0.98) 0.85 0.91
Median volume of calculi (in all 404 kidneys) 0.96 (0.86–0.98) 0.99 (0.98–0.99) 0.99 (0.92–1.0) 0.93 0.88

Table 3   Summary of the best radiomics for predicting invasive procedural management of renal calculi, presence of hydronephrosis, presence of 
renal calculi, and median volume of renal calculi

AUC​ area under the curve, CI confidence interval, GLCM gray-level co-occurrence matrix, GLRLM gray-level run length matrix, GLSZM gray-
level size zone matrix, GLDM gray-level dependence matrix, NGTDM neighboring gray-tone difference matrix, Idmn inverse difference moment 
normalized, Imc1 informational measure of correlation 1, Imc2 informational measure of correlation 2, Idn inverse difference normalized

Best features from multiple logistic regression AUC​ 95% CI

Patient management (in all 202 patients) Imc2 (GLCM) + Imc1 (GLCM) + Minimum (1st Order) + Short-run low gray-
level emphasis (GLRLM)

0.91 0.85–0.92

Hydronephrosis (in all 202 patients) Dependence non-uniformity (GLDM) + Small area emphasis (GLSZM) + Size 
zone non-uniformity (GLSZM)

0.89 0.8–0.89

Hydronephrosis (in 123 patients with calculi) Dependence non-uniformity (GLDM) + Small area emphasis 
(GLSZM) + Dependence non-uniformity normalized (GLDM) + Size zone 
non-uniformity (GLSZM)

0.85 0.77–0.87

Renal calculi detection (in all 202 patients) Short-run low gray-level emphasis (GLRLM) + Run variance 
(GLRLM) + Run entropy (GLRLM) + MCC (GLCM)

0.84 0.78–0.89

Renal calculi detection (in all 404 kidneys) Idmn (GLCM) + Coarseness (NGTDM) + Short-run low gray-level emphasis 
(GLRLM)

0.9 0.85–0.93

Median volume of calculi (in all 404 kidneys) Idn (GLCM) + Sum entropy (GLCM) 0.93 0.9–0.95
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quartiles of renal calculi volume (1st and 2nd quartiles: 
AUC 0.84, 95% CI 0.84–0.86; 2nd and 3rd quartiles: 
AUC 0.88, 95% CI 0.77–0.90; 3rd and 4th quartiles: AUC 
0.89, 95% CI 0.89–0.92). The most significantly different 
radiomics between the adjacent quartiles estimated with 
ANOVA were first-order maximum, range, NGTDM, 
GLCM Idn, and GLCM Idmn (all features, p < 0.0001).

The renal calculi in patients with invasive treatment 
were significantly larger than those managed conserva-
tively (641 ± 1090 vs. 53 ± 78 mm3, p < 0.0001).

The performance of radiomics did not vary based on CT 
vendors (GE CT: AUC 0.95, 95% CI 0.9–0.99; Siemens 
CT: AUC 0.93, 95% CI 0.91–0.97) or at different hospitals 
(Site A, AUC 0.96, 95% CI 0.86–0.98; Site B, AUC 0.99, 
95% CI 0.98–0.99; Site C 0.99, 95% CI 0.92–1) (Table 1). 
The application of ML-based radiomics for differentiating 
patients with median volume of renal calculi had AUCs of 
0.93 (site B) and 0.88 (site C).

Discussion

The robust performance of radiomics for assessing renal 
calculi in our study (AUC 0.8–0.95) is comparable to prior 
publications on radiomics [12, 13]. De Perrot et al. used a 
machine learning-based radiomics model for differentiat-
ing renal calculi from phleboliths [12]. A senior radiolo-
gist identified and segmented the region of interest with 
either finding. Their model then estimated radiomics over 
the identified calculi or phlebolith and obtained an overall 
accuracy of 0.85 and AUC of 0.9. In another study, Cui 
et al. used a region-based image segmentation technique 
to extract regions of interest over renal calculi [13]. A 
radiologist verified these regions before the application 
of radiomics over the segmented calculi. The authors 
reported that radiomics differentiated infection stones from 
non-infection stones with an accuracy of 90.7% [13].

Fig. 3   Most relevant features for differentiating presence of hydronephrosis in those with renal calculi (a) and predicting the need of invasive 
procedural management (b)
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Instead of estimating radiomics with manual or region-
based segmentation of renal calculi, we automated the 
isolation of kidneys and applied radiomics over the entire 
renal volume to predict hydronephrosis, stone burden, and 
invasive treatment of renal calculi. Cui et al. have reported 
on the use of CT texture analysis for predicting the ease of 
stone fragmentation with extracorporeal shockwave litho-
tripsy [14]. In their ex vivo study, mean CT attenuation num-
ber (r2 = 0.806, p = 0.028) and entropy (r2 = 0.804, p = 0.04) 
were strongly correlated with the number of shocks required 
for stone fragmentation [14]. Xun et al. reported that using 
machine learning-based radiomics limited to renal calculi 
achieved an AUC of 0.947 for predicting a stone-free rate of 
flexible ureteroscopy for stone removal in an internal valida-
tion set of 43 patients [15]. Mannil et al. have also reported 
an AUC of 0.81 with combination of three-dimensional radi-
omics and stone size for predicting success of shockwave 
lithotripsy in patients with renal calculi [16]. Prediction 
of calculi managed with lithotripsy or ureteroscopic stone 
removal with whole renal volume radiomics in our study was 
comparable to prior studies (AUC 0.91) [14, 15].

The automatic segmentation and inclusion of the entire 
renal volume enabled us to apply radiomics beyond renal cal-
culi to the entire renal volume and obtain a reliable and gen-
eralizable prediction on stone burden and need for invasive 
treatment procedures. Other studies beyond kidneys have 
also reported on organ radiomics for assessing pancreatic 
ductal adenocarcinoma from entire pancreas [17], diffuse 
liver diseases from whole liver [18], COVID-19 pneumonia 
from whole lung [19, 20], and white matter hyperintensities 
from whole brain [21]. Due to the need for efficient image 
interpretation and the well-known complexity of radiomics 
(1690 features in our prototype), autosegmentation of entire 
organ-based regions of interest as well as estimation and 
analyses of radiomics is essential for bringing them into the 
clinical workflow. Our prototype achieved both these steps 
with minimal user input.

Although detecting clinically important renal calculi is 
usually not an interpretation dilemma, based on the num-
ber and shape of renal calculi, both manual and subjective 
assessment of their size or dimension can be time consum-
ing and prone to intra- and inter-observer variations [22]. 
The assessed prototype addresses these variations and 
inefficiency in the evaluation of renal calculi. Although 
the volume of renal calculi was not related to the presence 
of hydronephrosis, whole kidney radiomics had a robust 
performance likely from the inclusion of radiomics from 
regions beyond the renal calculi. A high AUC (> 0.8) for 
radiomics in patients from all three participating sites and 
abdomen-pelvis CT performed with three different scanner 
types supports the generalizability of radiomics in assess-
ing renal calculi. With a phantom study and extracted renal 
calculi, Moen et al. reported that radiomics can reliably 

predict stone fragility despite changes in acquisition (sin-
gle energy or dual energy modes) or reconstruction param-
eters (section thickness and reconstruction techniques) 
[23]. Generalizability is critical as prior oncologic stud-
ies have voiced concerns that variations in scanners and 
acquisition parameters can limit application of radiomics 
[24–26].

With an automated segmentation of renal contours, 
extraction of radiomics, and embedded statistical analyses, 
radiomics prototypes like the one used in our study can be 
most useful in assessing burden of kidney stones in a more 
quantitative and reproducible manner. This can help deter-
mine the suitable treatment pathway for the patient as well 
as serve as a useful method of following patients for changes 
in stone burden over time.

Our study has limitations. First, there was an unequal dis-
tribution of patients across different participating sites and 
scanners due to differences in patient volumes at these sites. 
Second, the scan protocols and practices at the three sites 
are independent, but all sites are in the same metropolitan 
region, and therefore, likely share similar patient attributes. 
Third, we did not include ureteral and bladder calculi within 
this study since the applied prototype does not perform the 
segmentation of these structures. Fourth, we evaluated the 
radiomics of the entire kidneys rather than the calculi alone. 
Although evaluation of entire renal volume did limit our 
ability to extract specific radiomics and dimensions of renal 
calculi, this did not limit the ability to predict stone burden 
and outcomes in our patient group. Due to the lack of tar-
geted radiomics limited to the calculi’s volume rather than 
the entire renal volume, we cannot comment upon the rela-
tive performance of radiomics from the calculi versus the 
entire kidneys.

The fifth limitation of our study cohort pertains to the fact 
there was few patients (n = 28 patients) who had invasive 
treatment of renal calculi. Sixth, we used volumetric esti-
mation of renal calculi to classify the stone burden instead 
of a two-dimensional measure of renal calculi, which are 
often used to determine the need and type of invasive treat-
ment. However, prior studies have reported that volumetric 
estimation of lesions is a better and more reliable predictor 
of its size than unidimensional measures [22]. Seventh, we 
excluded patients with focal renal lesions (except hydro-
nephrosis). Therefore, it is not possible to conclude on the 
performance of radiomics in the presence of other focal 
and diffuse renal lesions. It is likely but unproven from our 
study that prediction of hydronephrosis will be limited in 
the presence of large renal cysts, which are frequent in older 
patients and those on dialysis. Finally, none of the patients 
included in our study had abnormal or anomalous renal loca-
tion, shape, or fusion. It is not unlikely that the performance 
of the autosegmentation feature varies with such anatomic 
variations.
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In summary, the machine learning-based autosegmenta-
tion and radiomics can help detect and quantify renal calculi 
burden, assess the presence of hydronephrosis, and predict 
the need for invasive treatment options. The performance of 
radiomics was robust across all three participating sites and 
two CT vendors.
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