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Abstract

Background: Muscle-invasive bladder cancer (MIBC) is a molecularly diverse disease with 

heterogeneous clinical outcomes. Several molecular classifications have been proposed, but the 

diversity of their subtype sets impedes their clinical application.

Objective: To achieve an international consensus on MIBC molecular subtypes that reconciles 

the published classification schemes.

Design, setting, and participants: We used 1750 MIBC transcriptomic profiles from 16 

published datasets and two additional cohorts.

Outcome measurements and statistical analysis: We performed a network-based analysis 

of six independent MIBC classification systems to identify a consensus set of molecular classes. 

Association with survival was assessed using multivariable Cox models.

Results and limitations: We report the results of an international effort to reach a consensus on 

MIBC molecular subtypes. We identified a consensus set of six molecular classes: luminal 

papillary (24%), luminal nonspecified (8%), luminal unstable (15%), stroma-rich (15%), basal/

squamous (35%), and neuroendocrine-like (3%). These consensus classes differ regarding 

underlying oncogenic mechanisms, infiltration by immune and stromal cells, and histological and 

clinical characteristics, including outcomes. We provide a single-sample classifier that assigns a 

consensus class label to a tumor sample’s transcriptome. Limitations of the work are retrospective 

clinical data collection and a lack of complete information regarding patient treatment.

Conclusions: This consensus system offers a robust framework that will enable testing and 

validation of predictive biomarkers in future prospective clinical trials.

Patient summary: Bladder cancers are heterogeneous at the molecular level, and scientists have 

proposed several classifications into sets of molecular classes. While these classifications may be 

useful to stratify patients for prognosis or response to treatment, a consensus classification would 
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facilitate the clinical use of molecular classes. Conducted by multidisciplinary expert teams in the 

field, this study proposes such a consensus and provides a tool for applying the consensus 

classification in the clinical setting.

Keywords

Consensus; Molecular taxonomy; Muscle-invasive bladder cancer; Transcriptomic classifier

1. Introduction

Bladder cancer is one of the most frequently diagnosed cancers in North America and 

Europe. Most bladder cancers are urothelial carcinomas, and are classified as either non-

muscle-invasive bladder cancer (NMIBC) or muscle-invasive bladder cancer (MIBC), due to 

distinct implications for patient management. MIBC is usually diagnosed de novo but may 

arise from the 10–20% of NMIBC cases that eventually progress. MIBC is a more 

aggressive disease state, and is associated with a 5-yr survival rate of 60% for patients with 

localized disease and <10% for patients with distant metastases.

At the molecular level, MIBC is a heterogeneous disease that is characterized by genomic 

instability and a high mutation rate. Transcriptome profiling facilitates bladder cancer 

classification into molecular subtypes, for a more precise patient stratification according to 

prognosis and therapeutic options. A number of teams have reported molecular 

classifications of bladder cancers. Several expression-based schemes have been proposed, 

either considering the full spectrum of nonmetastatic bladder cancers [1–6], or focusing 

separately either on NMIBC [7,8] or on MIBC [9–16]. These classifications have 

considerably advanced our understanding of bladder cancer biology. Specific genomic 

alterations are enriched in particular molecular subtypes, including mutations targeting 

genes involved in cell cycle regulation, chromatin remodeling, and receptor tyrosine kinase 

signaling. Importantly, several reports have highlighted the clinical significance of molecular 

stratification of MIBC, by suggesting that responses to chemotherapy and immunotherapy 

may be enriched in specific MIBC subtypes [12,17–19].

Published MIBC classifications were derived from largely nonoverlapping datasets, using 

different `s at least for some steps of their respective unsupervised class discovery pipelines 

(Supplementary Table 1). Nonetheless, they share many characteristics, including subtype-

specific molecular features, and a strong overlap has been observed between some subtypes 

from distinct classification systems [20]. In an initial effort to define features common to all 

MIBC classifications, Lerner et al. [21] proposed a consensus basal/squamous subtype and 

reported evidence of a muscle-invasive subtype with urothelial differentiation features. 

However, the six published classification systems that were considered in their work still 

differ in the number and relative size of subtypes, and in the use of different subtype names. 

This diversity has impeded transferring subtypes into clinical practice and highlights that 

establishing a single consensus set of molecular subtypes would facilitate achieving such a 

transfer.
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2. Patients and methods

2.1. Transcriptomic profiles analyzed

We used 1750 MIBC transcriptomic profiles from 18 datasets to compare six molecular 

classification schemes and derive a consensus classification. Details of datasets, including 

their respective normalizations, are given in Supplementary Table 2.

2.2. Consensus classification construction

Transcriptomic classifiers for six published classification systems [9–13,16] were provided 

and/or validated by the respective teams. These classifiers were merged into an R package 

(R Foundation for Statistical Computing, Vienna, Austria) that is documented and freely 

available at https://github.com/cit-bioinfo/BLCAsubtyping.

We applied these classifiers on each of the 18 datasets independently to assign each sample 

to a subtype in each of the six classification systems. We used a previously validated 

network-based approach [22] on these subtyping results to identify consensus classes that 

reconcile the molecular subtypes from the six classification schemes. Briefly, we built a 

weighted network of subtyping results, using Cohen’s kappa metric to quantify similarities 

between subtypes from different classification systems, and applied a Markov cluster 

algorithm to identify robust network substructures corresponding to potential consensus 

classes. The analysis workflow is summarized in Supplementary Fig. 1 and algorithm details 

are given in the Supplementary material (Methods). We used a silhouette-based metric to 

select the most robust consensus solution among those with consensus classes defined by at 

least three of the six input classification systems.

2.3. Single-sample transcriptomic consensus classifier construction

The network of consensus classes also revealed a core set of consensus samples (see 

Supplementary material, Methods), that is, tumor samples representative of each consensus 

class on the basis of their initial subtyping by the six classification systems. We used these 

core samples (n = 1084) to build a single-sample transcriptomic classifier, as detailed in the 

Supplementary material (Methods). The classifier was trained on approximately one-third of 

these samples (n = 403) and achieved 97% mean balanced accuracy on the remaining two-

thirds of the core samples (n = 681). This classification tool was implemented as an R 

package that is documented and freely available at https://github.com/cit-bioinfo/

consensusMIBC.

We also offer a stand-alone web application that allows users to classify new samples using 

the single-sample classifier. By design, it does not store any user data and can be used 

completely anonymously. The consensusMIBC web application is available at http://

cit.ligue-cancer.net:3838/apps/consensusMIBC_web/

2.4. Statistical analyses

We measured associations between consensus classes and categorical variables by Fisher’s 

exact tests, with Monte-Carlo simulations when necessary. For continuous variables, we 

evaluated differences by Kruskal-Wallis tests or LIMMA moderated t tests (limma v3.39.1 R 
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package). False discovery rate adjustment of p values was performed to control for multiple 

testing, for association tests between the consensus classes and either genetic or histological 

variables, as these types of variables might be interpreted as potential diagnostic or 

theranostic biomarkers of some consensus classes. We reported unadjusted p values 

otherwise.

We built a multivariable Cox model integrating consensus classes and clinical risk factors. 

We used Wald tests to assess survival differences associated with different levels of a given 

factor included in the Cox model. For each factor level, we computed hazard ratios (HRs) 

and 95% confidence intervals (CIs). We constructed Kaplan-Meier curves to visualize 

overall survival stratified by consensus class and used log-rank tests to compare the survival 

of corresponding patient groups.

All statistical and bioinformatics analyses were performed with R (v3.5.1).

3. Results

3.1. Published molecular classifications of MIBC converge on six classes

We used six published MIBC molecular classifications to define a unified consensus 

subtyping system, following the approach outlined in Supplementary Fig. 1 and described in 

the Supplementary material (Methods). We refer to these input classifications as Baylor [16], 

University of North Carolina (UNC) [10], MD Anderson Cancer Center (MDA) [12], the 

Cancer Genome Atlas (TCGA) [9], Cartes d’Identité des Tumeurs (CIT)-Curie [11], and 

Lund [13]. The methods that defined these classifications are summarized in the 

Supplementary material (Methods) and Supplementary Table 1.

Our analysis converged on six biologically relevant consensus molecular classes, which we 

labeled as luminal papillary (LumP), luminal nonspecified (LumNS), luminal unstable 

(LumU), stroma-rich, basal/squamous (Ba/Sq), and neuroendocrine-like (NE-like; Fig. 1). 

Considerations motivating our choices for these consensus names are detailed in the 

Supplementary material (Note).

The six molecular classes had variable sample sizes, with Ba/Sq and LumP being the largest 

(35% and 24% of all samples, respectively). The remaining 41% of samples were LumU 

(15%), stroma-rich (15%), LumNS (8%), and NE-like (3%) tumors (Fig. 1B). The consensus 

classification was strongly associated with each of the initial classification systems (Fisher 

simulated p < 0.001; Fig.1 and Supplementary Fig. 2A).

We compared the consensus classes with the TCGA PanCancer Atlas integrative 

classification [23] (Supplementary Fig. 2C). We observed associations between the Ba/Sq 

consensus class and the squamous cell carcinoma C27:Pan-SCC pan-cancer cluster (p < 

0.001), and between the stroma-rich class and the stroma-driven C20:Mixed (stromal/

immune) pan-cancer cluster (p < 0.001).
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3.2. Transcriptomic characterization of the six consensus molecular classes

We used mRNA data from all 1750 samples to characterize consensus classes with 

molecular gene signatures for bladder cancer pathways and for tumor microenvironment 

infiltration (Fig. 2A and B, and Supplementary Table 3).

Differentiation-related mRNA signatures were strongly associated with the consensus 

classes. Tumors from the three luminal classes overexpressed urothelial differentiation 

signatures (p < 0.001), including the PPARG/GATA3/FOXA1-related Lund signature [24]. 

In contrast, Ba/Sq and NE-like tumors, respectively, overexpressed gene signatures 

associated with basal (p < 0.001) and neuroendocrine differentiation (p < 0.001), 

respectively.

In addition to their urothelial differentiation status, the three luminal classes exhibited 

distinct molecular signatures. LumP tumors were characterized by high expression of a 

noninvasive Ta pathway signature [25] (p < 0.001) and were strongly associated with FGFR3 

transcriptional activity, as estimated by an FGFR3 coexpressed gene signature [4] (p < 

0.001). LumNS tumors displayed elevated stromal infiltration signatures, mainly 

fibroblastic, compared with the other luminal tumors (p < 0.001). LumU tumors had a higher 

cell cycle activity than the other luminal tumors (p < 0.001).

Stroma-rich samples displayed intermediate levels of urothelial differentiation. They were 

mainly characterized by stromal infiltration as summarized by ESTIMATE stromal scores 

[26], with overexpression of smooth muscle (p < 0.001), endothelial (p < 0.001), fibroblast 

(p < 0.001), and myofibroblast (p < 0.001) gene signatures.

Immune infiltration was mainly found within Ba/Sq and stroma-rich tumors, but these two 

classes were associated with distinct immune cell populations, as estimated by MCPcounter 

signatures [27]. Ba/Sq tumors were enriched in cytotoxic lymphocytes (p < 0.001) and 

natural killer cells (p < 0.001), whereas stroma-rich tumors overexpressed T-(p < 0.001) and 

B-cell (p < 0.001) markers. LumNS tumors were the only luminal type associated with 

immune infiltration signals; these were mainly for B (p = 0.002) and T (p = 0.004) 

lymphocytes. We detected no transcriptomic markers of immune infiltration in NE-like 

tumors. In TCGA samples, an estimation of tumor purity with ABSOLUTE [28] confirmed 

that stroma-rich and Ba/Sq tumors contained higher levels of nontumor cells 

(Supplementary Fig. 3).

Analyses of regulatory units (ie, regulons) for 23 regulator genes previously reported as 

associated with bladder cancer [9] were consistent with the assessed mRNA signatures (Fig. 

2C). Luminal tumors, which overexpressed strong urothelial differentiation signals, were 

associated with active PPARG and GATA3 regulons (p < 0.001 for both comparisons). 

FGFR3 regulon activity was specifically associated with LumP tumors (p < 0.001), and 

Ba/Sq tumors showed a strong association with STAT3 regulon activity (p < 0.001), 

consistent with previous results [16,24]. Additionally, a regulon analysis showed an 

association of HIF1A regulon activity with Ba/Sq tumors (p < 0.001), suggesting that this 

class is associated with a hypoxic microenvironment. EGFR regulon activity was 
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specifically associated with Ba/Sq tumors (p < 0.001), consistent with previously reported 

findings [11].

3.3. Genomic alterations associated with the consensus molecular classes

We used TCGA exome data to identify class-specific mutations (Fig. 3A and Supplementary 

Table 4) and combined 600 available copy number profiles, grouped by consensus class, to 

identify class-specific copy number aberrations (CNAs; Supplementary Table 5). In addition, 

we combined all CNA, gene fusion, and gene mutation data from the 18 cohorts to generate 

comprehensive profiles of genomic alterations for seven key bladder cancer genes (FGFR3, 

CDKN2A, PPARG, ERBB2, E2F3, TP53, and RB1) for each consensus class (Fig. 3B).

LumP tumors were mainly enriched in FGFR3 mutations, with 33% of FGFR3-mutated 

LumP tumors in the TCGA cohort (p-adjusted <0.001) and summing to 40% by adding 

FGFR3-targeted sequencing mutation data (n = 255) from additional cohorts (p-adjusted 

<0.001). LumP tumors also harbored more frequent mutations of KDM6A (38%, p-adjusted 

= 0.013). Assembling mutations, fusions, and copy number amplifications, FGFR3 genomic 

alterations were enriched in LumP tumors (55%, p < 0.001). CDKN2A multiplex ligation-

dependent probe amplification (MLPA) from 102 tumors and CNA data for 502 tumors 

revealed homozygous/deep deletions of CDKN2A in 33% of LumP tumors, which was 

significantly higher than in other classes (p < 0.001). These deletions were consistent with 

the enrichment of LumP tumors within the TCGA pan-cancer iCluster C7:Mixed (Chr9 del) 

(p < 0.001), characterized by chromosome 9 deletions (Supplementary Fig. 2).

The LumNS class was mainly characterized by enrichment of mutations in ELF3 (35%, p-

adjusted = 0.026), which is an early regulator of urothelial differentiation and is activated by 

PPARG [29]. PPARG was significantly altered as well, with 76% of LumNS tumors 

harboring either amplifications or fusions (p = 0.006).

LumU tumors also harbored frequent PPARG alterations (89%, p < 0.001) and high-level 

amplifications of a 6p22.3 region that contains E2F3 and SOX4 (76%, p < 0.001). ERBB2 
amplifications were over-represented in LumU tumors (39%, p < 0.001), but no significant 

association was found between ERBB2 mutations and any of the consensus classes. In 

contrast with the other luminal classes, LumU tumors were associated with mutations in 

TP53 (76%, p-adjusted <0.001) and in ERCC2, which codes for a core nucleotide-excision 

repair component (22%, p-adjusted = 0.039). More generally, LumU was the most 

genomically altered class (Supplementary Fig. 3), displaying the highest number of CNAs (p 
< 0.001) and the highest somatic mutation load (p = 0.009), and including more APOBEC-

induced mutations than the other consensus classes (p = 0.01). These features of genomic 

instability and the association with ERBB2 amplifications were consistent with the 

enrichment of LumU tumors within the TCGA pan-cancer subtypes C2:BRCA (HER2 amp) 

(breast tumors characterized by frequent ERBB2 amplifications, p < 0.001) and C13:Mixed 

(Chr8 del) (enriched in highly aneuploid tumors, p < 0.001, as shown in Supplementary Fig. 

2) [23].

For Ba/Sq tumors, as shown previously [30], the most frequently mutated genes based on 

TCGA exome data were TP53 (61%, p-adjusted = 0.002) and RB1 (25%, p-adjusted = 
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0.012). Aggregated mutation data, including targeted sequencing data from other cohorts, 

revealed that 58% (134/232, p = 0.009) and 20% (43/224, p = 0.007) of Ba/Sq tumors 

contained mutations in TP53 and RB1, respectively; these mutations co-occurred in 14% 

(32/224) of Ba/Sq cases. Ba/Sq tumors were also strongly associated with genomic deletions 

of 3p14.2, which occurred in 49% of cases (p = 0.001).

Combining all available data on genomic alterations of TP53 and RB1, we observed strong 

enrichment of concurrent TP53 and RB1 inactivation in NE-like tumors. TP53 was 

ubiquitously mutated in these tumors (94%, p-adjusted = 0.030), and co-occurred with RB1 
alteration by either mutations or deletions (94%, p-adjusted = 0.029).

3.4. Histological patterns associated with the consensus molecular classes

To characterize the consensus molecular classes histologically, we assembled annotations for 

urothelial cancer histological variants and specific morphological patterns (Fig. 4 and 

Supplementary Fig. 4). As expected, Ba/Sq tumors included 79% of tumors in which 

histological review identified squamous differentiation (126/159, p-adjusted <0.001). 

However, the Ba/Sq class extended beyond this histological subtype, with only 42% 

(126/303) of Ba/Sq tumors being associated with squamous differentiation identified by 

pathologists. Similarly, NE-like tumors were strongly associated with neuroendocrine 

variant histology, with 72% of histologically reviewed NE-like tumors showing 

neuroendocrine differentiation (13/18, p-adjusted <0.001), which accounts for 81% of all 

tumors with such differentiation. LumP tumors were enriched with papillary morphology as 

compared with other consensus classes (p-adjusted = 0.002). This pattern was observed in 

59% (82/139) of histologically reviewed LumP tumors, although it was frequently found in 

other luminal classes (42% in LumNS and 31% in LumU). LumNS tumors were enriched in 

micropapillary variant histology (36%, 9/25, p-adjusted = 0.032) and were commonly 

associated with carcinoma in situ (80%, 4/5, p = 0.005).

A pathological review of stromal infiltration in slide images corresponding to the TCGA 

tumor samples confirmed that stroma-rich tumors contained a higher proportion of smooth 

muscle cells (p < 0.001), consistent with the strong smooth muscle-related mRNA 

expression characterizing these tumors.

3.5. Association of the consensus molecular classes with clinical characteristics, 
survival outcomes, and therapeutic opportunities

The consensus classes were associated with gender, stage, and age (Fig. 5A). Ba/Sq tumors 

were over-represented in females (p < 0.001) and in higher clinical stages (p < 0.001), 

consistent with published results [4,9–11]. The LumP and LumU consensus classes were 

enriched in T2 versus T3–4 tumors (p = 0.009 and p < 0.001, respectively) as compared with 

other classes. Younger patients (<60 yr) were over-represented among LumP tumors (p = 

0.001), whereas the LumNS consensus class was enriched with older patients (>80 yr; p = 

0.03).

Overall survival was strongly associated with the consensus classes (Fig. 5B, p < 0.001). 

The association of consensus classes to survival was evaluated in a multivariable Cox model 

considering tumor stage, node, metastasis, and patient age as covariates (p < 0.001; 
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Supplementary Table 6). The LumP class was used as the reference for class-based survival. 

Patients with stroma-rich tumors had similar outcomes to patients with LumP tumors 

(HRStroma-rich/LumP = 0.98, IC95 = [0.65, 1.49]), and their survival was independent of the 

differentiation status of the tumor sample (Supplementary Fig. 5). Likewise, patients with 

LumNS tumors had similar prognosis to patients with LumP tumors in this multivariable 

model, which considers patient age (HRLumNS/LumP = 1.07; CI = [0.63, 1.82]).

The LumU class was associated with poorer patient prognosis (HRLumU/LumP = 1.49, IC = 

[0.93, 2.39]), although in this setting the difference was modest and not significant.

Ba/Sq tumors were associated with a poor prognosis (HRBaSq/LumP = 1.83, IC = [1.30, 2.58], 

p < 0.001), consistent with previous studies [11]. Finally, NE-like tumors were associated 

with the worst prognosis (HRNE-like/LumP = 2.34, IC = [1.09, 5.05], p < 0.03).

We characterized the consensus classes using several clinically relevant mRNA signatures 

(Fig. 5C and Supplementary Table 7). The FGFR3 signature was strongly and specifically 

activated in LumP tumors (p < 0.001), suggesting that FGFR3-targeted therapies warrant 

investigation in patients with tumors of this consensus class. Ba/Sq tumors expressed high 

levels of EGFR and its ligands (p < 0.001), which may be associated with sensitivity to 

EGFR-targeted therapies, as suggested by previously reported in vitro and in vivo 

experiments [11]. Ba/Sq tumors also strongly expressed immune checkpoint markers (p < 

0.001) and antigen-presenting machinery genes (p < 0.001), suggesting that such tumors 

might be more responsive to immunotherapies. Studies integrating mRNA signatures with 

data on response to anti-PD1/PD-L1 therapies [19,31] have reported associations of anti-

PD1/PD-L1 response with high levels of CD8 + T cells, high interferon gamma signals, and 

low activity of the transforming growth factor-beta pathway. However, considering this 

combination of factors, no consensus class had an expression profile that clearly suggested 

either response or resistance to anti-PD1/PD-L1 therapies. In contrast, NE-like and LumU 

tumors both had profiles associated with a potential response to radiotherapy [32,33], 

showing elevated cell cycle activity (pNE-like < 0.001 and pLumU < 0.001) and low hypoxia 

signals (pNE-like = 0.01 and pLumU < 0.001).

Finally, we performed a consensus class-based retrospective analysis of outcomes of patients 

receiving neoadjuvant chemotherapy (NAC) [12,18] and patients treated with the anti-PD-L1 

antibody atezolizumab (IMvigor210) [19] (Supplementary Fig. 6). While outcome was 

associated with the consensus class for NAC-free patients (Fig. 5B), for NAC-treated 

patients, we observed no significant association of outcome with the consensus class. 

Despite this, comparison of survival curves with or without NAC treatment (Supplementary 

Fig. 6A and Fig. 5B) suggested that patients with Ba/Sq or LumNS tumors may benefit from 

NAC, while patients with a stroma-rich tumor may not. We observed an enrichment in 

atezolizumab responders among patients with LumNS (p = 0.05), LumU (p = 0.0044), and 

NE-like (p = 0.012) tumors. In particular, NE-like tumors may respond to immune 

checkpoint inhibitors, as suggested by recent results [34].
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4. Discussion

While precision genomic medicine promises to transform clinical practice, the diversity of 

published MIBC classifications has delayed transferring of subtypes into both clinical trials 

and standard management of bladder cancer patients. In the present study, we generated a 

stable consensus classification system from existing well-documented molecular subtyping 

systems, following a procedure similar to that used to identify consensus subtypes in 

colorectal cancer [22]. The four consensus molecular subtypes identified in that work have 

helped frame the development of colorectal cancer precision medicine and are now being 

evaluated in clinical trials [35,36].

Here, we analyzed the relationships among six published classification systems, based on 

1750 MIBC transcriptomic profiles. We identified six consensus MIBC molecular classes 

that reconcile all six classification schemes: LumP, LumU, stroma-rich, LumNS, Ba/Sq, and 

NE-like. Each consensus class has distinct differentiation patterns, oncogenic mechanisms, 

tumor microenvironments, and histological and clinical associations, which are summarized 

in Fig. 6. To facilitate translating the consensus classes to research and clinical settings, we 

provide the community with an R-based single-sample classifier that assigns a consensus 

class label to a tumor sample’s transcriptome.

Some bladder tumors show histological and molecular intratumor heterogeneity [37]. Our 

consensus subtyping system addresses intertumor heterogeneity and focuses on defining the 

main molecular subtypes of MIBC. Our transcriptomic classifier will categorize tumors 

according to the dominant class within the tumor sample analyzed. We recognize that 

heterogeneous tumor samples may contain multiple subtypes and that some tumor classes 

are more clearly distinguishable from other tumor classes (eg, Ba/Sq and NE-like tumors). 

We address how these considerations are likely to interfere with our single-sample classifier 

by having the classifier report not simply a class label, but also correlation values to the 

centroids of the six consensus classes, and a separation score that reflects how well a sample 

is represented by its consensus class. Further studies will be required to assess the impact of 

intratumor heterogeneity on prognosis and response to treatment.

The consensus classification suggests possible therapeutic implications. Both the high rate of 

FGFR3 mutations and translocations in LumP tumors, and the FGFR3 activation signatures 

[4,9] associated with these tumors suggest that they may respond to fibroblast growth factor 

receptor (FGFR) inhibitors, irrespective of the mutation or translocation status of FGFR3. 

Novel FGFR inhibitors have been reported to clinically benefit the ~20% of MIBC patients 

with tumors harboring mutations or translocations in the tyrosine kinase receptor FGFR3 
and the ~40% of MIBC patients with tumors overexpressing FGFR3 [38–40].

There is increasing interest in targeting the tumor microenvironment, including the use of 

immunotherapy strategies. In the USA and most of Europe, PD1 and PD-L1 immune 

checkpoint inhibition is becoming part of the standard of care for patients with locally 

advanced or metastatic urothelial cancer who relapse after cisplatin-based chemotherapy or 

are considered cisplatin ineligible, with a 20% objective response rate. A phase 3 clinical 

trial has demonstrated the efficacy of targeting tumor vasculature in MIBC using an anti-
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VEGFR2 inhibitor [41]. The consensus classes are associated with different stromal 

components, identified by transcriptomic signatures, and likely different response to 

immunotherapy, as revealed by our analysis of the IMvigor210 data, suggesting that they 

should be considered for further clinical studies involving immunotherapy or antiangiogenic 

therapy.

Similarities between MIBC consensus classes and other cancer molecular subtypes reported 

in the PanCancer Atlas work may also be considered for future basket trials. We showed that 

such similarities are observed, for example, between Ba/Sq MIBC tumors and squamous cell 

carcinomas arising in the head and neck, lung, and cervix, which were placed together in the 

C27 TCGA pan-cancer cluster. LumU tumors and other ERBB2-amplified tumors in breast 

and gastric cancers were also grouped together in the C2 pan-cancer cluster. More generally, 

bladder cancer and breast cancer luminal tumors share molecular similarities [10,24]. 

Indeed, in both cancers, the luminal subtypes rely on GATA3 and FOXA1, two transcription 

factors that are necessary for luminal differentiation, and on a nuclear receptor (the estrogen 

receptor (ESR1) in breast cancer or PPARG in bladder cancer) [25]. Intriguingly, in both 

cancers, there is evidence that the nuclear receptor is involved in differentiation, while also 

having protumorigenic effects. Such comparisons across tumor types may help transfer 

treatment information from tumors bearing similar characteristics to bladder cancer and vice 

versa.

The limitations of our study include cohorts that varied in size, composition, and gene 

expression technology; retrospective collection of clinical data; and incomplete information 

regarding patient treatment. Validating our findings, and refining subtype classification as an 

independent predictor of response or prognosticator of outcome will require prospective 

studies in which the proposed classes are identified for patients who receive standardized 

treatments.

5. Conclusions

We emphasize that we report biological rather than clinical classes. We offer a single-sample 

mRNA classifier (available in an R package and web application) as a research tool for the 

retrospective and prospective work required to establish how such classes can best be used 

clinically. The consensus presented here provides a common foundation for the molecular 

classification of MIBC. Future substratifications may allow defining a system that is more 

predictive of a response to treatments; in such work, the clinical/strategic issue will be to 

decide the subtype granularity or resolution [42] that is appropriate for addressing a specific 

problem. We expect that this consensus classification will help the development of MIBC 

precision medicine by providing a robust framework to connect clinical findings to 

molecular contexts and to identify clinically relevant biomarkers for patient management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 –. 
The six consensus classes and their relationships to input molecular subtypes. (A) MCL-

clustered network. The six-consensus class solution obtained with MCL clustering on the 

Cohen’s kappa-weighted network is represented by the six cliques surrounded by black 

dotted rectangles (see the Supplementary material [Note] for the naming of consensus 

classes). The circles inside each clique symbolize the input subtypes associated with each 

consensus class and are colored according to their matching classification system. Circle 

size is proportional to the number of samples assigned to the subtype. Edge width between 

subtypes is proportional to the Cohen’s kappa score, which assesses the level of agreement 

between two classification schemes. (B) Input subtypes repartitioned among each consensus 

class. Consensus classes were predicted on 1750 MIBC samples using the single-sample 

classifier described in the Supplementary material (Methods). Here, the samples are grouped 

by their predicted consensus class labels: LumP, LumNS, LumU, stroma-rich, Ba/Sq, and 

neuroendocrine (NE)-like. For each consensus class, a bar plot shows the proportion of 
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samples assigned in each input subtype of each input classification system. See also 

Supplementary Fig. 2 for additional visualization of consensus class distributions across 

input subtypes and across datasets. (C) Relationship between subtyping results from the six 

input classification schemes. Samples are ordered by predicted consensus classes. Ba/Sq = 

basal/squamous; LumNS = luminal nonspecified; LumP = luminal papillary; LumU = 

luminal unstable; MCL = Markov cluster algorithm; MDA = MD Anderson Cancer Center; 

MIBC = muscle-invasive bladder cancer; TCGA = the Cancer Genome Atlas; UNC = 

University of North Carolina.
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Fig. 2 –. 
Characterization of tumor and stroma signals using published mRNA signatures and regulon 

analysis. Descriptions of gene sets and detailed statistics are available in Supplementary 

Table 3. (A) We performed a gene set analysis (GSA; see the Supplementary material, 

Methods) in each dataset to test the significance of differential expression of specific bladder 

cancer-related signatures in each consensus class compared with the others. The heatmaps 

show Stouffer combined GSA p values over all datasets. The upper panel refers to bladder 

cancer gene sets extracted from the ICA components described in the study by Biton et al. 

[25] (see the Supplementary material, Methods). The lower panel displays other bladder 

cancer-specific signatures retrieved from the literature: urothelial differentiation, 

keratinization, and late cell-cycle signatures from the study of Eriksson et al. [24], and an 

FGFR3 coexpressed signature from the study of Sjödahl et al. [4]. (B) We used two mRNA-

based computational tools to characterize tumor microenvironments : ESTIMATE (R 

package, v1.1.0) infers the presence of stromal cells (stromal infiltration) and the infiltration 

of immune cells (immune infiltration) in a tumor sample using two curated gene signatures 
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described by Yoshihara et al. [26]; MCPcounter (R package, v1.0.13) uses biologically 

validated transcriptomic markers of specific immune and stromal cell subpopulations to 

quantify the presence of these populations in a tumor sample [27]. We ran MCPcounter and 

ESTIMATE independently on each dataset, and used t tests to compare scores for each 

consensus class relative to the others. The heatmaps show Stouffer combined t test p values 

over all datasets. (C) We computed discrete regulon status (1 for active regulon status, 0 for 

undefined status, and −1 for inactive regulon status) in each dataset, as described in the 

Supplementary material (Methods) and in the work of Robertson et al. [9]. We evaluated the 

association between each regulon status and each consensus class using Fisher exact tests; 

the heatmap illustrates the resulting p values.

Ba/Sq = basal/squamous; ICA = independent component analysis; LumNS = luminal 

nonspecified; LumP = luminal papillary; LumU = luminal unstable; NE = neuroendocrine; 

NK = natural killer.
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Fig. 3 –. 
Genomic alterations associated with consensus classes. (A) We used the available exome 

data from 388 TCGA MIBC samples to study the association between consensus classes and 

specific gene mutations (see Supplementary Table 4 and Supplementary Fig. 3). The panel 

displays the 13 genes with MutSig q values <0.02 found in >10% of all tumors. Gene 

mutations that were significantly enriched in one consensus class are marked by an asterisk. 

(B) Combined genomic alterations associated with seven bladder cancer-associated genes 

and statistical association with consensus classes. Upper panels: main alteration types after 

aggregating CNA profiles (see Supplementary Table 5) from CIT (n = 87), Iyer (n = 58), 

Sjödahl (n = 29), Stransky (n = 22), and TCGA (n = 404) data; exome profiles (n = 388) and 

FGFR3 and PPARG fusion data (n = 404) from TCGA data; CDKN2A and RB1 MLPA data 

from CIT (n = 86 and n = 85, respectively) and Stransky (n = 16 and n = 13, respectively) 

data; FGFR3 mutation data from MDA (n = 66), CIT (n = 87), Iyer (n = 39), Sjödahl (n = 

28), and Stransky (n = 35); TP53 mutation data from MDA (n = 66), CIT (n = 87), Iyer (n = 

39), Sjödahl (n = 28), and Stransky (n = 19); and RB1 mutation data from MDA (n = 66), 

CIT (n = 85), Iyer (n = 39), and Stransky (n = 13). Lower panels: associations between each 

consensus class, each type of gene alteration, and the combined alterations were evaluated 

by Fisher’s exact test. Consensus classes significantly enriched with alterations of these 

candidate genes are marked with a black asterisk.

Ba/Sq = basal/squamous; CIT = Cartes d’Identité des Tumeurs; CNA = copy number 

aberration; LumNS = luminal nonspecified; LumP = luminal papillary; LumU = luminal 

unstable; MDA = MD Anderson Cancer Center; MIBC = muscle-invasive bladder cancer; 

NE = neuroendocrine; TCGA = the Cancer Genome Atlas.
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Fig. 4 –. 
Histopathological associations with consensus classes. (A) Histological variant over-

representation within each consensus class. One-sided Fisher exact tests were performed for 

each class and histological pattern; asterisks indicate a significant association between a 

consensus class and a histological feature (p < 0.05). Pathological review of histological 

variants was available for several cohorts: squamous differentiation was evaluated in CIT (n 
= 75), MDA (n = 46), Sjödahl2012 (n = 23), Sjödahl2017 (n = 239), and TCGA (n = 406) 

cohorts; neuroendocrine variants were reviewed in CIT (n = 75), MDA (n = 46), 

Sjödahl2017 (n = 243), and TCGA (n = 406) cohorts; micropapillary variants were reviewed 

in CIT (n = 75), MDA (n = 46), and TCGA cohorts (n = 118 FFPE tumor slides from TCGA 

were reviewed by Y.A. and J.F. for this study). Results are displayed on the heatmap as 

−log10(adj Fisher’s p). Detailed sample counts within each class are given in Supplementary 

Fig. 4. (B) Occurrence of papillary morphology in tumors from the TCGA cohort (n = 401) 

and the CIT cohort (n = 47). (C) Proportion of samples with associated CIS within each 

consensus class in tumors from the CIT cohort (n = 84) and the Dyrskjøt cohort (n = 8). (D) 
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Smooth muscle infiltration from images for 173 tumor slides from the TCGA cohort. Each 

sample was assigned a semiquantitative score ranging from 0 to 3 (0 = absent, 1 = low, 2 = 

moderate, and 3 = high) to quantify the presence of large smooth muscle bundles. The bar 

plot shows means and standard errors for each class.

Ba/Sq = basal/squamous; CIS = carcinoma in situ; CIT = Cartes d’Identité des Tumeurs; 

FFPE = formalin-fixed paraffin-embedded; LumNS = luminal nonspecified; LumP = 

luminal papillary; LumU = luminal unstable; MDA = MD Anderson Cancer Center; NE = 

neuroendocrine; TCGA = the Cancer Genome Atlas.
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Fig. 5 –. 
Clinical characteristics and prognostic associations. (A) Association of consensus classes 

with gender (n = 1554), clinical stage (n = 1641), and age category (n = 1383). (B) Five-year 

overall survival stratified by consensus class (see also Supplementary Fig. 5). Kaplan-Meier 

curves were generated from 872 patients with available follow-up data. Patients who had 

received neoadjuvant chemotherapy were excluded from the survival analysis. Detailed 

statistics of the multivariable survival analyses is given in Supplementary Table 6. (C) We 

selected a set of clinically relevant gene signatures (see Supplementary Table 7) and 

performed a gene set analysis (see the Supplementary material, Methods) in each dataset to 

test the significance of their differential expression in each consensus class relative to the 

others. We used one-sided t tests to assess the differential expression of single genes (PD-1 
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and PD-L1). The heatmaps show Stouffer combined p values over all datasets. Plus/minus 

annotation of gene sets indicates association of high gene expression levels with response/

resistance to the corresponding therapy.

Ba/Sq = basal/squamous; EGFR = epithelial growth factor receptor; FGFR = fibroblast 

growth factor receptor; IFN = interferon; LumNS = luminal nonspecified; LumP = luminal 

papillary; LumU = luminal unstable; NE = neuroendocrine; TGF = transforming growth 

factor.
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Fig. 6 –. 
Summary of the main characteristics of the consensus classes. From top to bottom, the 

following characteristics are presented: proportion of consensus classes in the 1750 tumor 

samples; consensus class names; schematic graphical representation of tumor cells and their 

microenvironments (immune cells, fibroblasts, and smooth muscle cells); differentiation-

based color scale showing features associated with consensus classes, including a luminal-

to-basal gradient and neuroendocrine differentiation; and a table displaying the dominant 

characteristics such as oncogenic mechanisms, mutations, stromal infiltrate, immune 

infiltrate, histology, clinical characteristics, and median overall survival.

Ba/Sq = basal/squamous; LumNS = luminal nonspecified; LumP = luminal papillary; LumU 

= luminal unstable; MIBC = muscle-invasive bladder cancer; NE = neuroendocrine; NK = 

natural killer.
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