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SUMMARY Toxoplasma gondii is known to infect a considerable number of mam-
malian and avian species and a substantial proportion of the world’s human popula-
tion. The parasite has an impressive ability to disseminate within the host’s body
and employs various tactics to overcome the highly regulatory blood-brain barrier
and reside in the brain. In healthy individuals, T. gondii infection is largely tolerated
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without any obvious ill effects. However, primary infection in immunosuppressed
patients can result in acute cerebral or systemic disease, and reactivation of la-
tent tissue cysts can lead to a deadly outcome. It is imperative that treatment of
life-threatening toxoplasmic encephalitis is timely and effective. Several thera-
peutic and prophylactic regimens have been used in clinical practice. Current ap-
proaches can control infection caused by the invasive and highly proliferative
tachyzoites but cannot eliminate the dormant tissue cysts. Adverse events and other
limitations are associated with the standard pyrimethamine-based therapy, and ef-
fective vaccines are unavailable. In this review, the epidemiology, economic impact,
pathophysiology, diagnosis, and management of cerebral toxoplasmosis are dis-
cussed, and critical areas for future research are highlighted.

KEYWORDS Toxoplasma gondii, toxoplasmic encephalitis, immunocompromised
patients, pathophysiology, diagnosis, treatment, cerebral toxoplasmosis

INTRODUCTION

The opportunistic organism Toxoplasma gondii has reached a global interest due to
its public health and socioeconomic impacts. This apicomplexan parasite can infect

a large number of domestic and wild animals and has infected a significant number of
people throughout the world (1). People become infected primarily through consum-
ing raw or improperly cooked meat (particularly lamb and pork) containing infectious
tissue cysts or via ingestion of sporulated oocysts in vegetables, fruits, or water
contaminated with feline feces (2). At the initial infection site in the intestine, T. gondii
infects various immune cells and use them to migrate to and infiltrate the brain, where
it employs various strategies to overcome the complex cellular structure of the blood-
brain barrier (BBB). In the vast majority of individuals with competent immune re-
sponses, primary infection is asymptomatic or may produce a mild, flu-like illness, and
the parasite eventually lies dormant within a tissue cyst. However, in less than 10% of
infections, a mononucleosis-like syndrome with headache, malaise, fever, cervical
lymphadenopathy, and fatigue may occur (3). Primary T. gondii infection can also cause
ocular disease, and in pregnant women, can lead to fetal death or brain damage in
congenitally infected children (4–6).

In addition to the three classical clinical forms of toxoplasmosis (ocular, congenital,
and cerebral), association of latent T. gondii infection with a number of behavioral
modifications and neuropsychiatric disorders has also been reported (7). Recurrence of
toxoplasmosis from latency is a frequent cause of toxoplasmic encephalitis (TE) in
people with immunosuppressive conditions such as advanced HIV infection, organ
transplantation, and neoplastic disease, or in those receiving immunosuppressive
therapies (e.g., rituximab). These patients are particularly vulnerable to recrudescence
of latent infection, in which slowly dividing bradyzoites transform into rapidly replicat-
ing tachyzoites, which can result in fatal consequences (3). Symptoms of TE may include
diffuse encephalopathy, headaches, confusion, weakness, numbness, incoordination,
and seizures. Extracerebral manifestations such as respiratory and visual problems can
also occur.

Here, we outline the epidemiology and pathobiology of T. gondii infection as it
relates to the cerebral form of toxoplasmosis, and we highlight the mechanisms by
which this parasite migrates to, invades, and colonizes the brain to causes neurological
dysfunctions. We also discuss diagnostic approaches using molecular methods and
neuroimaging techniques to confirm brain involvement in infected individuals and
summarize current strategies for the treatment and control of TE, particularly in
immunocompromised patients. Finally, we shed light on new targets for future research
that may accelerate the discovery of improved methods for managing this condition.

PARASITE BIOLOGY
Life Cycle Forms and Routes of Transmission

The provenance of the multistage life cycle of Toxoplasma gondii has been well
established. During its development, T. gondii progresses through 3 main distinctive
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forms, namely, oocyst (containing sporozoites), tachyzoite, and tissue cyst (containing
bradyzoites). Oocysts are the final product of sexual reproduction and are formed
exclusively in the intestine of infected felines. The obligate intracellular tachyzoite and
the bradyzoite represent the two main stages in the parasite’s asexual reproductive
cycle. Tachyzoites represent the rapidly dividing stage within host cells. Tachyzoites can
disseminate to multiple and distant tissues within the host’s body and can elicit
significant immune responses. Although chemotherapeutic drugs and host immune
defenses can limit their growth, some tachyzoites have the ability to overcome these
formidable challenges and transform into slowly replicating bradyzoites. In stark con-
trast to tachyzoites, bradyzoites divide slowly and remain dormant, protected within a
stage-specific cyst that is mainly located in the brain and muscle (skeletal and cardiac),
presumably due to less rapid parasite elimination caused by reduced cellular turnover
in these tissues compared to that in other organs. The preference of T. gondii to infect
neurons, and their particular location within neuronal processes, was demonstrated in
vivo for the first time by using a T. gondii reporter strain that secretes Cre into host cells,
which enabled the specific identification and direct visualization of infected neurons
(8). Bradyzoites are contained within tissue cysts that can evade the host immune
responses and facilitate the establishment of a long-term persistent infection without
causing overt disease (9). A recent study identified the Myb-like transcription factor
(BFD1) as a key regulator for bradyzoite differentiation (10). Infection in humans
commonly occurs via the consumption of food or water contaminated with tissue cysts
or oocysts (11). Congenital “vertical” transmission also occurs, in which T. gondii
tachyzoites are passed from mother to fetus through the placenta (4). Other routes of
transmission of T. gondii include organ transplantation and blood transfusion (4).

Reproductive Strategies

According to the established paradigm, the life cycle of T. gondii involves sexual and
asexual reproductive phases. The sexual reproductive phase, known as “gametogony,”
occurs within cats (and other felids), which serve as the exclusive “definitive” hosts for
T. gondii. In the intestinal epithelium of the definitive host, T. gondii differentiates into
male and female gametes that form zygotes, which leave the cat intestine and are
excreted with feces as oocysts (12). This is the main source of genetic recombination,
should the cat be coinfected with more than one T. gondii strains (13). Infected cats
shed millions of oocytes for a nonrecurring period lasting up to 3 weeks (14). Within 2
to 3 days following excretion, depending on environmental conditions, oocysts un-
dergo maturation/sporulation to become infectious. Once they become sporulated,
oocysts can survive in the environment and maintain their viability for more than a year.
The reason that the feline gut epithelium is the only tissue that can accommodate
sexual reproduction of this parasite remains largely unknown. In recent years, interest
in the development of methods for establishing in vitro culturing models of the cat
intestine has increased, and it is hoped that these models may help in unraveling the
mechanisms that allow this particular location in this particular host to support the
sexual development of T. gondii (15–17). A recent study using feline intestinal or-
ganoids has shown that a critical factor in the exclusive occurrence of sexual repro-
duction and oocyst production in the feline gut is the intrinsic abundance of linoleic
acid in cats compared to that in other mammalian (nonfelid) hosts (18). The cat gut is
genetically deficient in the enzyme delta-6-desaturase which converts linoleic acid to
arachidonic acid. Astonishingly, high levels of linoleic acid, together with inhibiting
delta-6-desaturase that suppresses metabolic conversion of linoleic acid to arachidonic
acid, have also triggered sexual reproduction and oocyst formation in mice (18).
Temporal analysis of the transcriptome of cat intestine during the first 96 h post T.
gondii infection revealed significant changes in transcripts associated with immune
response and metabolic pathways (19). A recent study showed that sexual differenti-
ation in T. gondii can be inhibited by the histone deacetylase HDAC3, in a process
mediated by microrchidia (MORC) protein and the Apetala 2 transcription factor (20).
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T. gondii shows a remarkable diversity in the range of vertebrate species that it uses
as intermediate hosts. Most warm-blooded mammals, birds, and humans can serve as
the intermediate host. Although humans are permissive to T. gondii infection, they are
dead-end hosts unless they are eaten by a feline species. Mammals and birds serve as
proper intermediate hosts and transmit tissue cysts to both the definitive feline host
and to other intermediate hosts. Within humans and other intermediate hosts, T. gondii
exists in either the more rapidly proliferating tachyzoite stage or the more dormant
bradyzoite stage. Ingestion of bradyzoite-containing cysts in raw or poorly cooked meat
or infectious oocysts that are excreted in felid fecal material are the major infection
sources. Upon entry into the small intestine, bradyzoites within the cysts, or sporozoites
within the sporulated oocysts, are released and invade the intestinal epithelial cells,
where they differentiate into tachyzoites. T. gondii tachyzoites have a distinctive ability
to migrate to distant body regions, including peripheral and immunoprivileged regions
such as the eye, brain, and placenta. As they invade, tachyzoites produce a membrane-
bound parasitophorous vacuole (PV). Within this protective shelter, T. gondii tachyzoites
secrete many effector molecules, exploit host cell metabolic resources, and reproduce
asexually in a process known as “endodyogeny,” whereby each parental tachyzoite
divides to form two daughter tachyzoites. This reproductive process in the intermediate
host continues until the accumulation of newly produced tachyzoites causes rupture of
the infected cells. Tachyzoites then continue with further rounds of invasion and
proliferation in new cells. Without therapeutic interventions or a strong immune
response, these repeated cycles of intracellular replications will cause severe or even
fatal pathologies. In the setting of effective immune response or treatment, T. gondii
establishes a chronic infection in the infected host as bradyzoites inside cysts, sur-
rounded by a wall formed by modification of the membrane that limits the bradyzoite-
containing PV (21). Under certain conditions, T. gondii undergoes phenotypic transfor-
mation from bradyzoites (the hallmark of latent infection) to tachyzoites (associated
with acute infection) (22), and this differentiation can lead to adverse, or even life-
threatening, consequences in immunocompromised individuals (3, 23).

EPIDEMIOLOGY
Burden, Global Prevalence, and Risk Factors of Toxoplasmosis

As a single disease, toxoplasmosis exerts a significant impact on health care services,
individual health care costs, and health insurance companies. Earlier estimates, pub-
lished in 2012, suggest that toxoplasmosis accounted for nearly $3 billion of illness-
related costs and approximately 11,000 quality-adjusted life years (QALYs) lost per year
(24, 25). In the United States alone, the total annual incidence of toxoplasmosis was
estimated to be 9,832; with ocular (n � 2,169) and cerebral (n � 1,399) toxoplasmosis
being the most prevalent forms of disease (26). Another 11-year study (2000 to 2010)
in the United States reported 789 toxoplasmosis-related deaths, predominantly in
people from Black and Hispanic backgrounds, with cumulative productivity losses of
approximately $815 million (27). The economic cost of foodborne toxoplasmosis in
pork was estimated to be $1.9 billion in the United States (28). During 1998 to 2010, an
annual average of 20,258 encephalitis-associated hospitalizations (attributed to T.
gondii and other infectious and noninfectious causes) were reported in the United
States (29). A 9-year Canadian study (2002 to 2011) reported an overall annual health
care cost of Can$1,686,860 attributed to toxoplasmosis (30). In the Netherlands, the
toxoplasmosis burden has been estimated to be �€44 million in health costs, with the
loss of 1,900 disability-adjusted life years (DALYs) annually (31). In Denmark, foodborne
congenital toxoplasmosis was estimated to cause the loss of �100 years of healthy life
in 2017 (32). Estimates of the burden of toxoplasmosis in other countries are needed to
support country-specific toxoplasmosis control planning.

T. gondii is a highly prevalent parasite in humans worldwide (1). The seroprevalence
of T. gondii varies substantially between the geographic regions throughout the world.
The parasite is particularly more prevalent in Western European, South American, and
African countries (33). The prevalence of toxoplasmosis can be seen as a proxy
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reflecting the hygienic and dietary practices of human populations. An increased risk
for T. gondii infection has been associated with ingesting raw or undercooked meat,
particularly pork or lamb meat, or unwashed raw vegetables or fruits. Others factors
that can predispose an individual to risk of infection include age, gender, race,
educational level, socioeconomic status, cultural background, level of health literacy,
lifestyle, living in rural areas, proximity to cats, contact with soil, scooping cat litter,
pregnancy, number of births, frequent travel to areas where T. gondii is endemic,
immigration, quality and source of drinking water, and T. gondii strain genotype/
virulence (4, 34). Because a cure for the persistent cystic stage is not currently available,
latent toxoplasmosis can be present for decades, leading to considerable individual and
societal burdens. All of the aforementioned risk factors are, fortunately, readily modi-
fiable, and reducing their impact could potentially reduce the prevalence of T. gondii
infection. Health care systems and current health-management practices should take all
the risk factors into consideration so that the burden of toxoplasmosis, particularly in
certain vulnerable groups or populations, can be minimized.

The Particular Impact on Immunocompromised Populations

TE is often reported in immunosuppressed people, such as persons living with HIV
(PLWH) (23) and patients who received a hematopoietic stem cell or a solid organ
transplant (1, 35). Also, patients receiving high doses of immunosuppressive chemo-
therapy or antineoplastic treatment and patients with an underpinning condition such
as cancer or connective tissue diseases, are at a greater risk of toxoplasmosis-associated
deaths. In these vulnerable groups, TE imposes a tremendous individual and socioeco-
nomic burden. For example, in the United States, from 1988 to 1997, toxoplasmosis
accounted for more than 21,000 hospitalizations, with a mean estimated cost of
$28,151 per person attributed to TE-associated hospitalization (36). In the United States,
�3,000 toxoplasmosis-related hospitalizations were also reported in PLWH in 2008 (37).
In Canada, HIV comorbidity with toxoplasmosis was detected in 40% of clinical cases
between 2002 and 2011, which correlated with an increased number of hospital-
izations and increased treatment cost per case and accounted for 53% of the total
toxoplasmosis-related health care costs (30). In Tanzania, most deaths attributed to
toxoplasmosis were highly associated with HIV/AIDS, and TE was responsible for 15.4%
of toxoplasmosis deaths (38). In West Africa, TE accounted for 10% of deaths due to
AIDS (39). Fortunately, the use of appropriate testing, combination antiretroviral ther-
apy (cART), and antimicrobial drugs to prevent opportunistic infection by T. gondii and
Pneumocystis jirovecii has significantly helped to reduce the incidence of reactivation of
latent infection and toxoplasmosis-associated deaths in PLWH (37). Implementation of
an early prophylaxis treatment using trimethoprim-sulfamethoxazole (TMP-SMX) start-
ing on the day of engraftment in T. gondii-seropositive patients can significantly reduce
the rate of parasite reactivation in stem cell recipients (40).

The findings of a comprehensive review of 72 studies revealed a higher T. gondii
infection rate in immunocompromised patients versus that in the control group (35.9
versus 24.7%; P � 0.001), in PLWH with advanced HIV infection versus that in the
control (42.1 versus 32.0%; P � 0.05), in cancer patients versus that in the control (26.0
versus 12.1%; P � 0.001), and in organ transplant recipients versus that in the control
(42.1 versus 34.5%; P � 0.05) (41). Therefore, prevention and treatment of toxoplasmo-
sis should aim to include both HIV and non-HIV immunocompromised populations.
Emerging epidemiologic evidence based on meta-analysis of 74 studies regarding
concurrent infections by T. gondii and HIV from 34 countries revealed a worldwide
pooled seroprevalence of 35.8%. The prevalence in Asia and the Pacific was 25.1%, that
in sub-Saharan Africa was 44.9%, that in South American and Caribbean countries was
49.1%, and that in North Africa and Middle East was 60.7%. As expected, populations
in developing countries exhibited higher comorbidity (54.7%) compared to those in
middle-income (34.2%) and high-income (26.3%) countries. The particularly high bur-
den (87.1%) in sub-Saharan Africa was attributed to the lack of resources, poor dietary
and sanitary conditions, poor health literacy, limited health care capacities, and limited
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access to safe water, all of which may have increased odds of infection (42). In these
resource-limited settings, TE can represent a particularly high risk for PLWH patients,
particularly those with less than 200 peripheral blood CD4� T cells per microliter. A
more recent systematic review analyzing 111 studies from 37 countries reported a
pooled prevalence in PLWH of T. gondii of 44.22% by IgG, which was higher than the
prevalences obtained based on IgM analysis (3.24%) and molecular methods (26.22%),
highlighting the high T. gondii infection rate in PLWH (43). The same study also
detected a correlation between T. gondii positivity and a number of variables, such as
gender, consumption of raw meat, proximity to cats, and awareness of toxoplasmosis,
suggesting that risk factors for toxoplasmosis are the same regardless of the individual’s
immune status. Given that toxoplasmosis results in significant illness in immunosup-
pressed persons, these highly vulnerable groups should be advised by their health care
providers to avoid all behaviors that can put them at risk of serious disease. A greater
understanding of the levels of T. gondii infection in PLWH is also important in order to
inform policies on allocation of resources and to guide early detection of seroconver-
sion.

MOLECULAR PATHOGENESIS
Marching to the Brain

To cause encephalitis, T. gondii must migrate to and enter the central nervous
system (CNS) and establish a persistent infection in neural and other brain cells.
Following ingestion of the infective stage, either oocysts or tissue cysts, the parasite
develops into rapidly proliferating tachyzoites, which invade and proliferate within the
intestinal epithelium. The tachyzoites then exit and infect dendritic cells (DCs) and
other immune system cell types that are important in protecting against T. gondii
infection (44). These patrolling immune cells are permissive to T. gondii infection and
represent an important niche for the parasite’s replication. In addition to using immune
cells as a replicative niche, T. gondii manipulates the functions of these cells to increase
their metastatic behavior, which is crucial for the dissemination of T. gondii to distant
organs, particularly the brain (45). The exact molecular mechanisms that promote the
hypermigratory behavior of infected cells are not fully understood, but cellular migra-
tion seems to depend on chemokines and their receptors. For example, restructuring of
the cytoskeleton, upregulation of the chemokine receptor CCR7, downregulation of
CCR5, increase of the secretion of gamma-aminobutyric acid (GABA), induction of the
GABA-A receptor, and activation of calcium channels and calcium signaling are all
implicated in the migration of infected DCs (46–49). Additionally, the upregulation of
tissue inhibitor of metalloproteinases-1 (TIMP-1), through CD63-integrin �1 (ITGB1)-
focal adhesion kinase (FAK) signaling promoted the motility of infected DCs (50). An
increased velocity of infected DCs and microglia was also mediated by the secretory T.
gondii 14-3-3 protein (51). Moreover, the secreted kinase ROP17 promoted the mobility
and dissemination of T. gondii-infected monocytes (52).

Crossing the BBB

T. gondii spreads to various tissues, such as the eye, heart, liver, lung, lymph nodes,
and muscles; however, this parasite seems to persist in neurons (and muscle), probably
due to reduced parasite elimination or cellular turnover in these tissues compared to
other organs. The parasite’s entry to the brain from the blood through cerebral capillary
endothelial cells occurs via paracellular transfer into the brain following BBB damage,
invasion of cerebrovascular endothelial cells allowing transcellular transfer, and traf-
ficking within infected immune cells into the brain in so-called “Trojan horse” attack
(Fig. 1A) (53). The accumulation of cell-free T. gondii tachyzoites at the intercellular
junctions prior to transmigration indicates that crossing of the BBB can occur via
breaching intercellular tight junctions (TJs). T. gondii adversely affects the resistance of
cerebrovascular endothelial cell monolayers and impairs the barrier’s function, thus
facilitating paracellular migration (54). Although extracellular tachyzoites can overcome
the BBB, invasion and replication within brain microvascular endothelium is an alter-
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FIG 1 Schematic illustration of T. gondii traversal across the blood-brain barrier (BBB) and the mechanisms that underlie the disruption of BBB permeability and
brain dysfunction. (A) Different routes of T. gondii entry into the brain and associated alterations in the tight junction (TJ) proteins and adhesion molecules of

(Continued on next page)
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native pathway by which T. gondii enters the CNS (55). Secretion of toxofilin (56) and
proteases (57) by T. gondii facilitates its traversal of the BBB and may underpin the
cellular destruction observed along the BBB, when only focal sites are infected by the
parasite. Crossing the BBB by T. gondii can also occur via exploitation of DCs and
monocytes as vehicles for their protection and transport across the BBB. T. gondii
preferentially enters the brain within parasitized CD11c� CD11b� monocytes and, to a
lesser extent, CD11c� CD11b�/� DCs. The increased mobilization of T. gondii-infected
phagocytes involves Gi protein-coupled signaling (57), which promotes diapedesis and
extravasation of infected cells from cerebral capillaries into the brain. Migration of
murine T. gondii-infected macrophages in Matrigel correlates with upregulation of
matrix metalloproteinases (MMPs) such as MMP-9, MT1-MMP, and ADAM10 (58).

The infiltration of infected cells into such an immune-privileged site as the brain is
a highly orchestrated process involving interactions with cerebrovascular endothelial
cells and is mediated by a number of adhesion molecules and chemokine receptors
(59). Through activation of the chemokine receptor CXCR3, the chemokines CXCL9 and
CXCL10 promote the chemotactic recruitment of T cells to the brain (60). Through their
adhesive function, ICAM-1 and its counterpart VCAM-1 facilitate the binding of leuko-
cytes to the cerebrovascular endothelium. The interleukin 1 (IL-1) signaling stimulates
the expression of VCAM-1 and ICAM-1 during T. gondii infection in mice (61). When
crossing the BBB, infected leukocytes use their LFA-1 integrin to adhere to ICAM-1.
Infected leukocytes also use selectin and its glycoprotein ligand to cross the BBB
endothelium. Using antibodies that block the ligand for VCAM-1 prevents cell entry,
further supporting the important role that adhesion molecules and endothelial cell
surface receptors have in the influx of myeloid cells, particularly infected monocytes,
into the brain (62). Interestingly, T. gondii tachyzoites were found in the choroid plexus
(CP) of PLWH (63). However, the role of the CP and blood-cerebrospinal fluid barrier in
the parasite’s entry into the CNS is unknown. Collectively, these studies have provided
significant insights into the tactics employed by T. gondii to cross the BBB in animal
models or ex vivo studies. Although our current understanding of these mechanisms in
humans remain largely speculative, it is logical to assume that T. gondii does not cross
the BBB via one exclusive mechanism in humans.

What Mediates the Course of a Persistent Brain Infection?

The preference of T. gondii for neurons is apparent, perhaps because neurons (Fig.
1B), unlike other brain cell types, do not react to inflammatory cytokines and thus do
not induce a strong antiparasitic immune response (64). Although neurons are the main
host cell type preferred by T. gondii (8), other nonneuronal cell types also contribute to
TE (65). Despite continuous immune surveillance, neuronal degeneration is rarely
observed in immunocompetent hosts infected by T. gondii. This is attributed to the
effective and balanced proinflammatory (T helper 1 [Th1] antiparasitic) and anti-
inflammatory (neuroprotective) immune responses. Maintaining this balance is crucial

FIG 1 Legend (Continued)
the cerebrovascular endothelium. The extracellular tachyzoites can directly enter the brain by paracellular or transcellular route or via a “Trojan horse”
mechanism in which tachyzoites cross the BBB within infected leukocytes. (B) Due to their unique metabolic and immunological attributes, neurons are often
vulnerable to the parasite’s attack; the parasite replicates within neurons, causing neuronal injury with production of cytokines and chemokines and resulting
in more impairment of the neurological function and disturbance of brain metabolism. Neurons also provide a permissive niche to the development of cysts,
which persist in dormancy for a long time within the brain. (C) Following entry to the brain, the tachyzoites activate resident microglia and astrocytes and elicit
immune responses to limit the parasite proliferation. The M1 phenotype of activated microglia produces proinflammatory cytokines, which exacerbate BBB
dysfunction by altering the architecture of the TJ proteins ZO-1, claudin-5, and occludin. The effects of M1 microglia are counterbalanced by alternatively
activated M2 microglia, which produce anti-inflammatory cytokines. Maintaining this immune-inflammatory equilibrium is key to the establishment of latent
infection. Infection of astrocytes and microglia also leads to the disruption of neuroreceptors, such as the alpha-7 nicotinic acetylcholine receptor (�7 nAChR)
and N-methyl-D-aspartate receptor (NMDAR), which may lead to cognitive dysfunction and neurodegeneration. Activated microglia and astrocytes secrete
chemokines (e.g., CXCL9 and CXCL10) which function as ligands for CXCR3 to promote the influx of T cells and myeloid cells (granulocytes and monocytes) into
the brain. (D) Matrix metalloproteinases (e.g., MMP-8 and MMP-10) and TIMP-1 also contribute to the regulation of the perivascular accumulation and influx
of lymphocytes into the brain to prevent the reactivation of dormant cysts. (E) Reactivation from latency can occur due to various mechanisms, such as reduced
expression of VCAM-1/�4�1 integrin, CD3�, CD4, CD8�, interferon gamma (IFN-�), and inducible nitric oxide synthase (iNOS). Reduced levels of CXCL9, CXCL10,
MyD88, interleukin 12 (IL-12), MMP-8, or MMP-10 during reactivated toxoplasmosis decrease the influx of T cells into the brain.
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for containing parasite proliferation by promoting persistent infection and preventing
parasite reactivation, while limiting excessive immune pathology.

Homing of immune cells into the brain. Immune cell migration and extravasation
through blood vessels, and their homing into infection sites, are important mechanisms
for establishing an effective immune response. The chemokines and metalloproteinases
are key regulators of these events. During TE, the cross talk between chemokines and
the cerebral immune response involve CD4� and CD8� T cells and is mainly mediated
by interferon gamma (IFN-�). Increased production of T-cell chemoattractants, partic-
ularly chemokines CXCL9, CXCL10, and CCL5, was detected in the brains of mice during
latent infection and was dependent on IFN-� (66). Infection of astrocytes or microglia
by T. gondii induced the expression of chemokines CCL5, CCL2, CXCL9, and CXCL10 (Fig.
1C), which actively recruit IFN-�-expressing T cells to control tachyzoite proliferation
(59).

The chemokine receptor CCR2 (and its ligand CCL2) contribute to the migration of
monocytes and neutrophils into the brain following infection. In CCR2-deficient
(CCR2�/�) mice, leukocyte trafficking was decreased, and immune cells within the brain
became less active, leading in turn to an increased parasite burden (67). Astrocytes
express CCL21 and CXCL10 to promote brain infiltration of CD8� T cells (68), and
microglia-derived CXCL10 modulates the search behavior of CD8� T cells in a way that
enhances their ability to detect infection sites in the brain parenchyma (60). The
damage signal protein IL-33, expressed by oligodendrocytes, induced the expression of
monocyte chemoattractant CCL2 by astrocytes (Fig. 1B), which is required for the
recruitment of monocyte-derived myeloid cells, and the expansion of focal myeloid
cell-derived inducible nitric oxide synthase (iNOS), which is crucial for survival during
chronic infection (69). T. gondii can also increase the production of the chemokines
CCL3 and CCL4 in the brain of C57Bl/10 ScSn mice (70) and in cultured cerebellar
neurons of mice (64). Infected neurons increase the production of the chemotactic
macrophage inflammatory protein-1 alpha and beta (MIP-1� and MIP-1�), which have
proinflammatory effects, leading to an influx of leucocytes at the site of inflammation
(Fig. 1B).

The interplay of the TIMP-1 and MMPs also influences the infiltration of T cells and
parasite control (Fig. 1D). Astrocytes infected with T. gondii produced MMP-2 and
MMP-9, possibly to increase extravasation and infiltration of inflammatory cells to the
infection sites (71). In a mouse model, MMP-8 increased infiltration of CD4�/CD8� T
cells, and MMP-10 increased infiltration of CD4� T cells into the brain. TIMP-1 in
astrocytes and in the infiltrating CD4�/CD8� T cells decreased the brain parasite load
without the development of adverse pathology. An increase in CD4� T cells and a
significant reduction in parasite load were detected in the brain of mice deficient in
TIMP-1 compared to those in wild-type (WT) controls, without substantial brain injury
or any reduction in the peripheral parasite burden (72). This suggests that production
of TIMP-1 may be an attempt by astrocytes to block parasite elimination by restricting
MMP-mediated recruitment of lymphocytes. This scenario seems to favor parasite
survival and to restrict neuroinflammation and brain damage, which ultimately pro-
motes persistent infection.

The roles of cytokines in containing infection. Following brain invasion, T. gondii
tachyzoites encounter strong cell-mediated (type 1) immune responses marked by the
production of IFN-�, interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-�),
which clear most of the invading tachyzoites (73). T. gondii infection induces the
expression of Toll-like receptor 11 (TLR11) in astrocytes, neurons, and microglia in mice
(74). TLR11 stimulation by the parasite’s profilin protein induces IL-12 in DCs (75).
MyD88 knockout mice rapidly succumbed to acute infection, with a commensurate
impairment in IL-12 response, suggesting that mice resistance to toxoplasmosis de-
pends on MyD88-dependent signals regulated by TLRs (76). Many in vitro and in vivo
studies have indicated the fundamental role that IFN-� plays in protecting the host
from severe T. gondii infection. IFN-� controls parasite replication via various mecha-
nisms, such as by stimulating the degradation of the PV via the production of
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immunity-related GTPases (IRGs) and interferon-inducible guanylate-binding proteins
(GBPs), increasing expression of major histocompatibility complex (MHC) and induction
of iNOS and the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO) (77–
80). Production of nitric oxide (NO) by iNOS inhibited T. gondii proliferation within
macrophages in vitro (81) and in the mouse brain (82). The procurement of nutrients
such as tryptophan from the host cells is essential for intracellular T. gondii survival.
Hence, the breakdown of tryptophan into kynurenine due to IFN-�-mediated IDO
induction can result in inhibition of tachyzoite growth (83). Increased kynurenic acid
concentrations during infection acts as an agonist of the immunosuppressive aryl
hydrocarbon receptor (AhR), which results in controlling the pathological immune
response associated with toxoplasmosis. Mice deficient in AhR (AhR�/�) succumbed
more readily to illness but developed fewer brain cysts than WT mice infected by T.
gondii (84). Additionally, the excessive production of kynurenic acid, which blocks the
alpha-7 nicotinic acetylcholine receptor (�7 nAChR) and disrupts other neuroreceptors
in infected astrocytes and microglia, can lead to abnormal neurotransmission (85) and
was hypothesized to lead to cognitive dysfunction (Fig. 1C). In response, T. gondii
secretes TgIST, an inhibitor of signal transducer and activator of transcription 1 (STAT1)
transcriptional activity, which antagonizes IFN-�-induced IDO1-mediated immunity
against T. gondii in human cells (86). Mice deficient in the lymphotoxin-� receptor
(LT�R), which has diverse antimicrobial immunoregulatory roles, had a higher parasite
burden and increased mortality in acute T. gondii infection than immunocompetent
control mice. The impaired resistance of LT�R�/� mice was attributed to the deregu-
lation of interferons and interleukins, as well as a reduced upregulation of murine GBP,
which is mediated by IFN-� and is crucial for parasite elimination, further supporting
the importance of IFN-� in controlling T. gondii (87). Mice lacking mGBP7 failed to
control parasite replication and succumbed to acute infection (88).

The contribution of astrocytes and microglia to the pathogenesis of TE is notable.
Inhibition of T. gondii replication in astrocytes was attributed to an increased induction
of IFN-�–induced GTPase (89). Genetic deletion of STAT1 in astrocytes promoted the
spread of T. gondii infection and increased susceptibility to TE (90). The orphan nuclear
hormone receptor TLX, expressed in astrocytes and neural stem cells, can support
resistance to T. gondii through enhancing STAT1 activity (91). Mice lacking cytokine
receptor gp130 (a protein of the IL-6 signaling pathway) in astrocytes showed increased
astrocyte apoptosis and inflammation during T. gondii infection. Although these mice
were able to control parasite numbers, they developed excessive inflammation and
succumbed more easily to rapid development of TE (92). Interestingly, microglia did not
seem to be the only cells in charge of controlling T. gondii in the brain through T
cell-derived IFN-� mechanisms. Mice in which both monocyte-derived macrophages
and microglia were made deficient in IFN-� signaling succumbed to infection by
19 days postinfection. Conversely, mice in which microglia were only deficient in IFN-�
signaling were able to resist infection (93). Interestingly, a recent study using a
microglia reporter mouse model showed that microglia can promote neuroinflamma-
tion via the release of alarmin IL-1�, which recruits more immune cells to control
chronic brain infection (61).

The cysticidal role of CD8� cytotoxic T lymphocytes. The anticyst activity of CD8�

cytotoxic T lymphocytes (CTLs) and the control of TE are mediated by mechanisms that
utilize both the IFN-� (the key effector of protective immunity against tachyzoites) and
perforin-mediated immune responses (94). Control of brain cyst burden is mediated
largely by CD8� CTLs that produce perforin and M2 microglia expressing CXCR3, acidic
mammalian chitinase (AMCase), and arginase-1 (95, 96). Although M2-like microglia
populations act to inhibit neuroinflammation, AMCase-deficient mice can develop a
high parasite burden in the brain, indicating a role for M2-like microglia in controlling
the parasite cysts. Both perforin and granzyme B underpin the capacity of CD8� CTLs
for direct invasion and elimination of the existing T. gondii cysts (97). Adoptive transfer
of perforin-competent CD8� CTLs to immunodeficient mice significantly reduced cyst
load and increased the level of CXCR3 and CXCR6, which promote the recruitment of
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microglia and macrophages to destroy bradyzoites within T cell-attacked cysts (98). The
induction of the CD8� CTL response is also mediated by rhoptry protein ROP7 and
dense granule protein GRA6 (99, 100). The cysticidal capacity of CD8� CTLs is related
to the amino-terminal region of T. gondii GRA6 (GRA6Nt) (101). Markedly, one epitope
in the C-terminal region of GRA6 was a strong inducer of IFN-�-mediated protection
against acute toxoplasmosis in mice (99). These results suggest that host immune
responses can recognize different GRA6 regions to stimulate CD8� T cell-based pro-
tection against both tachyzoites and tissue cysts. The cysticidal mechanism is initiated
by CD8� CTLs, but the removal of cysts is accomplished by microglia and macrophages,
which invade the cysts and destroy the bradyzoites (95). iNOS-mediated protection
conferred by CD8� CTLs is important for inhibiting the development of toxoplasmic
cysts, but it does not play a role in the mechanism required to eradicate the cysts (102).

Immune evasion strategies. T. gondii is an exceptionally successful intracellular
parasite. Despite being at constant risk of a sustained and efficient immune defensive
patrol, it can linger inside the body of the host for a long time. Some tachyzoites can
escape destruction from the immune response (or from drugs used to treat toxoplas-
mosis) and transform into bradyzoites inside quiescent cysts. Paradoxically, the Th1-
polarized immune response essential for eradication of acute infection is the same
response required to develop latent infection in the brain. T. gondii seems to subvert
CD4�-mediated immune responses through the inhibition of the MHC II transactivator
CIITA, which contributes to its long-term survival in the brain (103). T. gondii also
produces cyclophilin�18-mimicking chemokine, which, when bound to CCR5 on DCs,
evokes a Th1 response (e.g., production of IL�12), required for the establishment of
persistent infections (104). The expansion and functional maturation of cerebral DCs
contributes to the development of latent infection (105). T. gondii possesses secretory
organelles that discharge a number of polymorphic effector proteins that seem spa-
tially and temporally controlled, as different effectors are secreted at different stages of
host cell invasion and colonization and effector secretion is targeted to specific
locations to selectively modulate a specific function or a regulatory pathway within
the host cell (106–108). These effectors are utilized by T. gondii to circumvent host
immunity and to support the establishment of a latent infection (109). For example,
GRA23 and GRA17 control the delivery of small metabolites to the PV and promotes the
structural stability of the PV (110). More recently, GRA17 and GRA23 have been shown
to mediate the growth, virulence, cyst burden, and immunogenicity of the type II PRU
strain (111). GRA39 contributes to parasite virulence and tissue cyst burden (108).
Additionally, ROP16 serves as a virulence factor that activates STAT3 and STAT6 and
inhibits T-cell responses (112). ROP5 forms a complex with ROP17 and ROP18 to
prevent the recruitment of IFN-�–mediated IRGs, which are essential for PV destruction
and parasite control (113). In addition to inhibiting STAT1 transcriptional activity (86),
TgIST binds to the STAT1/STAT2 heterodimer, leading to the inhibition of type I IFN
pathway (114).

Striking a balance between friend and foe. The long-term presence of dormant
cysts in the host tissues requires a well-coordinated immune arsenal that is sufficiently
potent to combat the infection, yet moderate enough to counterbalance hyperinflam-
mation. Mice deficient in 5-lipoxygenase (5-LO) (115) or suppressor of cytokine signal-
ing 2 (SOCS-2) (116), succumbed to chronic infection and showed increased mortality
due to excessive inflammation caused by elevated IL-12 and IFN-�, regardless of the
reduction in the brain cysts. Therefore, the effects of proinflammatory cytokines (e.g.,
IFN-�) must be buffered by immunosuppressive effectors (IL-27, IL-10, and transforming
growth factor � [TGF-�]) and receptors (e.g., PD-1, LAG3, and TIGIT), without which the
continued secretion of inflammatory cytokines and homing of T cells into the brain can
lead to an exaggerated inflammatory response and encephalitis (117, 118). Therefore,
the relative balance between IL-10 and IFN-� produced by T cells will dictate whether
the immune response will eliminate the parasite with limited immunopathology or
whether chronic infection will be established. Regulatory T cells (Tregs) are activated by
IL-27, which is secreted by monocytes, to induce IL-10 and T-box transcription factor

Cerebral Toxoplasmosis Clinical Microbiology Reviews

January 2021 Volume 34 Issue 1 e00115-19 cmr.asm.org 11

https://cmr.asm.org


(T-bet) expression to attenuate the inflammatory responses (119). In the absence of
IL-27, T. gondii increases the levels of IL-17 and granulocyte-macrophage colony-
stimulating factor (GM-CSF) and results in neuroinflammation in mice (118). The
reduction of IL-10 by blocking the IL-10 receptor in chronically infected mice led to
significant tissue destruction due to the extensive inflammatory response in the brain.
The anti-inflammatory role of IL-10 during toxoplasmosis is also evidenced by the fact
that mice lacking IL-10 succumbed to fatal CNS inflammation (120, 121). Deletion of the
transcription factor Bhlhe40, an IL-10 repressor, resulted in severe T. gondii infection in
mice, which was attributed to reduced IFN-� and increased IL-10 production (122).

Although IL-10, which is commonly produced by Th2 cells, has broad anti-
inflammatory properties and suppresses Th1-cell proinflammatory responses (123) via
its inhibitory effect on the function of macrophages and DCs (124), Th1 cells secreting
IL-10 and IFN-� were detected in animals infected by T. gondii (125, 126). Recent studies
have identified a number of immune cells (for example, B cells, eosinophils, CD8� CTLs,
Tregs, and antigen-driven regulatory CD4� T cells) that can produce IL-10 (127). Tregs
expressing CXCR3 were also found to express T-bet and Foxp3 and to secrete IFN-� and
IL-10. It remains to be completely defined how IL-10 functions to limit tissue damage
while at the same time promoting persistent infection. More research is required to
reveal the extent of dependence between the mechanisms used by different types of
cells to secrete IL-10 and to elucidate how and to what magnitude different sources of
IL-10 execute the aforementioned distinct activities.

TGF-� signaling in astrocytes is of particular interest for its immunosuppressive role
during brain injury (128). Infected astrocytes secrete prostaglandin E2 (PGE2) to activate
microglia, which suppress NO production (129). TGF-�1 plays a role in the inhibition of
iNOS and NO production by IFN-�-activated microglia (130). TGF-� signaling in astro-
cytes controls neuroinflammation and neuronal injury via the inhibition of NF-�B
signaling, which in turn inhibits CCL5 and the infiltration of T cells and macrophages
(131). Thus, lack of a TGF-� signaling in astrocytes, while not necessarily affecting
parasite burden, can increase inflammation and neuronal damage.

The role of Tregs in TE. The role of Tregs in toxoplasmosis has yet to be fully
understood. However, elucidating of the mechanisms that underpin the interaction of
Tregs with CD11c-expressing DCs in the meninges and perivascular space is warranted
(132). Reduction of the suppressive Tregs during acute toxoplasmosis is commensurate
with increased IFN-� in an IL-10-independent/IL-2-dependent manner (133). In TE,
Tregs expressing Th1 response-related molecules, such as T-bet, CXCR3, and IFN-�,
were detected in the brain, where they probably limit neuroinflammation via IFN-�-
mediated increased IDO expression (134). Studies in knockout (KO) mice have shown
that inducible costimulator (ICOS) signaling promotes inflammation and antibody
production— both of which are important for parasite control—while helping to
control inflammation by inhibiting effector T-cell proliferation and inducing Tregs in the
brain and spleen (135) or by inducing IL-10 production in T cells (136).

What makes the murine model different from humans? Our knowledge of the
pathophysiology of toxoplasmosis has mostly been derived from studies in mice and
must be interpreted with caution. Marked differences exist between murine models
and humans and their mechanisms of innate recognition and cytokine production. For
example, IFN-�-mediated immune responses of IRGs and GBPs in mice does not seem
to have an equivalent in humans (106). Furthermore, parasite recognition and the
initiation of innate immunity in mice require stimulation of TLR11 and TLR12 by the
parasite profilin for the production of cytokines by myeloid cells (75, 137). The role of
TLR11/TLR12 in recognizing the parasite profilin in mice is absent in humans; instead,
immune recognition triggered by phagocytosis of the live parasite leads to IL-12 being
produced by myeloid cells (138). In contrast, immune cells in mice do not require direct
contact with live tachyzoites (139). Human peripheral blood mononuclear cells can
produce IL-12 and TNF-� after stimulation with T. gondii nucleic acids, suggesting the
involvement of TLRs 7, 8, and 9, all of which function to recognize foreign nucleic acids
(140). A recent study using human monocytes has shown that the recognition pathway
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for T. gondii relies on the detection of S100A11, a damage-related molecule secreted
from adjacent infected cells (141). Taken together, these results indicate that recogni-
tion of the pathogen is not a prerequisite for the induction of an anti-T. gondii immune
response, because immunity in humans and mice can also arise from sensing active
infection. Additional differences include the production of large amounts of IL-12 from
mouse DCs, whereas the human response to T. gondii mainly involves the expression
of CCL2 (141). In mice, T. gondii induces the production of IL-12 by myeloid cCD2 cells
(e.g., CD8��), which are distinct from the IL-12-producing cDC1 subset (e.g., CD1c�) in
humans (138). Differences in cytokine production also exist between human and
murine subpopulations of monocytes in response to T. gondii stimulation (138). Despite
the aforementioned differences, mice remain an important model for the investigation
of T. gondii infection and for the development of remedial measures. Work toward
developing animal models continues, as illustrated by a recent report using zebrafish
as a model to study T. gondii replication, T. gondii strain-specific variations in host
response, and interaction with immune cells (142).

Reactivation of Latent Infection

Dormant tissue cysts encapsulating slow-growing bradyzoites are fundamental for
the long-term survival and persistence of T. gondii in the host’s brain, due to their ability
to evade immune-mediated destruction. The following question arises: what advantage
does T. gondii gain by undergoing phenotypic transformation from dormant brady-
zoites protected within cysts to the more active tachyzoites, which are less able to
counter host immune responses? Some studies provide direct evidence supporting a
link between immunosuppression and reactivation of latent infection. Indeed, parasite
cyst reactivation is a high-frequency occurrence in immunocompromised people, such
as individuals who received organ transplantation and PLWH who have AIDS, in
particular those who are not on cART and are not receiving prophylactic TMP-SMX (23,
143, 144). In these groups of patients, phenotypic switching provides an opportunity
for uncontrolled proliferation of tachyzoites in excessive numbers, which can over-
whelm the capacity of the host’s already-compromised immune system, resulting in
life-threatening consequences (53). Therefore, durable cell-mediated immunity to T.
gondii is essential for protecting the host from reactivation of any latent infection. It
remains to be shown whether immune suppression triggers reactivation or if reactiva-
tion continues at a set rate and the immune system, which would normally control any
tachyzoites that are released, is suppressed, allowing replication without control and
leading to a clinical reactivation.

As stated above, IFN-� has a crucial role in the control of latent infection (73, 145).
Microglia are a further source of IFN-� production and contribute to the protective
immune response that maintains the CNS tolerance to T. gondii presence and prevents
any recrudescence of latent cerebral infection (146). The production of IFN-� in
microglia is mediated by GRA6Nt, which likely serves as a warning signal of the
parasite’s presence for neighboring uninfected microglia. This would be a preemptive
strategy to limit any further growth of tachyzoites in the brain via activation of the
protective immune responses and by increasing microglial production of IFN-� (147).
Astrocytic TGF-� signaling exerts anti-inflammatory and neuroprotective functions
during T. gondii infection (131). Astrocyte dysfunction during HIV infection can there-
fore lead to loss of their protective roles and diminish their ability to counter infection
(131). CXCL9 recruits and accumulates T cells around the parasite-infected brain areas
to prevent any reactivation of latent cerebral infection (148). The influx of T cells into
the brain is also mediated by the action of IFN-� on the cerebrovascular endothelium;
IFN-� increases VCAM-1/�4�1 integrin interactions to suppress TE; this appear to serve
as a host defense mechanism during the early reactivation of dormant cysts (149, 150).

Pharmacological agents, through their antiparasitic or immunomodulatory effects,
can also modulate the reactivation of latent cysts and the development of TE. For
example, termination of sulfadiazine treatment resulted in reactivation of latent infec-
tion in a murine model (151). The use of biological agents, such as anti-�4 integrin
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monoclonal antibodies used in the treatment of Crohn’s disease or multiple sclerosis,
can interfere with the VCAM-1/�4�1 integrin interaction and brain homing of CD4�

and CD8� cells, potentially increasing the odds of reactivation of latent toxoplasmosis
(Fig. 1E). In line with this assumption, administration of anti-�4 integrin antibody
inhibited key factors that play roles in controlling T. gondii growth, such as iNOS, T cells,
and IFN-� in the mouse brain (150). In addition to taking into account the effect of
using immune-modulatory biologics on the reactivation of tissue cysts, the impact of
secondary/opportunistic infections in chronically infected patients should be also
considered. The interaction between T. gondii and HIV is just one example. While
HIV-induced impairment in immune response triggers reactivation of dormant cysts,
coinfection with T. gondii compromises host immune defenses to HIV-1 and herpes
simplex virus 1 (HSV-1) by suppressing plasmacytoid dendritic cell (pDC) activation and
inhibition of IFN-� production (152). During latent toxoplasmosis, exhaustion of CD8�

CTLs and induction of programmed cell death 1 (PD-1) rendered CD8� CTLs liable to
destruction via apoptosis, leading to reactivation of latent infection and host mortality
(153, 154). Blocking of PD-1 and its ligand PD-L1 has a potential therapeutic value, as
anti-PDL-1 treatment reinvigorated CD8� CTL response, which prevented reactivation
of tissue cysts and improved survival of chronically infected mice (153). Also, inhibition
of the PD-1–PD-L1 pathway can decrease the expression of caspase 3 on polyfunctional
and IFN-��/granzyme B� memory CD8� CTLs in vitro (154). Additionally, blockade of
the immune checkpoint inhibitor PD-1 significantly reduced brain cyst burden and
increased brain infiltration of CD8� CTLs, CD11b� DCs, and CD3� T cells in mice (155).
All of the aforementioned studies indicate that development of strategies to prevent T.
gondii reactivation is achievable by maintaining enhanced proinflammatory effectors
without disproportionate reduction of the anti-inflammatory mediators.

CLINICAL SIGNS AND DIAGNOSIS

Infection of the CNS with T. gondii, or TE, can cause severe illness and death in
immunocompromised individuals. The worldwide T. gondii seroprevalence in PLWH
ranges from �26% in high-income countries to �55% in low-income countries (42).
The risk factors for TE in PLWH include blood CD4� T cell counts of �200/�l, lack of
TMP-SMX prophylaxis, which may be given to specifically prevent TE or Pneumocystis
jirovecii pneumonia (143, 156), and lack of cART used to control HIV infection (23, 144).
Because the greatest current experience with TE is in PLWH, and clinical guidelines are
available (157), we focus on this risk group. However, the principles used in the
diagnosis, screening and prevention of TE in PLWH are applicable to other at-risk
populations.

Clinical Features

TE most commonly presents as one or, more commonly, multiple brain abscesses
with a predilection for the deep gray matter structures or the junction between cortical
gray and white matter. However, any part of the brain can be affected. As such,
neurological abnormalities can be similar to what might be seen in an individual with
one or multiple brain lesions from any cause. More unique to TE is fever. Commonly
described neurological abnormalities in PLWH with TE are subacute onset of headache,
hemiparesis, cranial nerve palsies, ataxia, change in level of consciousness, or seizures
(158, 159). Due to involvement of the basal ganglia, abnormal movements, including
chorea, ballism, and rigidity may also be observed (158, 160). Uncommonly, patients
may present with an encephalitic illness rather than with discrete brain abscesses.
These individuals may present with fever; meningeal signs such as headache, stiff neck,
and photophobia; and encephalopathy that is rapidly fatal (161, 162). Similar clinical
manifestations and course have been reported in people with necrotizing ventriculitis
due to T. gondii (163).

Diagnostic Tests
Serological diagnosis. The Sabin-Feldman dye test, first reported in 1948, remains

the “gold standard” for serological detection of anti-Toxoplasma IgG and IgM antibodies
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(164). However, this method requires using live tachyzoites, which is not feasible in
most laboratories. An enzyme-linked immunosorbent assay (ELISA) is commonly used
to detect specific IgG and IgM antibodies against T. gondii. IgG titers peak within 1 to
2 months postinfection and stay high for life, which is why they are a good marker of
risk for TE in PLWH, which almost always occurs following reactivation of a preexisting
latent infection. Because the proportion of PLWH with TE who have serum anti-T. gondii
IgG antibodies can reach 100% (165, 166), identification of PLWH who are IgG sero-
positive identifies those at risk for the disease. However, empirical diagnosis based on
IgG level can be misleading because elevated serum anti-T. gondii IgG titers are
common in the general population, even in the absence of active illness (167). An
avidity assay, which is a modification of the ELISA, incorporates a denaturing agent
(e.g., urea) within serum dilutions to test for antibody avidity. The avidity values are
lower during acute infection and increase over time, which can be used to estimate
when seroconversion has occurred, and are useful in the evaluation of reactivated
infection and in pregnant women who acquire infection during gestation (168). IgM
antibodies can be detectable for over a year. Thus, the presence of IgM antibodies does
not necessarily indicate a recent infection; however, the lack of IgM rules out recent
infection. Perhaps unexpectedly, PLWH with TE do not mount an IgM response.

Cerebrospinal fluid (CSF) analysis. Mild mononuclear pleocytosis and elevated
protein can be detected in the CSF of patients with TE. Diagnostic tests for detection
of toxoplasmosis-specific IgG and IgM antibodies in the CSF do not have proven utility
beyond an empirical treatment trial. The detection of T. gondii DNA in CSF using PCR
is specific, but not sensitive, for diagnosis of TE (169, 170), meaning that a positive test
confirms the diagnosis but a negative test does not rule it out. Diagnostic accuracy
decreases if CSF is examined after more than a week of TE therapy (170). In a PLWH with
a focal brain lesion with mass effect who is not receiving anti-Toxoplasma prophylaxis,
detection of T. gondii DNA in CSF increases the likelihood of TE from 87% to 96% (171).
It is important to remember that lumbar puncture for collection of CSF may not be safe
in TE due to mass effect, which increases the risk of brain herniation after lumbar
puncture.

Histopathology. CNS toxoplasmosis in PLWH can lead to granulomatous reactions
with gliosis and microglial nodules and necrotizing encephalitis (172). The detection of
tachyzoites either alone or together with tissue cysts is diagnostic. Immunohistochem-
istry can improve the detection and localization of the parasite (173).

Neuroimaging. Brain imaging is particularly useful for the diagnosis and manage-
ment of patients with TE. Brain examination using computed tomography (CT) scan
revealed hypodense and contrast-enhancing focal brain lesions with mass effect,
primarily in basal ganglia, thalami, and cortico-medullary junction in 70 – 80% of PLWH
with TE. Less often, TE in PLWH presents with one lesion or with no lesions on brain CT.
Rarely, ventriculitis can be seen on brain CT scan of PLWH with TE (163, 174, 175).
Magnetic resonance imaging (MRI) is the clinical imaging standard used in PLWH with
suspected TE (176, 177). Given the better sensitivity of MRI compared to CT, often
patients with one lesion or no lesions on CT scan may have multiple lesions detectable
by MRI (Fig. 2). Concentric and eccentric “target sign” enhancement on contrast
enhanced MR images has been described (178, 179). Although TE can occasionally
cause a single brain lesion on MR images, an alternative diagnosis such as primary CNS
lymphoma should be considered in these individuals (180). Both TE and primary CNS
lymphoma can cause contrast-enhancing lesions with mass effect and thus cannot be
easily differentiated based on neuroradiologic criteria. However, the presence of hy-
perattenuation on nonenhanced brain CT scan and subependymal location are more
specific for lymphoma (181). Based on the retention of thallium-201, single-photon
emission computed tomography ([201Tl]-SPECT) imaging can reliably differentiate CNS
lymphoma (uptake) from TE (no uptake). Indeed, SPECT demonstrated a 92% sensitivity
and 85% specificity in distinguishing CNS lymphoma from other focal brain lesions in
PLWH (182). The use of cART may decrease the specificity of SPECT in distinguishing
between the two diagnoses (183).
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How Clinicians Use Laboratory Tests in Their Diagnostic Algorithms

In PLWH, the differential diagnosis for those with brain mass lesions with
contrast enhancement and mass effect most commonly includes TE, primary CNS
lymphoma, and tuberculoma or tuberculous abscess (Table 1). Individuals who are
seropositive for anti-Toxoplasma IgG, have blood CD4� T cell counts of �200/�l,
and are not receiving prophylaxis for TE have a high likelihood of TE (23, 184–186),
and the approach to these individuals is an empirical treatment trial. As noted
above, a positive CSF PCR for T. gondii further increases the likelihood of TE to more
than 90% (171), but lumbar puncture for collection of CSF is often not safe in
patients with mass lesions. Clinical and radiographic improvement after 10 to
14 days of empirical treatment for TE is used to establish the diagnosis. Although
brain biopsy is the gold standard for diagnosis (187), it is reserved for patients with
low probability of TE, for example, those who are seronegative, and for individuals
who fail to respond to a treatment trial (188). Accurate identification of TE can be
challenging in individuals who do not have HIV, including recipients of hemato-
poietic stem cell or solid organ transplants, and those who received immunomodu-
latory therapies, in whom a wide variety of bacterial and fungal pathogens are

FIG 2 Representative magnetic resonance images from a 68-year-old man living with HIV with toxo-
plasmic encephalitis. (A and C) T1 FLAIR post contrast. (B and D) Corresponding FLAIR. Note contrast
enhancement of both lesions (A and C, bright white rim around the lesion), the “target sign” of the left
temporal lobe lesion (white arrow), and significant mass effect (dark [low] signal on panels A and C; white
[high] signal on panels B and D).
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possible. An example of this challenge is an individual with multiple sclerosis (MS)
who developed TE during treatment with fingolimod (189). Brain lesions resembled
tumefactive MS and prompted intensification of MS treatment. Serological testing
was useful in establishing the correct diagnosis of TE.

MANAGEMENT
Pharmacotherapy

Parasite dormancy exhibited by the cystic stage remains the main stumbling block
to achieve effective eradication of toxoplasmosis because no drugs can clear tissue
cysts of T. gondii (190). Current treatments can only manage acute and reactivated
infections; both are caused by tachyzoites. If treatment is delayed, mortality can reach
a very high level in immunocompromised individuals. The activity of pyrimethamine
(PYR) is potentiated when combined with sulfadiazine (SDZ) or clindamycin (CLD) for TE
in PLWH (191, 192) and, in combination with folinic acid, is the recommended initial
treatment (193). High dose TMP-SMX is an alternative when the preferred regimen is
not available (194, 195). Owing to the potential allergy or toxicity that can occur with
the use of these drugs, alternative regimens have been used in PLWH, including the
macrolide antibiotic azithromycin or the antimalarial agent atovaquone. Unfortunately,
limited access to first-line drugs for acute TE may oblige physicians to choose an
alternative therapy. A lower-priced PYR oral suspension successfully controlled TE in a
PLWH (196), providing a new solution to tackle the challenge of affordability of the
PYR-based regimen. While the aim of the study is laudable, it highlights concerns
beyond issues of efficacy and safety, such as rising drug prices, industry profits, and
patient access to crucial drugs, especially that of uninsured patients. More information
about the treatment of toxoplasmosis in immunocompromised patients can be found
in other reviews (195, 197).

Prevention

Over the past few decades, knowledge of T. gondii biology, epidemiology, and
ecology has expanded exponentially and has provided the underpinning of the mea-
sures currently used to control T. gondii infection. Preventative measures focus on
limiting the contact with known routes of transmission and reducing exposure to the
parasite’s infective stages. As mentioned above, humans acquire T. gondii by consum-
ing food or water contaminated with oocysts shed in cat feces or by ingesting the

TABLE 1 Diagnostic pearls in the management of toxoplasmic encephalitis

Summary of recommendations regarding testing for toxoplasmic encephalitis

● A positive serum anti-T. gondii IgG suggests that a patient is at risk for TE. Therefore,
patients at risk for TE, including PLWH; individuals who will receive organ transplantation,
including solid organ or hematopoietic stem cells; or those who will begin
immunomodulatory therapies should be screened for serological evidence of latent (IgG
antibody) T. gondii infection in order to determine whether a patient is at risk of TE.

● Lack of seropositivity for T. gondii IgG antibody indicates that TE is unlikely.

● Seropositivity for T. gondii IgM antibody has limited utility in establishing a diagnosis of TE.

● Diagnosis of TE is made by demonstrating clinical and radiological improvement to empirical
anti-TE therapy. Empirical therapy is most appropriate in PLWH who have CD4� T cell counts
of �200/�l, reactive serum anti-T. gondii IgG, and are not receiving prophylaxis for TE.

● CSF PCR may support the diagnosis of TE, but lumbar puncture may not be safe in
individuals with TE because of the mass effect.

● Lesions of TE must be differentiated from those of primary CNS lymphoma and tuberculoma
or tuberculous abscess in PLWH.

● In individuals receiving solid organ or hematopoietic transplants or in patients receiving
immunomodulating therapies, TE is among a variety of potential diagnoses, which include
bacterial and fungal infections and tumefactive multiple sclerosis.
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parasite cysts in raw or undercooked meat. Also, acquisition of infection can occur via
ingestion of raw shellfish (198). Therefore, PLWH who are seronegative should only eat
meat that has been thoroughly cooked, avoid eating raw shellfish, thoroughly clean
their hands following touching raw meat, avoid gardening or handling soil without
gloves, and eat fruits and vegetables that are properly washed. If PLWH have a cat, daily
changing of the litter box should be delegated to another person who is not immu-
nocompromised and is nonpregnant. Wearing disposable gloves and washing hands
thoroughly with antiseptic should be a common practice for individuals who manage
the litter box. When possible, cats should stay indoors and not be fed raw or under-
cooked meat, and seronegative PLWH should not adopt or handle stray cats. The above
recommendations for prevention of T. gondii infection are also applicable to individuals
in other specific at-risk groups. Standardized guidelines recommend that all PLWH be
tested for serological evidence of previous T. gondii infection soon after HIV diagnosis
(157). PLWH who are also seropositive for T. gondii with peripheral blood CD4� T cell
counts of �100/�l should receive primary prophylaxis to prevent TE (157). Individuals
treated with cART who have more than 200 CD4� T cells/�l for�3 months can safely
discontinue primary prophylaxis. PLWH who have been successfully treated for TE and
are receiving cART can discontinue maintenance treatment when they achieve more
than 200 CD4� T cells/�l for �6 months (157). It is worth noting that despite these
preventive measures, no intervention is capable of completely preventing T. gondii
infection.

QUALITY OF LIFE

Link to Psychiatric Illness and Cognitive Function

Interest in exploring the connection between infection and behavioral alterations
and brain illnesses in humans was sparked following the discovery that T. gondii can
induce neurologic changes in its intermediate murine hosts in order to make them
easier prey for the definitive feline host (199). Despite a considerable amount of data,
evidence surrounding the impact of T. gondii on neurological functions, particularly in
regard to behavioral modifications and neurodegenerative disease, remains conflicting
(200). There is serological evidence, albeit indirect and preliminary, pointing to an
association between T. gondii infection and psychiatric abnormalities such as schizo-
phrenia and bipolar disorder (201–203). However, randomized clinical trials of toxo-
plasmosis treatment have not shown a benefit in individuals with schizophrenia (204).
Also, correlations between serological evidence of T. gondii infection and poorer
neurocognitive function has been reported in some, but not all, studies, including in
PLWH (205, 206). Cognitive impairment in individuals with schizophrenia who are also
T. gondii seropositive was attributed to immune-inflammation mediated by alterations
of kynurenine metabolism (207, 208). T. gondii can also alter other pathways, such as
dopaminergic and GABAergic pathways, which have also been implicated in the
neurobiology of schizophrenia (209). To what extent T. gondii-related alterations of the
aforementioned pathways lead to psychiatric illness and cognitive impairment remains
to be clarified.

Prognosis of TE in PLWH

More than half of PLWH who survive TE have residual neurological abnormalities
(210). In addition, they are faced with the possibility of HIV progression and cognitive
impairment. A prospective study of 205 PLWH and TE showed that initiation of cART
within 2 months of TE diagnosis reduced HIV disease progression compared to that in
those who started cART after 2 months (23). These results are consistent with studies
that have shown improved survival of PLWH who develop TE in the cART era (210).
PLWH with prior TE may be at greater risk of subsequent cognitive impairment and
dementia compared to those with other CNS or non-CNS opportunistic infections
(211, 212).
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PROGRESS, CHALLENGES, AND FUTURE PROSPECTS
New Pharmacological Targets

As mentioned above, PYR and SDZ are the drugs of choice. This drug combination
synergistically inhibits dihydropteroate synthase and dihydrofolate reductase, both of
which play key roles in folate biosynthesis, which is essential for the growth and
proliferation of T. gondii (213). Other treatment regimens involve atovaquone, which
exerts its effect by inhibiting the mitochondrial cytochrome bc1, leading to interruption
of cellular respiration and suppression of the parasite growth (214). Clindamycin exerts
its antimicrobial activity via inhibiting protein synthesis in the apicoplast, a vestigial
plastid organelle presents in T. gondii and other protozoa in the phylum Apicomplexa
(215). Intolerance, poor absorption (191), variations in the susceptibility of T. gondii
strains to PYR (216), increased pricing (196), adverse dermatologic and hematologic
reactions associated with the use of PYR-based therapy (194), and inability to kill
bradyzoites (190) are major challenges that limit the effectiveness of the current
first-line interventions. For these reasons, there have been significant interests in the
discovery of new formulations to treat TE. An earlier study showed that atovaquone
nanosuspensions have improved bioavailability and high therapeutic efficacy against
reactivated toxoplasmosis in mice (151). Another study demonstrated that treatment of
mice with sodium dodecyl sulfate-coated atovaquone nanosuspensions reduced par-
asite load and inflammatory reactions in the brain (217).

The last few decades have witnessed significant progress toward exploring novel
and better therapeutic agents for TE. Parasite-targeted therapeutics has been the most
common approach used to discover new generations of anti-T. gondii drugs. This
approach involves in vitro high-throughput screening of libraries of compounds for
identification of those novel molecules with a potent toxoplasmicidal activity at nano-
molar concentrations against the tachyzoite and/or bradyzoite stage. The clinical
benefit of this approach is limited owing to the need to understand the compound’s
toxicity and potential side effects, mode of action, and pharmacokinetics. Addressing
these issues can be costly and time-consuming. An alternative strategy to overcome
these hurdles is to test compounds approved to treat other indications (218). Drug
repurposing has the added advantage of discovering new leads with novel scaffolds
(different from the scaffold of PYR) and exhibit novel mechanism of actions. Screening
molecules in the open access Malaria Box (i.e., Medicines for Malaria Venture) has
revealed new anti-T. gondii drug candidates that seem to hold a promising therapeutic
potential (219, 220). Encouraging results have been reported in other repurposing
screens of existing drugs, in which several compounds were found to have new anti-T.
gondii indications (218, 221).

Tackling the Treatment Impasse of Latent Infection

Elimination of persistent T. gondii cysts is a prerequisite for the success of any
prophylactic program that aims to eliminate the risk of TE in vulnerable populations. As
noted above, researchers have tested the efficacies of repurposed approved drugs used
for other indications. For elimination of persistent T. gondii cysts, the antimalarial
endochin-like quinolones (inhibitors of the apicomplexan cytochrome bc1) (222), the
antileishmanial and antineoplastic miltefosine (inhibitor of phosphatidylcholine biosyn-
thesis and the PI3K/Akt/PKB pathway) (223, 224), and guanabenz (inhibitor of transla-
tional control and protein synthesis) significantly decreased the brain cyst burden in
latently infected mice (225). Additional compounds, such as the histone deacetylase
inhibitor FR235222 (226), tanshinone IIA (inhibitor of inflammation and cancer cell
cycle), and the antihistaminic hydroxyzine (227) have shown efficacy against T. gondii
cysts. More validation studies are needed to select the compounds with the most
potent cysticidal activity from these and many other approved drugs (195).

Vaccines

Vaccination may be used to prevent T. gondii infection or to clear latent infection.
The long-term goal to control TE can be achieved by preventing its development in
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at-risk individuals. Therefore, there is a widely acknowledged need for human vaccines
to reinforce the existing arsenal of anti-T. gondii therapeutics. Given the obvious
importance of the cysts in TE, there is a need to have more in-depth understanding of
the evolutionary pressure and the molecular pathways that mediate cyst development
and the associated immune responses. This is especially important in order to provide
well-informed perspectives for a rational development of safe and effective vaccine
capable of inducting potent immunity against T. gondii cysts. Given the crucial role of
CD8� CTLs in controlling the cysts during chronic infection, GRA6 molecules released
from bradyzoites within cysts can be a candidate immunogen for stimulating of CD8�

CTL response (101). Hence, in designing a therapeutic vaccine, inclusion of full-length
GRA6 protein or GRA6Nt epitope(s) to induce CD8� T cell responses can be a good
approach to boost immune responses against the persistent cysts. Using an adjuvant to
induce IgG2a and switch the cytokine balance toward Th1 immune responses can
potentiate the immunogenicity of a vaccine. An alternative preemptive vaccination
strategy may involve induction of GRA6Nt-primed CD8� CTLs in healthy individuals so
that when immunized individuals acquire infection, the elicited immune response can
thwart the development of new cysts, protecting the vaccinated individuals from
developing latent infection. There is evidence that the microenvironment of the cystic
stage is more dynamic than what was previously thought because bradyzoites’ repli-
cation seems to continue within the cyst, although more slowly than in tachyzoites
(228).

Several approaches to toxoplasmosis vaccine development have been explored,
such as live attenuated strains, nanoparticle-based, exosome-based, and carbohydrate-
based vaccination (229). Despite significant progress in vaccine discovery, including
many promising proof-of-concept vaccination trials in mice, none of the tested vaccines
has been advanced to clinical trials in humans. Future work toward a commercial
vaccine requires detailed validation studies in order to optimize the potency and

TABLE 2 Key questions to consider for future research

Topic Question or research need

Pathogenesis What drives the remarkable diversity of T. gondii in regard to its intermediate host range and clinical pathogenicity?
How does the mechanism of crossing the blood-brain barrier (BBB) differ among T. gondii strains?
To what extent do alterations in the actin cytoskeleton of cerebrovascular endothelial cells contribute to BBB

disruption during T. gondii infection?
What parasite gene products or effectors (e.g., soluble factors and extracellular exosomes and their contents) induce

changes in the organization or expression of tight junction (TJ) proteins in endothelial cells?
To what extent does T. gondii interaction with nonendothelial cellular components of the BBB (e.g., astrocytes,

microglia, and pericytes) contribute to the pathogenesis of cerebral toxoplasmosis?
Immunity In which ways can trafficking and influx of CD4� and CD8� T cells into the brain be modulated by matrix

metalloproteinase (MMP) agonists or tissue inhibitor of metalloproteinase (TIMP) antagonists?
How do cytokines, MMPs, and chemokines orchestrate T-cell migration to and recruitment into the brain to combat

toxoplasmosis?
How much overlap exists in the role of interleukin 10 (IL-10) originating from different sources in maintaining brain

immune homeostasis during T. gondii infection?
How does IL-10 limit T. gondii growth while at the same time attenuating excessive immune responses?

Latent infection What is the evolutionary advantage to the T. gondii parasite of infecting the CNS?
Which molecular mechanisms regulate T. gondii transitioning from dormant bradyzoites to actively proliferating

tachyzoites, and vice versa?
What are the factors that make neurons the most preferable host cell type, and what effects may the neural cell

microenvironment have on the latency and reactivation of infection?
Treatment What can be done to improve the efficacy, safety, and tolerability profiles of existing anti-T. gondii therapeutics?

Comparative studies evaluating effectiveness of different treatment strategies for toxoplasmosis are needed,
especially for those populations of patients at highest risk of TE.

Can host-targeted therapy provide new adjunctive treatments for toxoplasmosis and reduce the development of
drug resistance?

Vaccination Can vaccine cocktails incorporating multiple antigens induce more effective anti-T. gondii immune responses than a
single-antigen vaccine? What mechanisms might be involved?

What are other potent immunogenic antigens are involved in T. gondii immunopathogenesis and can be targeted for
vaccine development?

Would genetically manipulated parasites be accepted by regulatory authorities as a potential live attenuated vaccine?
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sustainability of the protective immunity, and practicality of administration. When
researchers reported in the year 2014 the first application of the gene-editing tool
CRISPR/CAS9 in T. gondii research (230), they kicked off a new era for the identification
of genes with immunogenic potentials. Several genes have since been tested in
vaccination studies in mice, which have helped to identify correlates of protection and
candidates for generating attenuated strains of the tachyzoite stage (231, 232). On the
downside, challenges remain as to prioritization of the most promising candidates from
among the many fitness-conferring genes, the relevance of these candidates for the
bradyzoite stage, and the difficulty of regulatory approval of live vaccines for human
use (229, 233). Therefore, we must remain realistic about how soon we expect a human
vaccine. T. gondii is a eukaryotic protozoan with a large �69.35-Mb genome, and it has
�8,300 protein-coding genes (234). Also, this parasite has a complex life cycle with
several antigenically distinct developmental stages that elicit different immune re-
sponses. Thus, developing a vaccine targeting several developmental stages will not be
straightforward. Although the path to an effective vaccine is full of hurdles, we should
remain hopeful that vaccines may, in the near future, become available for the control
of toxoplasmosis. Finally, while a series of landmark studies has provided important
contributions to current understanding of TE, many challenges concerning the patho-
genesis and management of TE remain unsolved (Table 2). Overcoming these chal-
lenges is critical to successful development and realization of efficient therapeutic
interventions.
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