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Abstract
This article investigates the prevalence of high and low quality URLs shared on 
Twitter when users discuss COVID-19. We distinguish between high quality health 
sources, traditional news sources, and low quality misinformation sources. We find 
that misinformation, in terms of tweets containing URLs from low quality misin-
formation websites, is shared at a higher rate than tweets containing URLs on high 
quality health information websites. However, both are a relatively small proportion 
of the overall conversation. In contrast, news sources are shared at a much higher 
rate. These findings lead us to analyze the network created by the URLs referenced 
on the webpages shared by Twitter users. When looking at the combined network 
formed by all three of the source types, we find that the high quality health informa-
tion network, the low quality misinformation network, and the news information net-
work are all well connected with a clear community structure. While high and low 
quality sites do have connections to each other, the connections to and from news 
sources are more common, highlighting the central brokerage role news sources play 
in this information ecosystem. Our findings suggest that while low quality URLs 
are not extensively shared in the COVID-19 Twitter conversation, a well connected 
community of low quality COVID-19 related information has emerged on the web, 
and both health and news sources are connecting to this community.
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Introduction

Social media are a significant conduit for news and information in the modern 
media environment, with one in three people in the world engaging in social 
media, and two thirds of those on the Internet using it  [44]. The popularity is 
higher in the United States with 68% of American adults reporting that they get 
their news on social media  [37]. This is particularly true for health and science 
information, with a third of people reporting that social media are an “important” 
source of science news [29]. Twitter, in particular, is known for sharing and con-
suming news: 59% of its users describing it as “good” or “extremely good” for 
sharing preventive health information [63].

Of course, there is a great deal of research that examines the existence and 
spread of misinformation on Twitter   [3, 14, 53], including that spread by 
bots  [21, 50]. Most notably, several researchers took interest in this phenomenon 
following the 2016 US Presidential Election   [8, 14, 25]. Clearly, misinforma-
tion abounds on Twitter, and the problem may be growing relative to other plat-
forms  [3]. Given its prevalence on Twitter, we would expect to see it proliferate 
during a pandemic as well.

More specifically, social media are also rife with health misinformation. 
Health misinformation—often defined as information that counters best available 
evidence from medical experts at the time ([62]; see also [23, 43, 56])—has been 
documented across almost all social media platforms, including Facebook, Twit-
ter, YouTube, Pinterest, and Instagram [12, 13, 20, 27, 45, 52]. Moreover, health 
misinformation is not limited to any one issue, and may be of special concern 
for global health crises like the Ebola outbreak in 2014 and the spread of Zika in 
2016, where research documented high prevalence and popularity of health mis-
information topics [20, 45, 52].

One illustrative example of misinformation on social media relates to the 
emergence of online communities around anti-vaccination attitudes and beliefs. 
Although so-called “anti-vaxxers” are a minority of the population, they are a 
vocal and growing community on social media platforms like Twitter   [28]. 
The communities that form around these sentiments also tend to be “highly 
clustered”   [66], engaging with one another, but not with other networks of 
users  [28]. They are also vulnerable to misinformation, which spreads easily on 
social media   [6], and is most rampant among the overconfident – that is, those 
who think they know more than experts  [39].

Unfortunately, there is reason to be even more concerned about the quality 
of such information in today’s news ecosystem compared to that of earlier epi-
demics. As recent research shows, trust in institutions is eroding  [58] and this 
is accompanied by renewed concern about the spread of misinformation online. 
In response, the World Health Organization raised alarms about an “infodemic” 
regarding the novel coronavirus that causes COVID-19, which they defined as 
“overabundance of information— some accurate and some not—that occurs 
during an epidemic. It can lead to confusion and ultimately mistrust in govern-
ments and public health response” [65]. Citing social media as a key driver in the 
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infodemic, the WHO called upon researchers to better define and understand the 
scope of high and low quality information spread on social media.

This article attempts to answer this call. We investigate webpages (information 
sources) being shared on Twitter when users discuss COVID-19, distinguishing 
between high quality health sources, traditional news sources, and low quality infor-
mation sources. We then investigate the networks that exist among the information 
sources. This gives us insight into whether or not communities are emerging around 
sources of high quality, low quality, and news information, or between them, and 
more generally what these ecosystems look like. We find that (1) misinformation, in 
terms of URL links to low quality information sites, is shared at a higher rate than 
links to high quality health information, but remains a relatively small proportion of 
the COVID-19 Twitter conversation; (2) news sources are shared at a higher volume 
than either low or high quality sources; (3) the networks of each group of informa-
tion sources are well connected, with clear community structure, indicating an emer-
gence of both a high quality information subnetwork and a low quality information 
subnetwork; and (4) while high and low quality sites do have connections to each 
other, the number of connections to and from news sources is larger, highlighting 
the central role news sources play in the sharing of both high and low quality infor-
mation. These findings suggest that even though low quality misinformation sources 
related to COVID-19 are not shared extensively on Twitter, the community structure 
that connects these sources to credible sources provides pathways for individuals to 
be exposed to low quality content related to COVID-19, or vice versa.

Research questions

During a pandemic or other emerging crisis, public interest in news and information 
tends to be quite high [5], and the COVID-19 pandemic is no exception [4]. How-
ever, the nature of these crises–especially in terms of the uncertainty surrounding a 
rapidly emerging infectious disease like COVID-19 - may lead people to share sub-
optimal information.

Types and frequency of shared URL content

While we might want the public to be relying on health information shared by rep-
utable health organizations, we do not know if this is the case. Likewise, people 
are expected to depend heavily on the news media during crisis situations to orient 
themselves to new information and build community [5]. Finally, low quality infor-
mation and misinformation may also be prevalent online. While the 2016 election 
brought attention to this issue [7], it is nothing new-especially in the health domain. 
For instance, a 2010 study by [47] examined 1000 randomly selected tweets men-
tioning antibiotics and found that 700 of them contained medical misinformation or 
malpractice.

Therefore, it is not surprising that similar trends appear to be emerging when con-
sidering the prevalence of misinformation on social media surrounding COVID-19 
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[1, 33, 51, 55]. While the type of misinformation being studied varies in these stud-
ies, all the studies show that misinformation sharing is occurring. According to a 
European Union External Action Committee Report, “substantive amount of both 
misinformation and disinformation are spreading on- and offline” [22]. Kousy and 
colleagues [33] used a random sample of tweets containing different coronavirus 
keywords and hashtags, and found that misinformation and unverifiable content 
within the tweets was being shared at a high rate, particularly by individual and 
informal group accounts (33.8%). Researchers have identified a number of conspir-
acy theories being shared [1, 51, 55], e.g., linking 5G to COVID-19, but the levels 
of sharing, the information cascades related to some of these conspiracies, and the 
belief in the conspiracy vary depending upon the user group studied and the specific 
conspiracy. [30] analyzed a set of misinformation claims identified by Google Fact 
Check Explorer and found that 88% of these claims were posted on social media 
sites, and that most of the information was recontextualization or ‘spinning’ of fac-
tual information. The focus of these mentioned studies has been on studying content 
of a tweet and identifying specific pieces of misinformation in that content. We take 
a different yet complementary approach by focusing on the URLs being shared and 
categorizing them according to their web-domains. This allows us to focus on the 
original producers of content being shared.

Our first descriptive analysis thus focuses on understanding the original producers 
of content that users are sharing with each other when using a COVID-19 hashtag. 
Twitter is generally a low trust environment (for example, in 2020 54% of those who 
had heard of Twitter said they distrusted it  [32]), which might suggest that much 
of the content is low-quality. How does that apply when it comes to COVID-19? 
Are individuals who share URLs linking to sources that generally share misinfor-
mation, traditional news sources, or health organizations’? Which are shared most 
frequently, and how does this change over time?

COVID‑19 information ecosystem

Earlier work on Twitter networks focused on how to model message diffusion and 
propagation [15, 31]. Later, scholars focused on characterizing specific networks of 
misinformation using Twitter data  [19, 57, 67]. More recently, researchers moved 
beyond case studies and investigated the diffusion of true and false information, and 
found that lies spread faster than truths on Twitter [15]. This previous work leads 
us to consider relationships among the sources/domains of the shared URL content.

The second descriptive analysis, therefore, focuses on understanding the eco-
system of the information sources shared by Twitter users. Specifically, our goal is 
to understand the connectivity (URL link structure) of the domains of the shared 
URLs. This allows us to investigate the following questions: Do different catego-
ries of sources link to each other? Which categories link to one another most often? 
Understanding these dynamics begins to gives us insight into whether or not net-
works of subgroups in the ecosystem have formed, and the pathways that exist 
between high and low quality information.
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Methodology

This section begins by describing our Twitter data set. We then explain the method-
ology used for each analysis.

Description of data set

Using the Twitter Streaming API, we began collecting tweets related to COVID-
19 on January 16, 2020. Data collection continues, but the data we present in this 
study is from January 16, 2020 to April 15, 2020. Table 6 in Appendix A shows the 
English hashtags we used to collect data and the date we began collecting data for 
the hashtag. Most of the data collection began in January, and additional hashtags 
were added in mid-March to reflect the changing nature of the conversation around 
COVID-19 online. 1 During the study period of January 16 through April 15, 11.2 
million tweets, 1.5 million quotes, and 54.5 million retweets were shared.

URL shares methodology

We begin by identifying all of the URLs that are shared in each tweet, retweet, and 
quote in our data set. Our tweets are not truncated and the data from the API is a 
JSON record. We extract the URLs from the JSON record, they are a separate field 
in the JSON record. If we have a retweet or a quote, we extract the URLs in the par-
ent tweet and remove URLs to the original tweets.

We then reduce each URL to the web domain and count the frequency of each 
domain to determine the most popular domains. Considering only the domain, 
rather than the content itself, is a relatively blunt measure of misinformation, but 
one that is commonly used for similar research purposes  [8, 9, 25, 50]. As one arti-
cle described it, “the attribution of “fakeness” is thus not at the level of the story but 
at that of the publisher”  [25].

To differentiate the quality of the information shared, we categorize the sources 
or webpage domains of the shared content, and focus on three relevant groups for 
understanding information quality: high-quality health sources, news sources, and 
low-quality/questionable content providers. While there are other groups that may 
be relevant, we focus on traditional information sources that the general public are 
more likely to find and share on social media.

High-Quality Health Sources (HQHS): In April 2020, we identified the set of 
reputable web domains that publish health information as follows. We first deter-
mined all the countries identified by the CDC as a Level 3 travel health notice 
country (that is, with the recommendation to “avoid all non-essential travel”). For 
each of these countries, we identify the web domain of each country’s equiva-
lent to a Center for Disease Control. Next, we augmented this list by including 

1  Note that due to a data collection glitch with the Twitter Streaming API, some of the hashtags were 
unavailable between March 13, 2020 and March 15, 2020.
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top medical journals and hospitals, and by identifying additional US government 
agencies that had official COVID-19 related recommendations (for example, 
while not a public health organization, the EPA released information about effec-
tive disinfectants). After the White House announcement regarding the America’s 
Health Insurance Plan’s collaboration with the White House Coronavirus Task 
Force, the AHIP Statement page clarifying the free testing plan was also included 
on this list. In total, there are 39 sources included in this list.

Traditional News Sources (TNS) To identify reputable news sources, we adopt 
the definition and list of traditional news sites shared by MediaBias FactCheck—
an independent online media outlet maintained by a small team of researchers 
and journalists [38]. This list has over one thousand three hundred web domains 
listed as reliable news sources. We distinguish these from HQHS because we 
want to understand the relationship between links in articles they post and HQHS 
and LQMS sites.

Low-quality/Misinformation Sources (LQMS) We identify the set of low-qual-
ity/questionable sources in two ways. First, we aggregate information using a list 
curated by NewsGuard [42]. NewsGuard is a journalistic organization that gener-
ally rates websites on their tendency to spread true or false information. Since the 
COVID-19 outbreak, they have kept a separate list of websites identified as prop-
agating misinformation specifically related to the virus. Second, we rely on lists 
of low-quality and fake news producers aggregated by various scholars and fact-
checking organizations [11]. A short summary of the lists are described below: 

1.	 ZIMDARS: Zimdars et al. [68] tag websites with at most 3 of the following sub-
categories: fake, satire, bias, conspiracy, rumor, state, junksci, hate, clickbait, 
political, reliable, unidentified, and unreliable.

2.	 MBFC: Media Bias/Fact Check is an independent online media outlet maintained 
by a small team of researchers and journalists [61]. Similar to [68], the list they 
create assigns domains to subcategories. Their list uses the following three sub-
categories: fake, conspiracy, satire.

3.	 POLITIFACT​: The staff of PolitiFact, in collaboration with Facebook, created a 
list of the most-shared fake news sites leading up to the 2016 U.S. Presidential 
election on Facebook [46]. This list labels sites using the following categories: 
fake, imposter, some fake, or parody.

4.	 DAILYDOT: the Daily Dot—a mainstream online news site created a list by ref-
erencing other pre-existing fake news lists.

5.	 ALLCOTT: Allcott et al. [2] aggregated the following five lists shared by: Politi-
fact, Grinberg et al. [24], Silverman [54], Schaedel [48], and Guess et al. [26]. 
The subcategorization process is as follows: Politifact subcategories were ignored 
and all the domains were relabeled as fake. The subcategories black, red, orange 
(black: completely false, red/orange: has unreliable claims) of [24] were main-
tained. All domains from other referenced lists were labeled as fake.

Because these lists have different subcategories of low quality information, for 
consistency, we focus on using the fake category across the different sources. We 
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perform robustness checks to understand how consistent our results are across 
the various lists since past work shows results can vary depending on the list 
used [11]. In total, our list contains 1249 low quality sources.

To determine the set of HQHS, TNS, and LQMS domains observed in our Twit-
ter data set, we first identify all of the URLs that are shared in our data set. We 
resolve redirects to determine the base web address. We then download the refer-
enced webpage. We initially downloaded webpages in March 2020 and then added 
the remaining webpages in late April 2020.2 Finally, we identify all of the URLs that 
are embedded on the downloaded webpage, e.g. a link to the CDC site in a particular 
New York Times article. We then aggregate this information to determine how often 
different sources are shared. In total, 92% of the URL content was downloaded and 
analyzed using this process. The remaining content resulted in URLs that were not 
resolved or resolved to different file types such as gifs or pdfs. The largest portion of 
the unlabeled data was bit.ly addresses that did not resolve to a valid URL.

Information sources network methodology

For each webpage we downloaded, we extracted all the URLs that were embedded 
in the webpage. We then reduced them to their domains. We construct a directed, 
weighted network by identifying domain source and destination pairs. For example, 
if three CNN news articles reference a CDC webpage, we would construct a directed 
edge from the CNN domain node to the CDC domain node. The edge weight of the 
directed edge would be three. We built an overall network of all the different types 
of information sources to determine whether or not there was connectivity across 
all of them. We then built separate networks for each of the information groups: 
HQHS, TNS, and LQMS. We compute standard network statistics, including degree, 
betweenness, eigenvector, and clustering coefficients. We also use the modularity 
clustering algorithm [41] to better understand the community structure for each 
information group. We used the NetworkX implementation of the algorithm and 
conducted an extensive sensitivity analysis to determine the final number of clusters.

Findings and analysis

Social media users commonly rely on external information to convey ideas, sup-
port claims, and serve information needs. Social media use around COVID-19 is no 
exception. Our analysis of tweets related to the disease shows that 40.04% of origi-
nal tweet content, 4.85% of the retweeted content, and 10.76% of the overall content 
includes a URL. While we do not have a random sample of tweets to compare this 
to, studies of different user groups have shown high levels of information sharing 
among the group, e.g. computer scientists [49]. While those levels are higher than 
the levels in our data set, it is clear that URL information sharing is occurring and 

2  Note that some of the content may have changed between the initial sharing of the webpage on Twitter 
and the moment we downloaded the page.
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may reflect the incredible need for information in this uncertain time [4, 5]. Uncer-
tainty is strongly related to information seeking, and this has been shown specifi-
cally in the realm of health information seeking and sharing online: “When there is 
a lack of sufficient information from traditional medical professionals, uncertainties 
arise and online media provide individuals with an opportunity for further informa-
tion seeking and sharing so as to evaluate, verify, or even challenge the prescrip-
tions” [35]. We also acknowledge that not all the URLs being shared are motivated 
by information seeking behavior. As we will show, some of the top domains shared 
are social media sources.

It is also interesting to note the large difference in tweets and retweets containing 
a URL. Specifically, Twitter users appear less likely to retweet content containing a 
URL. This is a rather unexpected finding. Social media users turn to social media 
for a variety of needs, including emotional, informational, and instrumental sup-
port [16]. This observed pattern may result because different types of needs are driv-
ing tweeting versus retweeting behavior. This is only speculation, but informational 
needs may be driving COVID-19 tweeting behavior, while emotional needs may be 
driving COVID-19 retweeting behavior [17].

Popular domains

We begin by examining these shared links to determine the most popular domains. 
In this data set, there are over two hundred and thirty seven thousand unique 
domains that people share in their tweets. Table 1 presents the top-10 domains with 
respect to their tweet frequency. We focus on those domains that are not only fre-
quently tweeted, but also have more than 100 user accounts tweeting the domain. 
By setting a threshold of 100 users sharing a URL of a specific domain, we focus on 
content that a substantial number of users chose to share, as opposed to content that 
was frequently shared by only a handful of users.

Inspecting these top-10 domains reveal some interesting patterns. First, people are 
linking to other social media platforms from Twitter. Indeed, the top two domains 
linked to in these URLs are both competing social media platforms (YouTube and 

Table 1   Most frequent domains 
shared by at least 100 user 
accounts

CBCEFB CBCEFB Domain Tweet frequency User frequency

youtube.com 357,717 145,929
instagram.com 214,001 93,605
twitter.com 129,031 29,867
nytimes.com 67,314 30,034
theguardian.com 63,744 23,950
bbc.co.uk 38,871 14,338
facebook.com 38,297 20,596
cnn.com 33,262 13,960
linkedin.com 32,613 15,066
change.org 32,456 21,012
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Instagram). Other social media platforms in the top-10 domains include Facebook 
and LinkedIn. This is consistent with research showing that disinformation cam-
paigns link across social media platforms in their efforts [64]. Second, news media 
sites tend to round out the top-10 in terms of web domains shared in tweets, with 
the New York Times, the Guardian, the BBC, and CNN. This is an indication that 
these news organizations are important for informing Twitter users about the pan-
demic. The tenth most popular domain shared is change.org. As of mid-July, over 
4500 petitions related to the COVID-19 epidemic have been shared  [18]. Petition 
topics range from giving every American extra money during this crisis to mandat-
ing schools say closed within a county in the United States until no new cases are 
identified in the county.

We also took a closer look at the most shared URL (not including retweets or 
quotes) within the Twitter domain to see the types of information people shared 
when posting a Twitter URL (Table 1 shows that Twitter is in 3rd place). We found 
that this is a reflection of the information Twitter is sharing about COVID-19: the 
most shared Twitter URL links to the official announcements about COVID-19 from 
Twitter [60].

In general, Table   1 highlights the lack of diversity in external sources shared 
with respect to COVID-19. Instead of linking to different types of sources, they link 
predominantly to social media and news media. Moreover, the dominance of cross-
platform sharing reinforces the important role that social media needs to play in 
information sharing on Twitter.

Sharing of high quality health, traditional news, and low‑quality sources

Table 2 provides a high level description of the overall prevalence of HQHS, TNS, 
and LQMS domains mentioned during Twitter conversation about COVID-19. We 
see that the tweets containing a link to reputable health sources (HQHS) account for 
0.55% of tweets and 0.12% of retweets. Traditional news (TNS) accounts for 7.6% 
of tweets and 1.2% of retweets. Finally, low-quality/fake news sources (LQMS) 
account for 0.83% of original tweets and 0.19% of retweets.

A few important patterns can be seen. First, we see that reliance on HQHS 
links is minimal, despite limiting our analysis to tweets that explicitly relate to the 

Table 2   Frequency of HQHS, TNS, and LQMS URLs shared in tweets, retweets, and quotes

Data set Tweet Count Tweets with 
URLs

HQHS URL 
Count

TNS URL 
Count

LQMS URL 
Count

Original Tweets 11,276,874 4,515,469 
(40.0%)

62,539 (0.6%) 857,601 (7.6%) 93,894 (0.8%)

Quotes 1,500,099 101,240 (6.7%) 1,853 (0.1%) 7764 (0.5%) 760 (0.05%)
Retweets 54,825,063 2,658,933 

(4.8%)
64,229 (0.1%) 654,513 (1.2%) 104,680 (0.2%)

Combined 67,602,036 7,275,642 
(10.8%)

128,621 (0.2%) 1,519,878 
(2.2%)

199,334 (0.3%)
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coronavirus—a health topic. Indeed, the reliance on LQMS is comparable to HQHS, 
with LQMS having an edge in terms of both original tweets and retweets. But while 
there are more tweets and retweets with a URL link to LQMS than HQHS domains, 
together, LQMS and HSHS account for less than one percent of the combined over-
all shared content and less than 5% of the overall shared URL content. We also see 
that traditional news source content is shared at much larger rates compared to either 
HQHS or LQMS, representing 7.6% of tweets and 1.2% of retweets. While the news 
media still are not a large part of the overall conversation, these sources fare better 
when compared against only those tweets that contain a link. Here, links to TNS 
comprise over 20% of links in our dataset, while LQMS represent 2.7% and HQHS 
account for 1.8%. One possible explanation for this discrepancy is that users may 
follow online news sources as part of their regular information gathering process 
and have confidence sharing articles from those news sources they trust.

We next inspect the breakdown of the LQMS shares in Table 3 and their Pearson 
correlation among each of the low quality lists in Table 4. We see that the preva-
lence of low quality content depends significantly on which list is chosen to make 
that judgement. This finding is in line with past work [11]. Unsurprisingly, lists such 
as Politifact and DailyDot that have a strong emphasis on political fake news do 
not identify a large number of shares. Most low quality sources are identified when 
considering lists shared by MediaBias/FactCheck and NewsGuard. One important 
finding is that even though the frequency of tweets associated with each list varies 
considerably, all of the lists’ frequency are highly correlated to the NewsGuard fre-
quency (between 0.61 and 0.82) and the MediaBias/FactCheck frequency (between 

Table 3   Frequency of low-quality URLs from different blacklists shared in tweets, retweets, and quotes

CBCEFBData set NewsGuard ALLCOTT DAILYDOT MBFC POLITIFACT​ ZIMDARS

Original Tweets 31,999 5654 2446 64,677 893 1455
Quotes 345 23 8 446 10 17
Retweets 28,855 1244 5298 84,009 338 1000
Combined 61,199 6921 7752 149,132 1241 2472

Table 4   Pearson correlation among daily tweet counts of low quality information identified on different 
blacklists

 Pearson Cor-
relation Coef-
ficient

NEWSGUARD ALLCOTT DAILYDOT MBFC POLITIFACT​ ZIMDARS

NEWSGUARD – 0.7588 0.6696 0.8215 0.6120 0.7398
ALLCOTT 0.7588 – 0.7271 0.9317 0.5399 0.7765
DAILYDOT 0.6696 0.7271 – 0.7851 0.4318 0.6225
MBFC 0.8215 0.9317 0.7851 – 0.5238 0.8082
POLITIFACT​ 0.6120 0.5399 0.4318 0.7851 – 0.7318
ZIMDARS 0.7398 0.7765 0.6225 0.9317 0.7318 –
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0.78 and 0.93). Focusing in on only the Fake News parts of the lists, some correla-
tions go up and others go down. DailyDoT has a high correlation to ZDARS (0.97), 
as does Alcott and Politifact (0.98). However, all the other correlations drop to 
between 0.14 and 0.57. In general, when the volume of tweets containing misinfor-
mation sources listed on these lists increases, so do the volume of tweets containing 
misinformation from low quality sources identified on the other lists. This may be 
an indication that webpages associated with low quality information sources have 
URLs embedded to other types of low quality information sources, e.g. a health fake 
news site may reference a political fake news site.

Finally, we want to understand how the volume of high quality, low quality, and 
news sources change over time. Figure  1 shows the daily volume of high quality 
(HQHS), low quality (LQMS) and news sources (TNS). The x axis is the date and 
the y axis is the volume. We see that the volume of all the sources are increasing, but 
the sharing of news sources is increasing at a greater rate than the sharing of high 
and low quality information sources.3 The general increase is not surprising since the 
overall volume of conversation about COVID-19 increased during this time period. 
If we instead look at the share of overall conversation of these sources, we see a dif-
ferent trend. Figure 2 shows the daily proportion of the overall conversation of each 
of these sources. We see that the shares of HQHS, LQMS, and TNS all decreased as 
the crisis continued and plateaued in April. This decreasing trend is also similar for 
URL sharing as a whole. This may result because there is a larger need for informa-
tion at the onset of the pandemic and it decreases as more information is available 

Fig. 1   Daily Tweet Volume of High Quality (HQHS—blue), Low Quality (LQMS—red), and News 
Sources (TNS—yellow). The x axis is the date and the y axis is the volume

3  As a reminder, there was a data glitch between March 13, 2020 and March 15, 2020
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from other sources. Still, it is important to remember that even though the share has 
decreased, the increase in volume means that more people are viewing/sharing more 
low quality URLs in April than in February or March. The impact could be signifi-
cant given the magnitude of the pandemic.

COVID‑19 information ecosystem

In an effort to characterize the COVID-19 information ecosystem, we examine the 
content of the shared URLs to determine which sources are being linked to within 
the webpages themselves. We focus our discussion on the high, low, and news 
domains described in the previous section. However, we pause to mention that 
the webpages shared by Twitter users contained links to over 70 million webpages 
across 1.1 million domains. Future work will investigate ways to include more of 
these sources in new analyses.

Traditional news source content When checking the content of the shared web-
pages of traditional news sources for URLs to high and low quality sources, we find 
that over 112,447 of the tweets have links to webpages from high quality sources, 
over 110,390 have links to webpages from low quality sources, and over 526,069 
have links to webpages from news or other sources. This indicates that a comparable 
amount of news content links to both high and low quality sources, although we 
cannot speak to the nature of the links. For example, it is possible that some of these 
news sites are debunking the information posted on the LQMS.

Focusing on more frequently shared news sources (news domains), we find 
that 478 news domains were mentioned in at least 100 tweets. Of those, 407 news 

Fig. 2   Daily proportion of high quality (HQHS—blue), Low Quality (LQMS—red), and News Sources 
(TNS—yellow) in Tweets



355

1 3

Journal of Computational Social Science (2020) 3:343–366	

domains contain at least one article that links to at least one HQHS site or LQMS. 
We want to classify these news sources based on the proportion of high quality and 
low quality information they share. We say a news site has high reliability if it refer-
ences high quality information sources at least 80% of the time. The news site has 
mixed reliability if it references between 50 and 80% high quality content, it has 
low reliability if it references less than 50% high quality content, and it has no reli-
ability if it links to only low quality content. We evaluated this subset and found 
that 272 out of 407 (66.83%) of these sources have high reliability, 31 (7.62%) have 
mixed reliability, 38 (9.34%) have low reliability and 66 (16.22%) have no reliabil-
ity. In other words, those news domains that are mentioned most frequently in tweets 
generally link to high quality domains, with over half being highly reliable news 
sources, but a reasonable fraction link to low quality misinformation domains, with 
over 16% only linking to low quality misinformation.4

For the long tail of less popular domains (mentioned in less than 100 tweets), 
the results are somewhat comparable. There are 850 news domains with at least one 
article containing at least one link to a HQHS site or LQMS site. Of those, 567 out 
of 850 (66.71%) of these sources have high reliability, 26 (3.06%) have mixed reli-
ability, 15 (1.76%) have low reliability and 242 (28.47%) have no reliability.

Even though the majority of sources have high reliability, a significant proportion 
have no reliability, an indication that the quality of news sources varies considerably 
with regards to COVID-19 information.

The last part of this analysis focuses on the connectivity structure of each of our 
information sources, i.e., HQHS, LQMS, and TNS, in order to understand if com-
munities have begun forming. When sources conveying similar information about 
the pandemic reference each other, it may give more legitimacy to the information if 
the information is not being debunked.

Table 5 shows the network properties of each of our information source networks. 
All of these statistics are computed after removing self-edges. The number of nodes 
in each information group varies considerably, with few nodes in HQHS and many 
nodes in TNS and LQMS. The overall density for all three networks is considered 
high relative to random networks, with HQHS being the highest of our group. In 
other words, webpages of high quality health sources connect to or reference each 
other most frequently. This is confirmed when looking at the average clustering 
coefficient. For HQHS, it is 0.61, well above random connectivity. TNS and LQMS 
are 0.43 and 0.26, respectively. While not as high as HQHS, they are still high. This 
tells us that many nodes have neighbors connected to each other, indicating a sub-
stantial community structure within each of these information sharing groups.

All three networks are disassortative, meaning they exhibit a hub-and-spoke pat-
tern. This finding is in line with analyses of the Web, but all three three networks 
have more disassortativity than most technological and biological networks studied 

4  Note that the reliability labels used here solely describe the reliability of content from those sources 
shared on Twitter. It is entirely possible, for instance, for a low-reliability site to link to high quality 
domains more often than 50% through other articles not shared on Twitter. But Twitter users show a pref-
erence for their articles with more connections to low-quality sites.
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in the past  [40]. Assortativity has a direct relationship with network robustness. 
Disassortative graphs are less robust to targeted vertex removal  [40]. In assor-
tative graphs, a failure of a central node would be less detrimental to the overall 
connectedness of the overall ecosystem since high degree nodes are connected to 
one another, creating plentiful paths to allow dissemination of information and/or 
pathways for web users to explore the information space. In disassortative networks, 
however, high degree nodes are less connected to one another. As such, failure of a 
high degree node in a disassortative network, e.g dailymail.co.uk or rt.com in our 
data set, would have a larger impact on the connectedness of the network. Recent 
work has focused on strategies to take down misinformation sites [10]. In disassorta-
tive networks, such a strategy can have a broader impact on the overall misinforma-
tion ecosystem. It is interesting to note that the HQHS is the most disassortative 
network, suggesting that they are less robust to vertex removal [41]. In other words, 
if certain central nodes do not continue to link to the smaller health agencies and 
journals, the information shared by those organizations will not be disseminated as 
broadly since redundant pathways do not exist.

We also examine the centralization of the networks to determine the degree to 
which centrality is evenly distributed in these networks. Our analysis shows that the 
networks are highly skewed, more similar in structure to power law networks than to 
random networks. This high heterogeneity of the nodes in the network can also be 
seen by examining the values of the gini index, where a gini index of zero indicates 
more homogeneous connectivity structure. All of our networks have a similar gini 
index with LQMS having the highest (0.6560), i.e. having the most heterogeneity of 
the nodes.

Fig. 3   Directed connectivity among different source Types. The percentage of information sources that 
connect to different types of information sources. A singe source can connect to multiple source types
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Looking at the overall landscape, Fig.  3 shows the percentage of information 
sources that connect to different types of sources. For example, articles from 55% 
of TNS sources connect to one or more articles from HQHS, 34% connect to one or 
more articles from LQMS, 68% connect to one or more articles from other TNS, and 
24% do not connect to HQHS, LQMS, or TNS.5 At a high level, we see that news 
sources are connected to most from HQHS (46%), and 21% of LQMS. LQMS and 
HQHS do connect to each other, but at lower rates than the other group connects. 
LQMS tend to contain URLs to sources that are not HQHS or TNS (71%). This 
could be an indication that part of the LQMS network is not being shared through 
Twitter, so it is not visible in this study. It could mean that links to information not 
connected to COVID-19 are also shared on these LQMS. While we are uncertain 
about the other sources that are linked to, it is clear that HQHS and TNS are more 
connected to each other than to LQMS.

To get a better sense of how the different sources connect to each other individu-
ally, Fig. 4 shows the network based on webpage URL links across all the sources. 
The purple nodes are TNS, the orange nodes are the LQMS, and the green nodes 
are the HQHS. The edges are the color of the source and the node size is based on 

Fig. 4   TNS-HQHS-LQMS Network. The size of the node is based on the number of connections (node 
degree), and the edge color is based on the source node: TNS (purple), HQHS (green), and LQMS 
(orange)

5  Because a single article can connect to multiple source types, the percentages will total more than 
100%.
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overall degree. The figure highlights two things. Not surprisingly, the news sources 
are dominant in the network. With regards to HQHS, this makes sense since there 
are many more news sources. However, the number of news sources and misinfor-
mation sources are comparable, thereby reinforcing our previous finding that high 
and low quality information sources have less connectivity to each other than to 
news sources. Second, the subnetworks corresponding to LQMS, HQHS, and TNS 
are not well separated. There are many individual sources across source types that 
are connecting to each other. While most LQMS sites are being connected to the 
broader network through their connections with TNS, some LQMS domains on the 
periphery are surprisingly more closely clustered with HQHS. Perhaps connections 
from TNS and HQHS are a result of refuting claims, but even if that is the case, 
clear pathways exist between the two types of sources. Overall, the figure reinforces 
the important role news organizations play for those sharing and seeking informa-
tion on social media. Previous work has suggested that when traditional news covers 
fake news, it gives the fake news oxygen, even if they are trying to refute the content 
[37]

Figure 5 focuses on the connectivity between the HQHS (green nodes) and the 
LQMS (orange nodes). While there is some connectivity between them, the majority 
of nodes in the network do not have edges across source types, recall that there are 
39 HQHS and 1249 LQMS. What is interesting is that while there are some LQMS 
connecting to HQHS, most of the nodes have very few connections and the few they 
have are to the more prominent health sources, i.e. the large nodes. Most of the con-
nections from the high degree HQHS are to other HQHS. A small number are to 
LQMS. This again highlights that the weakest pathways across the different source 
types are between HQHS and LQMS.

Fig. 5   Network between HQHS 
(green) and LQMS (orange). 
The size of the node is based 
on the number of connections 
(node degree), and the edge 
color is based on the source 
node



360	 Journal of Computational Social Science (2020) 3:343–366

1 3

Figures  6 and  7 show the clusters generated when using modularity cluster-
ing for the HQHS, and the LQMS, respectively. Figure 6 has three clusters. Each 
cluster is shown as a different color, and node size is based on node degree. The 
pink cluster mainly contains the WHO, CDC, and other health/government organ-
izations. The green cluster contains predominantly reliable research journals, 
including Nature and the Lancet, as well as some international agencies. The 
third small, blue cluster contains medical journals and groups, including JAMA 
and AMA. We do see strong ties across clusters, with the strongest being between 
the WHO and Lancet. While the high clustering coefficient was an indication 
that high levels of connectivity existed in this network, the modularity clustering 

Fig. 6   HQHS network cluster-
ing using modularity, three 
clusters are each shown in a 
different color. The node size is 
based on node degree

Fig. 7   LQMS network cluster-
ing using modularity. the 
network contains 10 clusters, 
each shown in a different color. 
The node size is based on node 
degree
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algorithm showcases that there are two larger subgroups and one small one that 
have higher than expected connectivity structures.

Figure 7 contains ten clusters. Again, each cluster is shown as a different color, 
and node size is based on node degree. Focusing on the larger clusters, the orange 
and yellow clusters contain low quality health websites, while the pink and green 
contain fake news about COVID-19 identified by MediaBias/FactCheck. Each 
community contains stronger connectivity and more pathways within the cluster 
than outside the cluster. This may result because of prevalent themes in the infor-
mation shared or reciprocal link agreements. Future research will investigate the 
similarities and differences in content across the clusters.

Limitations

This study has a number of limitations worth noting. First, our results are purely 
based on domain level analysis. In other words, all URLs from the same domain 
are classified under the same category. However, high-quality sites can sometimes, 
albeit rarely, share misinformation. For example, during the early stages of the pan-
demic, the CDC recommended not wearing masks [30]. Similarly, sites that aim to 
misinform can at times share reliable information. Despite these rare cases, in this 
paper, we opt for this simplification for two main reasons: (i) a domain level analysis 
allows us to focus on producers and therefore intent to deceive [35] and (ii) identify-
ing factualness/low quality information is a notoriously difficult task that is hard to 
scale to the size of our corpus [9].

Our next limitation has to do with the identified sources. The lists used to identify 
the set of health, traditional news, and misinformation sites are heavily US and Eng-
lish based. As such, our analysis has that particular bias.

Finally, we collected our Twitter data using a set of COVID-19 related hashtags. 
While this provides a rich dataset to examine information sharing behavior related 
to the pandemic, hashtag focused data collection has its limitations. For instance, 
tweets including different hashtags can differ in important cultural and socio-polit-
ical dimensions  [60]. To address this point, we rely on multiple relevant hashtags 
instead of only one. However, this list will still not identify all COVID-19 related 
conversations. Some of the hashtags were also added after the beginning of the 
study period. If misinformation levels vary according to hashtag, we may miss that. 
Hashtag usage also has important temporal implications. For instance,  [60] exam-
ined the Gezi Uprising and found that movement related hashtag usage was drop-
ping while the protests were intensifying. The interviews revealed that this was at 
least partially due to hashtags becoming less useful, and thus a wasteful use of char-
acters allocated to a tweet, once everyone knew the topic. A similar pattern could be 
observed for a phenomena as widely spread and impactful as COVID-19. Encourag-
ingly, we do not see a drop-off in activity in our analysis other than the days we had 
data collection issues.
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Conclusions and future directions

This article attempts to understand the types of URLs that are being shared 
on Twitter within the COVID-19 conversation. Our analysis focuses on health 
related domains, news domains, and domains containing misinformation. We 
find that while domains containing misinformation are shared at a higher rate 
than domains containing high quality health information, neither is prevalent in 
the COVID-19 conversation. Even though they are not tweeted at a high rate, a 
network analysis of links between webpages shared by misinformation sources 
shows that the network is dense, well connected, and disassortative. This means 
that even though community exists, the network is not robust to the removal of 
nodes and can be fragmented with the right interventions. While the networks we 
created based on the web content shared involving the HQHS and TNS are con-
nected to nodes/sources in one of our source groups, the majority of links in the 
LQMS webpages are linking to other sources outside of our source groups. This 
may represent a part of the misinformation ecosystem that was not captured by 
following links from Twitter. This highlights that understanding the entire con-
nectivity structure of the COVID-19 information ecosystem requires following 
all these links to other sources and identifying other links shared on other social 
media sites. Without question, this is a larger ecosystem than the 2000+ sources 
we focused on.

There are also future directions with regards to misinformation about COVID-
19 on Twitter. For example, while this paper investigates the link structure of the 
webpages, we do not analyze the content of each webpage shared. Future work 
will build topic models to understand how the topics relate to the types of infor-
mation being shared more broadly using the COVID-19 hashtags and the net-
work structure of the different categories of web domains. Another direction of 
research would investigate misinformation shared in the content of the tweet and 
understand its prevalence. Finally, not only is the misinformation being shared, 
but correcting information is also being shared. We need to find ways to measure 
how much correcting information is being shared and whether or not it propa-
gates at the same rate as the misinformation.
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Appendix A

See Table 6.
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