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Sheath rot is an emerging rice disease that causes severe yield losses worldwide. The main causal agents are the
toxin producers Sarocladium oryzae and Pseudomonas fuscovaginae. The fungus S. oryzae produces helvolic acid and
cerulenin and the bacterium P. fuscovaginae produces cyclic lipopeptides. Helvolic acid and the lipopeptide,
fuscopeptin, inhibit membrane-bound H*-ATPase pumps in the rice plant. To manage rice sheath rot, a better
understanding of the host response and virulence strategies of the pathogens is required. This study investigated
the interaction of the sheath rot pathogens with their host and the role of their toxins herein. Japonica rice was
inoculated with high- and low-helvolic acid-producing S. oryzae isolates or with P. fuscovaginae wild type and
fuscopeptin mutant strains. During infection, cerulenin, helvolic acid and the phytohormones abscisic acid,
jasmonate, auxin and salicylic acid were quantified in the sheath. In addition, disease severity and grain yield
parameters were assessed. Rice plants responded to high-toxin-producing S. oryzae and P. fuscovaginae strains with
an increase in abscisic acid, jasmonate and auxin levels. We conclude that, for both pathogens, toxins play a core
role during sheath rot infection. S. oryzae and P. fuscovaginae interact with their host in a similar way. This may
explain why both sheath rot pathogens cause very similar symptoms despite their different nature.
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Background

Rice sheath rot is an emerging disease that affects all rice
growing areas worldwide. Different pathogens have been
associated with this disease and causal agents cannot be
distinguished based on symptoms (Cottyn et al. 1996;
Bigirimana et al. 2015). High-yielding commercial rice
varieties are very susceptible to rice sheath rot. Further-
more, breeding for resistant varieties is difficult because
there are various sheath rot pathogens and there is a
lack of knowledge about their infection strategies
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(Bigirimana 2016; Sakthivel 2001; Ayyadurai et al. 2005;
Chauhan et al. 2017a; Mvuyekure et al. 2017). The main
pathogens associated with this disease are the fungus
Sarocladium oryzae and the bacterium Pseudomonas fus-
covaginae. Also different Fusarium spp., such as Fusar-
ium andiyazi, F. proliferatum, F. verticillioides and F.
fujikuroi can cause sheath rot symptoms (Bigirimana
2016; Wulff et al. 2010). Both S. oryzae and P. fuscovagi-
nae are seed-borne which could explain the fast spread-
ing of these pathogens (Batoko et al. 1997; Ayyadurai
et al. 2005; Adorada et al. 2015). All sheath rot patho-
gens cause similar greyish-brown necrotic lesions on the
uppermost leaf sheath that encloses the youngest pan-
icle. Depending on the severity of the infection, diseased
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plants produce brown, sterile or empty seeds or form
no panicle at all (Bigirimana et al. 2015; Weeraratne
et al. 2020).

The fungus S. oryzae was first described as Acrocylin-
drium oryzae in 1922 in Taiwan (Sawada 1922) and has
spread to at least 36 countries (CABI, 2020). Yield losses
range from 20% up to 85% and are the highest in hot
and humid conditions (Sakthivel 2001; Panda and Mis-
hra 2019). Cell wall degrading enzymes and the toxins
cerulenin and helvolic acid are the main virulence fac-
tors (Ayyadurai et al. 2005; Nandakumar et al. 2007).
Cerulenin, a hexaketide amide, inhibits fatty acid and
polyketide biosynthesis in other fungi and in plants
(Omura 1976; Wenzel et al. 2011). The tetracyclic triter-
penoid helvolic acid causes chlorosis on Poaceae
(Tschen et al. 1997; Sakthivel et al. 2002). It captures
free magnesium ions (Mg>*) which are needed in chloro-
phyll biosynthesis, photosynthesis and carbohydrate
transport (Tschen et al. 1997; Sakthivel et al. 2002; Cak-
mak and Kirkby 2008; Farhat et al. 2016). We have
shown before that the S. oryzae population is very di-
verse in its toxigenicity and virulence with the most
pathogenic isolates producing the highest amounts of
helvolic acid in the rice sheath. These virulent isolates
were closely related to each other and were found to be
phenotypically stable. The less virulent isolates, on the
contrary, formed sectors in stressed conditions. Sectori-
zation is a sign of phenotypic instability and was found
to affect helvolic acid production (Peeters et al. 2020).

The Gram-negative bacterium P. fuscovaginae causes
sheath brown rot in rice plants. It was first reported in
1976 in Japan and is able to cause a total yield loss
(Tanii et al. 1976; Razak et al. 2009; Weeraratne et al.
2020). Sheath brown rot has been reported in 35 coun-
tries (CABI, 2020) and is mostly associated with cold
and tropical highlands (Batoko et al. 1997; Bigirimana
2016). The phytotoxic cyclic lipopeptides (also called
lipodepsipeptides) syringotoxin, fuscopeptin A and fus-
copeptin B are involved in the disease development of P.
fuscovaginae (Flamand et al. 1996; Batoko et al. 1997).
Syringotoxin is a cyclic lipopeptide with 9 amino acid
residues that is also produced by P. syringae pv. syringae
pathogenic on citrus trees (Ballio et al. 1990; Flamand
et al. 1996). Fuscopeptin A and B contain 19 amino acid
residues and are structurally very similar to the thoroughly
studied P. syringae toxin, syringopeptin (Coraiola et al.
2008). The three toxins are produced concomitantly and
work synergistically. A toxin mixture of syringotoxin, fus-
copeptin A and B triggers necrosis on the rice sheath and,
since P. fuscovaginae is pathogenic to all Poaceae, they are
considered non-host-specific (Miyajima et al. 1983; Batoko
et al. 1998). Due to their amphiphilic nature, the toxins
act as surfactant and interact with biological membranes
thereby forming pores which cause leakage of protons,
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disrupting the proton gradient (Batoko et al. 1998;
Coraiola et al. 2008; Patel et al. 2014). Just like helvolic
acid, fuscopeptin A and B inhibit H*-ATPases. They inter-
act directly with the proton pump and inactivate the
catalytic centre (Batoko et al. 1998). Moreover, they
show antifungal activity, but not against S. oryzae
(Ballio et al. 1996).

Pathogens often use toxins to suppress pathways that
confer resistance or to manipulate essential developmen-
tal or physiological processes. With this, they aim to fa-
cilitate host entry, colonization or feeding. Because of
their important role as signalling molecules in the fine-
tuning of biotic and abiotic stress responses, phytohor-
mones are often manipulated by pathogens (De
Vleesschauwer et al. 2013; Yang et al. 2013). Pathogens
typically target the archetypal jasmonate (JA), salicylic acid
(SA) and ethylene (ET) dependent defence hormone path-
ways, which are important in the immune response of rice
(De Vleesschauwer et al. 2013; Yang et al. 2013; Patkar
and Naqvi 2017). Also the biosynthesis and signalling of
abscisic acid (ABA), and the growth hormones cytokinin
and auxin (AUX) are often affected (Kazan and Lyons
2014; Ma and Ma 2016; Patkar and Naqvi 2017). ABA is
widely studied for its role in tolerance to abiotic stress,
such as salinity, drought and cold. However, ABA also ful-
fils a role in plant immunity either alone or through a
complicated network of antagonistic and synergistic inter-
actions with other hormone signalling pathways (De
Vleesschauwer et al. 2010; Yang et al. 2013; Ku et al.
2018). The main AUX in rice is indole acetic acid (IAA).
Its role in plant defence is mostly antagonistic. Therefore,
pathogens often increase IAA levels during infection by
production and secretion of IAA or by stimulation of the
hosts IAA biosynthesis (De Vleesschauwer et al. 2013;
Yang et al. 2013).

Sheath rot pathogens cause nearly identical symptoms
on the sheath and the panicle. Since there is a partial
overlap in the mode of action of their toxins, we
hypothesize that these toxins play a crucial role in viru-
lence and that both pathogens elicit similar phytohor-
mone responses (Batoko et al. 1997, 1998; Coraiola et al.
2008; Hoagland 2009). Previous research has shown the
importance of fuscopeptin (Patel et al. 2014; Weeraratne
et al. 2020) and helvolic acid (Peeters et al. 2020) in
symptom development by resp. P. fuscovaginae and S.
oryzae. Their mode of action has been thoroughly stud-
ied in vitro but the role in the infection process and
their production profile needs further investigation
(Batoko et al. 1998; Coraiola et al. 2008; Hoagland 2009).
For adequate disease management, it is of crucial im-
portance that we understand the virulence strategies of
the sheath rot pathogens and the host defence response
(De Vleesschauwer et al. 2013). In previous research, fo-
liar application of SA did not reduce disease severity or
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decrease the yield losses caused by S. oryzae infection
(Chauhan et al. 2017b). Rice plants overexpressing
WRKY13 were more resistant to S. oryzae (Lilly and
Subramanian 2019). This transcription factor (TF) plays
an important role in the JA-SA crosstalk and in the
crosstalk between biotic and abiotic stress (Qiu et al.
2007; Xiao et al. 2013; De Vleesschauwer et al. 2014). A
balanced nutrient status and soil application of magne-
sium, copper, potassium and calcium could also reduce
disease incidence caused by S. oryzae (Tschen et al
1997; Laha et al. 2016; Zhang et al. 2019). While studies
on the host immune response to S. oryzae are very lim-
ited, information about the host response and resistance
factors against P. fuscovaginae is completely lacking.
Here, we explore the role of the toxins cerulenin, hel-
volic acid and fuscopeptin in the interaction of S. oryzae
and P. fuscovaginae with rice. S. oryzae isolates that dif-
fer in their toxin production in vitro and in planta
(Peeters et al. 2020) were used to investigate how these
compounds influence symptom development, yield
losses and the hormone balance of the rice plant. For P.
fuscovaginae, a wild type strain was compared with its
fuscopeptin mutant (Patel et al. 2014; Weeraratne et al.
2020). At different infection stages, toxin and phytohor-
mone levels were measured to better understand the
virulence strategies of the sheath rot pathogens.

Results

Disease Assessment, Phytohormone and Toxin Levels
during Sarocladium oryzae Infection

To study the interaction of S. oryzae with its host and
the role of its toxins cerulenin and helvolic acid herein,
rice plants were inoculated with four isolates (Table 1)
that were earlier shown to differ in virulence and toxin
production (Table S1; Peeters et al. 2020). The rice
sheaths of the second youngest leaf, enclosing the
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colonized grain, were collected at 4 h after inoculation
(0 days post inoculation ((DPI)) and 2 and 4 DPI. Al-
though all isolates were able to cause long, brown nec-
rotic lesions on the sheath enclosing the young panicle,
significant differences were observed in the lesion size at
4 DPI (Fig. 1).

At 4h after infection, low amounts of helvolic acid
were detected in rice sheaths inoculated with the three
most pathogenic isolates IBNG0008, BDNG0025 and
RFNG41 (Fig. 2a). During the first 48 h, their helvolic
acid production increased. Isolate BDNGO0025 showed
the highest helvolic acid production at every time point.
The least pathogenic isolate RFNG30, on the contrary,
produced trace amounts of helvolic acid only at one rep-
licate at 4 DPI, while further no helvolic acid could be
measured at all (Fig. 2a). Cerulenin was not detected at
4h after inoculation. At 2 and 4 DPI, high amounts of
cerulenin were measured in sheaths infected with
IBNGO0008, while BDNG0025 and RFNG41 showed a
lower production. At none of the stages of the infection
process, cerulenin could be detected for the isolate with
the lowest virulence (RENG30) (Fig. 2b).

In addition to the toxins, the levels of the phytohor-
mones ABA, JA, IAA and SA were measured (Fig. 2c-f).
At 4 h after inoculation (0 DPI), no changes in ABA con-
centration could be observed. At 2 DPI, ABA levels were
elevated in plants inoculated with the two most patho-
genic isolates (IBNG0008 and BDNGO0025) and, by 4
DPI, ABA levels were further increased (Fig. 2c). Com-
pared to the healthy control plants, a ten-fold increase
of ABA was measured for the virulent isolates
(IBNG0008 and BDNGO0025) while ABA levels were only
doubled in plants inoculated with RENG41 and RFNG30
(Fig. 2¢). JA, on the other hand, showed a transient in-
crease in response to all S. oryzae isolates. By 2 DPI, JA
levels again decreased in sheaths infected by isolates

Table 1 Characteristics of the Sarocladium isolates used in this study

S. oryzae isolate Origin

Phylogenic group/species
Peeters et al. 2020°

Ou et al. 2020°

IBNG 0008 Rice sheaths, Nigeria
IBNG 0009 Rice sheaths, Nigeria
BDNG 0025 Rice sheaths, Nigeria
RFRG 2 Rice sheaths, Rwanda
CBS 180.74 Rice, India

RFNG 30 Rice sheaths, Rwanda
RFNG 122 Rice sheaths, Rwanda
RFBG 3 Rice sheaths, Rwanda
RFNG 41 Rice sheaths, Rwanda
BDNG 0005 Rice sheaths, Nigeria

Group 3 S. sparsum
Group 3 S. sparsum
Group 3 S. sparsum
Group 1 S. oryzae
Group 1 S. oryzae
Group 2 S. attenuatum
Group 2 S. attenuatum
Group 2 S. attenuatum
Group 2 S. attenuatum
Group 2 S. attenuatum

2Maximum-likelihood analysis based on ACT and ITS, P Based on Maximum-likelihood analysis with on ACT, ITS, LSU and TUB2 Ou et al. (2020) have proposed to
reclassify S. oryzae in three species, which correspond with the 3 groups that were described by Peeters et al. (2020)
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different letters are statistically different (ANOVA, n =20, a=0.05)

Lesion area (mm?)

Fig. 1 Virulence of Sarocladium oryzae on Kitaake rice plants. When 7 weeks old, rice plants were inoculated in the axil of the second youngest
leaf by use of the standard grain inoculum technique (a). Disease was evaluated at 4 days post inoculation (DPI) with S. oryzae isolates IBNGO008
(dark blue), BDNG0025 (light blue), RENG41 (dark green) and RENG30 (light green) (b). All boxplots show the median with the first and third

quartile, the whiskers show the minimum and maximum values. Outliers and extreme values are represented by triangles. Boxplots marked with
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with low pathogenic potential (RENG41 and RFNG30)
and by 4 DPI, JA levels were still comparable to the con-
centration of JA in the healthy control plants. For the
virulent isolates IBNG0008 and BDNG0025, on the con-
trary, JA levels stayed elevated during the rest of the in-
fection (Fig. 2d). IAA levels were altered by S. oryzae in
a similar pattern as ABA. At 4 h after inoculation, IAA
levels were equal in all treatments. By 2 DPI, the virulent
isolates (IBNG0008 and BDNGO0025) had caused an in-
crease of IAA which stayed elevated. In less diseased
plants, similar levels as in the healthy control plants
were measured at all sampling points (Fig. 2e). SA levels
did not change in response to S. oryzae infection, al-
though a small, not significant decrease of SA was ob-
served at 4 h after inoculation of IBNGO0008 (Fig. 2f).

To further elucidate the correlation between the hor-
monal response, the toxin production and the virulence,
a wide selection of well characterized S. oryzae isolates
was used (Table 1). Figure 3 shows the phytohormone
levels in the rice sheaths of the second youngest leaf at 6
DPIL The corresponding virulence data and toxin levels
measured in the sheaths have been reported in previously
published work (Peeters et al. 2020) and the averages are
listed in Table S1. In agreement with the results shown in
Fig. 2, ABA, JA and IAA levels were the most elevated in
rice sheaths infected with IBNG0O008 and BDNGO0025.
Together with IBNG0009, to which phytohormone levels
responded in a similar way, these isolates were the most
pathogenic (Fig. 3a-c, Table S1). All three isolates pro-
duced high levels of helvolic acid, while their cerulenin

production strongly differed. In agreement with Fig. 2,
BDNGO0025 produced significantly less cerulenin than
IBNGOO008 (Table S1). One isolate (BDNGO0005) produced
a similar amount of helvolic acid as BDNG0025 but did
not trigger ABA, JA or IAA (Fig. 3a-c, Table S1). It did
however cause a small but significant decrease of SA com-
pared to the healthy control plants and this isolate was the
least virulent of all (Peeters et al. 2020). The isolate RFBG3
elevated levels of IAA while it caused only minor symp-
toms and produced no cerulenin or helvolic acid (Fig. 3a-
¢, Table S1).

Disease Assessment and Phytohormone Levels during
Pseudomonas fuscovaginae Infection

Two wild type strains were used to study the phytohor-
mone response to P. fuscovaginae infection. For this, rice
plants were injected with a bacterial solution and disease
was evaluated by measuring the lesion size around the
inoculation point (Fig. 4). The strains were equally viru-
lent and caused similar brown, necrotic lesions on both
the sheath and the stem of the rice plant (Fig. 4a).

At 4 h after inoculation (0 DPI) and 2, 4 and 8 DPI,
samples of the rice sheath around the junction point
were collected. Figure 5 shows that the rice plants
strongly responded to the inoculation method by elevat-
ing ABA. The strongest increase was observed in the
control plants which were inoculated with saline solu-
tion (Fig. 5a). By 2 DPI, ABA levels had decreased in all
conditions. A late response to both wild type strains was
observed at 8 DPI for both ABA and JA (Fig. 5a,b). IAA,



Peeters et al. Rice (2020)

13:78

Page 5 of 16

(d)

JA(ngg")

—_—
D
~—

IAA (ng g™)

SAngg™

(F) 3.5e+4 -
3.0e+4
2.5e+4
2.0e+4
1.5e+4 -
1.0e+4 -
5.0e+3
0.0

0 DPI

2 DPI

4 DPI

b be' ¢

c'

250 4

200

150 —

100

50

a

ab

E

ab"

jm|

bc" bcll
=

c"

0

160 —
140 -
120 -
100
80
60 |
40

o1 me=EHr =

0

n,-

a

_opgHH

0

O
CH
CTH

Fig. 2 (See legend on next page.)
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(See figure on previous page.)

Fig. 2 Phytohormone and toxin levels in the rice sheath during Sarocladium oryzae infection. When 7 weeks old, Kitaake rice plants were
inoculated with S. oryzae using the standard grain inoculum technique. The levels of helvolic acid (a), cerulenin (b), abscisic acid (c), jasmonate
(d), auxin (e) and salicylic acid (f) were measured in sheath samples collected after 4 h (0 days post inoculation (DPI)) and at 2 DPI and 4 DPI. The
four S. oryzae isolates are represented by dark blue (IBNG0008), light blue (BDNG0025), dark green (RFNG41) and light green (RFNG30) boxplots
and black boxplots show the results of healthy control plants. All boxplots represent the median with the first and third quartile, the whiskers
show the minimum and maximum values. Boxplots marked with different letters are statistically different (ANOVA, Dunn's or Mood's Median test,
n=4,a=0.05)
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Fig. 3 Phytohormone levels in sheath rot lesion caused by Sarocladium oryzae infection. When 7 weeks old, rice plants were inoculated with
various S. oryzae isolates using the standard grain inoculum technique. Sheath samples were collected at 6 days post inoculation (DPI) and the
levels of abscisic acid (a), jasmonate (b), auxin (c) and salicylic acid (d) were measured. The four S. oryzae isolates that were described above are
represented by dark blue (IBNG0008), light blue (BDNG0025), dark green (RFNG41) and light green (RFNG30) boxplots; black boxplots show the
results of the healthy control plants. All boxplots represent the median with the first and third quartile, the whiskers show the minimum and
maximum values. Boxplots marked with different letters are statistically different (ANOVA, n=5, a=0.05)
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not differ significantly (Wilcoxon rank sum test, n =25, a = 0.05)

Fig. 4 Virulence of Pseudomonas fuscovaginae wild type strains on Kitaake rice plants. When 7 weeks old, rice plants were inoculated with P.
fuscovaginae. (a) Lesions on the rice sheath at 8 days post inoculation (DPI). Rice plants were inoculated with bacterial solution and scored at 8
DPI (b). The purple boxplot represents strain MB194 and the red boxplot represents UPB0736. All boxplots show the median with the first and
third quartile, the whiskers show the minimum and maximum values. Outliers and extreme values are represented by triangles. The lesions did

{ 8 DPI

400 —
350 +
300 —
250

200 —

T

1

MB194 UPBO0736

150 —

100 —

50

.
0 v

on the other hand, showed a small transient increase in
response to P. fuscovaginae. At 2 DPI, the IAA increase
had started and by 4 DPI, IAA levels had dropped again
for MB194 while in UPB0736 infected plants, IAA was
still elevated. By 8 DPI, IAA concentrations were equal
to the healthy control plants (Fig. 5c). SA did not re-
spond to P. fuscovaginae infection (Fig. 5d).

The role of the lipopeptide fuscopeptin in these hor-
monal responses was investigated by inoculating the rice
plants with P. fuscovaginae wild type strain UPB0736
and its fuscopeptin mutant delta445. Preliminary results
(Fig. S1) showed a stronger response in the stem and le-
sions were larger on the third youngest leaf sheath so
the latter was used for disease evaluation and sampled
for hormone measurements. The results in Fig. 5¢ show
a response of the rice plants to P. fuscovaginae at 2 DPL
Therefore, disease was scored at 2, 4 and 8 DPL. At every
time point, inoculation with the wild type strain
UPB0736 caused similar patterns of infection, while the
fuscopeptin mutant strain deltad45 was significantly less
virulent (Fig. 6a).

To reduce the effect of the inoculation procedure,
samples were collected at 1 DPI, 2 DPI, 4 DPI and at 8
DPI (Fig. 6). At the first three sampling points (1, 2, 4
DPI), ABA levels were similar in all conditions. By 8
DPI, plants inoculated with UPB0736 showed elevated
ABA levels while plants inoculated with the fuscopeptin
mutant delta445 did not show any ABA response (Fig.
6a). By 2 DPI, JA levels were slightly elevated in response
to both P. fuscovaginae strains. Only in plants inoculated

with UPB0736, JA levels stayed elevated during the rest
of the infection process (Fig. 6b). For IAA, on the other
hand, an early transient response to the wild type strain
was observed. At 1 and 2 DPI, IAA levels in the wild
type infected plants were more than doubled compared
to the healthy control plants and plants inoculated with
delta445 (Fig. 6¢). By 8 DPI, SA levels were slightly ele-
vated in UPB0736 infected plants but the levels did not
significantly differ from the plants inoculated with
deltad45 (Fig. 6d).

Yield Losses

The yield losses, as a result of sheath rot infection, were
investigated in rice plants that were inoculated with iso-
lates of S. oryzae and P. fuscovaginae that differed in
virulence (Figs. 1 and 5a). Disease severity and various
yield parameters were recorded at 6 and 8 weeks post in-
oculation (WPI) with respectively S. oryzae and P. fus-
covaginae. At 6 WPI, the infection by the pathogenic S.
oryzae strain, IBNG0008, had strongly advanced (average
842 + 209 mm?). Also the infection by the less patho-
genic isolate RFNG30 had further progressed (average
96 + 53 mm?). According to the observed lesions on the
rice sheath, P. fuscovaginae infection did not seem to
have advanced much in 8 weeks (UPB0736, average
213 + 133 mm?; deltad45, average 11 +10 mm?). How-
ever, inside the stem, the rice plants showed necrosis at
8 WPI of both P. fuscovaginae strains but also some
healthy control plants, injected with sterile saline solu-
tion, were necrotic inside.
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Dunn'’s test, n =5, a =0.05)

Fig. 5 Phytohormone levels in the rice sheath during infection of Pseudomonas fuscovaginae wild type strains. When 7 weeks old, rice plants
were inoculated with P. fuscovaginae by injecting a bacterial solution. The levels of abscisic acid (a), jasmonate (b) auxin (c) and salicylic acid (d)
were measured after 4 h (0 days post inoculation (DPI)) and at 2 DPI, 4 DPI and 8 DPI. Purple boxplots represent strain MB194 and red boxplots
represent strain UPB0736. Black boxplots show the results of the healthy control. All boxplots represent the median with the first and third
quartile, the whiskers show the minimum and maximum values. Boxplots marked with different letters are significantly different (ANOVA or

Both sheath rot pathogens affected the yield (Fig. 7a).
Plants infected with S. oryzae IBNGO0008 produced
shorter panicles with less seeds, compared to healthy
plants. RENG30 infection also reduced panicle length
(Fig. 7b). The seeds produced by the plants infected with
the IBNG0008 were significantly more open and more
empty, compared to the control plants. Plants infected
with the less pathogenic strain RENG30 produced as
much seeds as healthy plants, but the seeds were more
often open (Fig. 7a,c). Plants inoculated with P. fuscov-
aginae wild type strain UPB0736 did not produce pani-
cles at all (Fig. 7d,e). Inoculation with the fuscopeptin
mutant delta445 also led to a significant decrease in pan-
icle and seed production compared to the control plants

(Fig. 71).

Discussion

In this research, the interaction of the rice sheath rot
pathogens S. oryzae and P. fuscovaginae with their host
was investigated. As both pathogens are toxin producers,
we studied if their toxin production can be held respon-
sible for the observed physiological changes, for their
virulence and for the yield losses they cause. For this,
isolates that differ in the in planta production of cerule-
nin, helvolic acid and fuscopeptin were used.

ABA, JA and IAA Levels during Sarocladium oryzae
Infection

This research revealed strong differences in the triggered
host immune responses among the S. oryzae isolates.
Early during infection, a stress response through JA ac-
cumulation was observed for all isolates. Only in plants
infected by the most virulent isolates, JA levels stayed el-
evated during the rest of the infection. Simultaneously,
ABA and IAA levels increased too while for the less
virulent isolates, all phytohormone levels stayed un-
altered from 2 DPI on. In previously published work, we
showed that helvolic acid levels at 6 DPI are correlated
with S. oryzae virulence (Fig. S2) (Peeters et al. 2020). In
this study we measured high concentrations of ABA, JA
and IAA in the lesions caused by these virulent helvolic
acid producers both at 4 DPI and at 6 DPI (Fig. S3).
However, the less virulent isolate RFNG41 produced
similar levels of helvolic acid but it did not trigger strong
hormonal responses. This was also observed for the iso-
lates BDNGO005 and CBS180.74 at 6 DPI which

indicates that next to helvolic acid, another compound is
needed for virulence. Based on our results, cerulenin
does not seem to be the missing virulence factor as iso-
late BDNGO0025 caused severe sheath rot symptoms but
produced only trace amounts of cerulenin. Moreover,
the weakly pathogenic isolate RFRG2 produces high
levels of cerulenin but no helvolic acid and BDNG0005
produces significant levels of both toxins but was the
least virulent isolate. We showed before that S. oryzae
strains segregate in three phylogenetic groups and that
two of these groups (group 1 and 2) show sectorization,
a process that affects helvolic acid production (Peeters
et al. 2020). All mentioned weakly pathogenic isolates
belong to these instable groups. These groups have re-
cently been reclassified as Sarocladium oryzae (corre-
sponding to our group 1) and Sarocladium attenuatum
(corresponding to our group 2) (Ou et al. 2020; Table 1).
The three isolates that caused severe sheath rot symp-
toms and triggered strong IAA, ABA and JA responses,
on the other hand, belong to the third phylogenic group.
This group was shown to be more stable (Peeters et al.
2020) and has recently been proposed as a separate spe-
cies, called Sarocladium sparsum (Ou et al. 2020; Table
1). The fact that ABA-, JA- and IAA-accumulation was
only observed in case of severe infection and that their
levels positively correlate with the lesion area (Fig. S2),
indicates that these phytohormone responses are no sign
of disease resistance. They are rather susceptibility fac-
tors acting in favour of S. oryzae.

ABA, JA and IAA Levels during Pseudomonas fuscovaginae
Infection

When plants were inoculated with P. fuscovaginae by
injecting a bacterial solution, all conditions showed a
strong increase of ABA that was probably triggered by
the wounding (Pieterse et al. 2012). As mock-treated
plants showed the strongest response, both P. fuscovagi-
nae wild type strains seem to be able to partially sup-
press this ABA stress response. Later during infection,
ABA and JA levels increased and reached by 8 DPI simi-
lar levels as observed already at 4 DPI during S. oryzae
infection. While the production profile of JA was rather
variable, ABA accumulation was clearly delayed com-
pared to S. oryzae infection. Symptom development,
however, started earlier, indicating that the postpone-
ment of the ABA response could be a possible virulence
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Fig. 6 Comparison of the Pseudomonas fuscovaginae wild type strain UPB0736 (red) and its fuscopeptin mutant (orange). When 7 weeks old,
Kitaake rice plants were inoculated with P. fuscovaginae by injecting a bacterial solution. Disease was evaluated at 2, 4 and 8 days post
inoculation (DPI) (a). The levels of abscisic acid (b), jasmonate (c), auxin (d) and salicylic acid (e) were measured in sheath samples collected at 1,
2,4 and 8 DPI. Black boxplots show the results of the healthy control. All boxplots represent the median with the first and third quartile, the
whiskers show the minimum and maximum values. Boxplots marked different letters are significantly different (Wilcoxon rank sum test, n =25,
a=0.05 (@) or ANOVA, Dunn’s or Mood's Median test, n=5, a=0.05 (b, ¢, d, e))

strategy of P. fuscovaginae. Because of its role in
pathogen-induced stomatal closure, ABA is often tar-
geted by pathogen effectors to facilitate host penetration.
For example, the P. syringae toxin coronatine forces sto-
matal opening by inhibiting ABA signalling (Hok et al.
2010). Moreover, our results show that in experiments
where ABA reached higher levels, P. fuscovaginae caused
less symptoms. Although ABA is predominantly known

as a repressor of plant immunity, it has been reported to
induce resistance against Cochliobolus miyabeanus in
rice (De Vleesschauwer et al. 2010, 2013). The role of JA
is less clear. In case of severe infection, we observed an
earlier JA accumulation and the JA levels at 8 DPI
reached in both experiments similar levels, regardless
the size of the lesions. While both sheath rot pathogens
triggered JA and ABA accumulation, IAA levels showed

significantly (Logistic binary regression, n =18 (d))
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Fig. 7 Grain yield parameters of Sarocladium oryzae and Pseudomonas fuscovaginae infected plants. The main tiller of 7 weeks old Kitaake rice
plants was inoculated with S. oryzae or P. fuscovaginae. IBNG0O0O08 is shown in dark blue, RFNG30 in light green and the healthy control,
inoculated with a healthy rice grain, in black. P. fuscovaginae wild type strain UPB0736 is shown in red, delta445 in orange and as a healthy
control, shown in black, a sterile saline solution was injected. (a) A fully ripened panicle, 6 or 8 weeks after inoculation with respectively S. oryzae
and P. fuscovaginae. (b) Boxplots represent the length of the main panicle and (c) stacked bars show the average amount of open, empty and
healthy seeds on the main panicle of plants inoculated with S. oryzae. Yield parameters of plants inoculated with P. fuscovaginae are represented
by (d) stacked bars showing the proportion of the inoculated tillers forming a panicle and dots represent the length of the main panicle (e) or
the amount of seeds produced by the main panicle of each sample (f). The boxplots show the median with the first and third quartile, the
whiskers show the minimum and maximum values. Outliers and extreme values are represented by crosses. These data show the results of one
experiment with 25 replicates (b-c) or 18 replicates (d-f). Conditions that differ significantly from healthy control plants are represented by
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a different pattern. Already early during infection, P. fus-
covaginae caused a short, transient accumulation of
IAA. During more severe infections, the accumulation of
IAA started earlier and reached higher levels. This indi-
cates that IAA possibly enhances the infection and acts
as a sensitivity factor. Auxin is known to promote sus-
ceptibility to various rice pathogens including Xantho-
monas  oryzae, Pyricularia oryzae and to the
syringopeptin producer, P. syringae (Kazan and Lyons
2014). These pathogens promote auxin production by
the plant and secrete auxin themselves, using it as a
virulence factor (De Vleesschauwer et al. 2013). In the
genome of P. fuscovaginae, a possible gene that encodes
for tryptophan 2-monooxygenase, an enzyme of the
auxin anabolism, was found (Quibod et al. 2015). The
measured IAA could thus be at least partially of bacterial
origin. The use of a fuscopeptin mutant confirmed that
the observed phytohormone responses are correlated
with the symptom development as this strain caused sig-
nificantly smaller necrotic lesions (Patel et al. 2014;
Weeraratne et al. 2020). Moreover, ABA nor JA accu-
mulated in plants that were inoculated with the fusco-
peptin mutant and no transient IAA peak was observed.

The Interaction of Rice with the Sheath Rot Pathogens
and their Toxins

Except for small variations in the SA levels, no clear SA
response was observed towards sheath rot infection. The
basal SA levels in the healthy control tissue varied be-
tween the pathogens. For S. oryzae, the rice plants were
inoculated in the axil of the second youngest leaf and
the sheath of this leaf was sampled. P. fuscovaginae, on
the contrary, was injected into the lower parts of the
plants. Consequently, we sampled other sheath layers
from the lower plant part, which could explain why
lower SA levels were measured in the P. fuscovaginae
samples (Silverman et al. 1995).

Both JA and ABA accumulated during sheath rot in-
fection but ABA seemed to adversely affect disease re-
sistance. The timing and pattern of IAA accumulation,
on the other hand, differed between the sheath rot path-
ogens. Together with JA, IAA seems to act as a suscepti-
bility factor in sheath rot, regardless the causal agent.
The overlap in the mode of action of helvolic acid and
fuscopeptin could possibly explain why the sheath rot
pathogens trigger partially similar disease responses and
cause almost identical symptoms. F. verticillioides and
Cercospora beticola are also known to block H"-ATPases
(Elmore and Coaker 2011). F. verticillioides produces the
amphiphilic toxin fumonisin Bl (FB1) which affects
membrane integrity and is produced by various Fusar-
ium spp. including sheath rot pathogens (Abbas et al.
1999; Kushiro et al. 2012; Xing et al. 2013; Asai and
Shirasu 2015). The toxin beticolin, produced by C.
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beticola, is a Mg>" scavenger like helvolic acid (Gom
et al. 1996). Interestingly, plants also accumulate ABA
and JA in response to F. verticillioides or C. beticola
(Schmidt et al. 2008; Lanubile et al. 2014; Vaughan et al.
2014, 2016). The synergistic action of ABA and JA is
well described for the abiotic stress response and in the
defence against insect herbivory but has not often been
observed in plant disease responses (De Vleesschauwer
et al. 2014; Nguyen et al. 2016). JA and ABA stimulate
each other’s biosynthesis and, in Arabidopsis thaliana,
their signalling pathways act synergistically through
MYC2. The TF MYC2 is a master regulator of the JA/
ABA defence response against pests and abiotic stress
(Kazan and Manners 2013; Nguyen et al. 2016). More-
over, MYC2 antagonizes the ERF-dependent JA/ET de-
fence response against necrotrophs (Pieterse et al. 2012;
Nguyen et al. 2016). Resistance to C. beticola in sugar
beet and to F. verticillioides in maize has been attributed
to the JA/ET signalling pathway while the role of ABA is
not well understood for these pathosystems (Schmidt
et al. 2008; Lanubile et al. 2014; Vaughan et al. 2014,
2016). Moreover, overexpression of WRKY13 in rice
generates partial resistance against S. oryzae (Lilly and
Subramanian 2019) which, in high concentrations,
blocks the JA-pathway and the abiotic stress response
(Qiu et al. 2007; Xiao et al. 2013; De Vleesschauwer
et al. 2014).

For both sheath rot pathogens, the molecular mecha-
nisms underlying the infection process remain to be elu-
cidated and further research is needed to clarify the role
of the phytohormones. Our results suggest that ERF-
dependent JA/ET pathway possibly regulates the defence
response against S. oryzae while the ABA/JA branch
may provide resistance against P. fuscovaginae (Pieterse
et al. 2012). It would be interesting to measure ET dur-
ing infection and to verify the effect of elevated ET levels
on the disease development of these pathogens. More-
over, the origin of the observed IAA accumulation dur-
ing P. fuscovaginae infection should be studied and also
which extra virulence factors distinguish S. sparsum
from the less virulent groups.

Yield Losses Caused by Sheath Rot Infection

Next to necrotic lesions on the sheath, S. oryzae and P.
fuscovaginae are known to cause significant yield losses
(Sakthivel 2001; Razak et al. 2009; Panda and Mishra
2019). This study showed that the most virulent, toxin-
producing isolates strongly affected seed production.
The could possibly be attributed to the blockage of the
H"-ATPases by the toxins helvolic acid and fuscopeptin
(Gachon et al. 1973; Yoshimura 1978; Batoko et al.
1998). These enzymes play indispensable roles in phloem
loading (Falhof et al. 2016) and photosynthesis (Feng
et al. 2016) which are important processes to maintain a
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proper source/sink relationship (Kim et al. 2009a,
2009b; Tamaki et al. 2015). Grain filling strongly de-
pends on the transport of non-structural carbohy-
drates (NSC) towards sink organs through the phloem
(Tamaki et al. 2015; Yu et al. 2015). Blockage of pro-
ton pumps prevents the export of assimilates to sink
organs (Elmore and Coaker 2011). Grain production
is also directly affected by necrosis in the leaf sheath.
This causes a decrease of the carbon reserves in the
rice straw (Wang et al. 2017; Zhang et al. 2019). In
rice, spikelet development and grain filling are regu-
lated by ABA, JA, IAA and ET (Kim et al. 2009a,
2009b; Javid et al. 2011; Tamaki et al. 2015). There is
a positive crosstalk between JA and ABA biosynthesis
and signalling in the suppression of grain production,
often with regard to abiotic stresses such as drought
(Yang 2001; Travaglia et al. 2007; Kim et al. 2009b).
Kim et al. (2009a, 2009b) reports both phytohor-
mones affecting the same grain yield parameters as
observed in this study. Additionally, we showed that
S. oryzae infected plants produce significantly more
open grains. Altered JA levels are known to result in
empty seeds with open glumes (Li et al. 2018). None
of the plants inoculated with the P. fuscovaginae wild
type strain produced panicles and, of the plants inoc-
ulated with the fuscopeptin mutant, only 17% did.
This mutant still produces syringotoxin, which affects
photosynthesis and phloem loading too (Mott and
Takemoto 1989; Batoko et al. 1998).

Conclusions

While both S. oryzae and P. fuscovaginae continue
spreading and causing significant yield losses, the need
for effective control measures is high. For this, it is of
crucial importance to understand the mode of action of
the sheath rot pathogens. With this research, we provide
information on the host immune response and possible
targeted hormonal pathways of sheath rot and sheath
brown rot, paving the way to controlling these diseases.
This study shows that helvolic acid and fuscopeptin pro-
duction strongly relate to the hormonal response to-
wards respectively S. oryzae and P. fuscovaginae and to
their virulence. ABA and JA are positively correlated
with S. oryzae virulence which suggests that the syn-
ergistic action of JA/ET could possibly provide resist-
ance against S. oryzae. As ABA seems to act as a
resistance factor against P. fuscovaginae, our results
suggest that the JA/ET branch could possibly provide
susceptibility. This obviously needs further investiga-
tion. Furthermore, our research stresses the import-
ance of taking variability of the pathogen population
into account when investigating virulence strategies
and control measures.

Page 13 of 16

Material and Methods

Plant Materials & Growth Conditions

All experiments were performed on 7 week-old plants of
the japonica type rice (Oryza sativa) cv. Kitaake. Seed
germination and growth conditions were as described in
Peeters et al. (2020). Briefly, germinated seedling were
planted after 7 days in sterile potting soil (Structural;
Snebbout, Kaprijke, Belgium) in perforated plastic trays
(22 x 15 x 6 cm). Each tray contained six plants and rice
plants were grown for 6 weeks in a greenhouse at 28 °C
at 60% relative humidity (RH). The plants were watered
6 times a day with a flooding system and were weekly
supplemented with 0.2% iron sulphate and 0.1% ammo-
nium sulphate.

Fungal Inoculation and Disease Rating

Table 1 lists the Sarocladium isolates that were used in
this study. Their morphology, toxin production and viru-
lence on Kitaake rice plants have been described before
(Peeters et al. 2020). Rice plants were inoculated using
the standard grain inoculum technique, following Sakthi-
vel and Gnanamanickam (1987). The preparation of the
inoculum, the inoculation procedure and the conditions
during incubation are described in detail by Peeters et al.
(2020). Briefly, rice grains were autoclaved twice after
soaking them in water for 60 min. For each 4 g of rice
grains, one plug (diameter =5 mm) from the edge of a
14-day-old fungal colony was added together with 1 mL
of sterile distilled water. After 14 days of incubation at
28°C, one fully colonized grain was introduced in the
junction point between the sheath of the second youn-
gest plant leaf and the stem. To maintain humidity, in-
oculation points were covered with moist cotton and
wrapped with Parafilm. Plants were incubated under
growth chamber conditions (28 °C day/28 °C night, 12/12
light regimen, and 85% relative humidity during the first
24'h, 65% relative humidity during day 2-8). For each
treatment, 20 plants (4 trays x 5 plants) or 25 plants (5
trays x 5 plants) were used and disease was evaluated
after respectively 4 or 6 days of incubation by measuring
the lesion area (mm?) (Peeters et al. 2020).

Bacterial Inoculation and Disease Rating

For the experiments with P. fuscovaginae, two wild type
strain were used. The Australian isolate MB194 (a.k.a.
DAR777800) and the wild type strain UPB0736 from
Madagascar and its syringopeptin synthetase mutant
deltad45 were provided by Vittorio Venturi (Patel et al.
2014). To prepare bacterial inoculum, isolates were
taken from the -80°C collection, plated on King’s
Medium B (KB) and incubated for 48 h at 28 °C. Follow-
ing, one single bacterial colony was transferred to Luria-
Bertani broth (LB) and shaken (150 rpm) for 20h at
28 °C. After centrifuging the bacterial liquid culture (13,
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000 rpm, 2 min), the supernatant was discarded. The pel-
let, containing the bacteria, was dissolved in sterile saline
solution (0.85% NaCl) and diluted to an optical density
of 0.1 at 620 nm. Bacteria were inoculated by injecting a
bacterial suspension in the main tiller of the plant. For
this, a volume of 0.5-1 ml was injected with a 1 ml syr-
inge at 10cm above the soil surface until droplets
formed in the axil of the youngest leaf (Rott et al. 1991).
Control plants were injected with a sterile saline solu-
tion. First, the plants were incubated for 24 h at 85%
relative humidity (RH) (28°C, 12/12 light/dark). Dur-
ing the remaining incubation period, the RH was low-
ered to 65%. For each treatment, 25 plants (5 trays x
5 plants) were used and disease was evaluated by
measuring the lesion area after 2, 4 and 8 days of in-
cubation (Peeters et al. 2020).

Toxin and Phytohormone Extraction and Quantification

At different time points during the pathogenicity tests
with S. oryzae and P. fuscovaginae, described above,
samples were collected for phytohormone and toxin ana-
lysis. For this, 8 cm pieces of the sheath of the main pan-
icle, containing the inoculated area, were collected. Of
each tray, five plants were pooled in one sample, imme-
diately immersed in liquid nitrogen and stored at — 80 °C
until further processed. Extraction and quantification of
the toxins cerulenin and helvolic acid from the rice
sheath was performed as described before (Peeters et al.
2020). The phytohormones ABA, JA, SA and IAA were
extracted during the same extraction procedure as the
toxins. The analytical method has been validated by
Haeck et al. 2018. Briefly, before extraction, samples
were ground using a tissue lyser and 100 mg of fine pow-
der was extracted with cold modified Bieleski solvent
(methanol, ultrapure water and formic acid, 75:20:5, v:v:v).
Afterwards, supernatant was filtered (30kDa Amicon
Ultra centrifugal filter, Merck Millipore, Overijse,
Belgium) and the resulting filtrate was reduced to dryness
under N, at 20 °C (Turbovap® evaporator). After dissolving
the dry filtrate with reconstitution solvent (methanol/
water (20:80 v/v) with 0.1% formic acid), instrumental ana-
lysis was immediately performed. For this, an ultra-high
performance liquid chromatography system, coupled to a
quadrupole-orbitrap mass spectrometer was used. Chro-
matographic separation was achieved on a Accela U-
HPLC system (Thermo Fisher Scientific, Erembodegem,
Belgium), coupled to an Accela Autosampler and Degas-
ser and equipped with a Nucleodur C18 column (50 x 2
mm; 1.8 um dp,, Macherey-Nagel, Diiren, Germany). Mass
spectrometric analysis was carried out using a Q-
Exactive™ bench top HRMS (Thermo Fisher Scientific),
equiped with a heated electrospray ionization source. The
positive ionization mode was used for the measurement of
IAA, helvolic acid and cerulenin; the negative ionisation
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mode for the measurement of ABA, JA and SA (Table S2).
The measurements were performed in targeted single ion
monitoring (t-SIM) at a mass resolving power of 70,000
full width at half maximum (FWHM).

Grain Yield Components Quantification

When 7 weeks old, rice plants were inoculated with S.
oryzae or P. fuscovaginae as described above. For S. ory-
zae, 25 plants (5 trays x 5 plants) were used per treat-
ment and for P. fuscovaginae, 18 plants (3 traysx 6
plants) were used per treatment. The plants were incu-
bated in growth chambers (65% RH, 28 °C, 12/12 light/
dark) for 6-8weeks. When the main tillers of the
healthy control plants had a yellow flag leaf and the last
seed was fully filled and ripened, panicles were har-
vested. For each panicle, the length was measured and
the open, empty and healthy seeds were counted.

Statistical Analysis

The statistical analyses were performed in R-4.0.0 (R
Core Team 2020) and SPSS 26.0 (IBM SPSS, Armonk,
NY, USA). Pairwise and multiple comparison analysis
were performed with the packages lme4 v1.1-23 (Bates
et al. 2015), car-3.0-7 (Fox and Weisberg 2019), afex-
0.27-2 (Singmann et al. 2020), emmeans-1.4.6 (Lenth
2020), dunn.test-1.3.5 (Dinno 2017). All statistic tests
were performed with a fixed significance level of 0.05.
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