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Training confounder-free deep learning models
for medical applications
Qingyu Zhao 1,4, Ehsan Adeli 1,2,4 & Kilian M. Pohl 1,3✉

The presence of confounding effects (or biases) is one of the most critical challenges in using

deep learning to advance discovery in medical imaging studies. Confounders affect the

relationship between input data (e.g., brain MRIs) and output variables (e.g., diagnosis).

Improper modeling of those relationships often results in spurious and biased associations.

Traditional machine learning and statistical models minimize the impact of confounders by,

for example, matching data sets, stratifying data, or residualizing imaging measurements.

Alternative strategies are needed for state-of-the-art deep learning models that use end-to-

end training to automatically extract informative features from large set of images. In this

article, we introduce an end-to-end approach for deriving features invariant to confounding

factors while accounting for intrinsic correlations between the confounder(s) and prediction

outcome. The method does so by exploiting concepts from traditional statistical methods and

recent fair machine learning schemes. We evaluate the method on predicting the diagnosis of

HIV solely from Magnetic Resonance Images (MRIs), identifying morphological sex differ-

ences in adolescence from those of the National Consortium on Alcohol and Neurodeve-

lopment in Adolescence (NCANDA), and determining the bone age from X-ray images of

children. The results show that our method can accurately predict while reducing biases

associated with confounders. The code is available at https://github.com/qingyuzhao/br-net.
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A fundamental challenge in medical studies is to accurately
model confounding variables1–3. Confounders are extra-
neous variables that distort the apparent relationship

between input (independent) and output (dependent) variables
and hence lead to erroneous conclusions4–6 (see Fig. 1). For
instance, when neuroimaging studies aim to distinguish healthy
individuals (a.k.a controls) from subjects impacted by a neuro-
logical disease, the input variables are images or image-derived
features, and the output variables are the class labels (i.e., diag-
nosis). If the average age of the diseased cohort is significantly
older than the healthy controls, the age of individuals potentially
confounds the study7–9. When not properly modeled, a predictor
may learn the spurious associations and influences created by the
confounder (age, in this case) instead of the actual biomarkers of
the disease10.

Traditionally, studies control for the impact of confounding
variables by eliminating their influences on either the output or the
input variables. With respect to the output variables, one can reduce
the dependency to confounders by matching confounding variables
across cohorts (during data collection)7 or through analytical
approaches, such as standardization and stratification11,6. Associa-
tions between confounders and input variables are frequently
removed by regression analysis12,6, which produces residualized
variables that are regarded as the confounder-free input to the
prediction models.

The most advanced image-based prediction models are based
on convolutional neural networks (ConvNets)13,1,14–16,3. A
standard ConvNet contains a feature extractor (FE) followed by
a classifier/predictor (P). FE reduces each medical image to a
vector of feature F, based on which the fully connected layers of
P predict a binary or continuous outcome y (Fig. 2a). Unlike
traditional machine-learning models, ConvNets require large
training data sets and adopt end-to-end learning strategy to
extract feature F on-the-fly from the raw image X. This renders
the above methods to account for confounders unsuitable as they
either result in reduced number of training samples (e.g.,
matching or stratification) or require deterministic features that
are computed beforehand (e.g., standardization or regression).
Possible alternatives could be unbiased17–21 and invariant
feature-learning approaches22–25 relying on end-to-end training
to study the invariance (independence) between the learned fea-
ture F and a bias factor (① in Fig. 2b). Despite the similarity in the
problem setup, ignored by these methods yet of great importance
to medical imaging studies is selecting feature F predictive of the
outcome y (i.e., ③ in Fig. 2b), while accounting for the intrinsic
relationship between y and the confounder c (i.e., ② in Fig. 2b).
An example of such an intrinsic relationship with respect to the
age-confounded magnetic resonance imaging (MRI) dataset is to
distinguish the healthy aging of the brain in controls from aging
accelerated by a disease, such as HIV infection26–28. This paper
proposes to account for this relationship by introducing the

learning scheme confounder-free neural network (CF-Net,
Fig. 2a).

CF-Net exploits concepts from traditional statistical modeling
within an invariant feature-learning scheme. Inspired by our
technical report22, we attach a lightweight component CP to F,
which quantifies the statistical dependency between F and c in
order to guide FE in removing confounding effects in the
feature-extraction process (Fig. 2a). The guidance is based on
training the CF-Net via the min–max game as done by generative
adversarial networks (GANs)29. In this iterative training process,
CP aims to predict the value c from F, FE aims to adversarially
increase its prediction loss, and P aims to predict y based on the
confounder-free features. Instead of enforcing marginal inde-
pendence between F and c as we propose in ref. 22, a more
principled way of correcting confounding effects is to only
remove the direct association between F and c (① in Fig. 2b) while
preserving their indirect association with respect to y (② and ③ in
Fig. 2b). We therefore specifically train CP on a y-conditioned
cohort, i.e., samples of the training data whose y values are
confined to a specific range (referenced as ρ in Fig. 2a). In doing
so, the features learned by CF-Net are predictive of y while being
conditionally independent of c (F⫫c∣y). We refer to this condition
as confounder-free training. In the HIV example, CF-Net would
learn to separate healthy controls (y= 0) from HIV-positive
patients (y= 1) by training CP only on the control group to
correctly model the normal aging effects of the brain captured by
MRI. This is one of the first attempts to design an end-to-end,
confounder-free prediction model for medical images, in which
the goal is not only to learn features invariant to a bias variable,
but also to properly model interactions among all three variables
in a confounded situation.

We underline the utility of the proposed CF-Net by deploying it
to predict HIV diagnosis from brain MRIs of adults (N= 345)
that are confounded by age, identify sex differences in brain MRIs
of adolescents of NCANDA (N= 674, age 12–21 years) with
pubertal development as the confounder, and determine the bone
age of children based on X-ray images of their hands (N= 12,611),
where the cohort was confounded by gender. Through these
experiments, we show the impact of CP on reducing the risk of
deriving features and predictions affected by confounders. Beyond
that, the supplement summarizes additional experiments on the
three data sets and on a synthetic dataset. These results converge
with the theoretical advantages of our adversarial loss function
(over state-of-the-art-invariant feature-learning schemes). As we
systematically studied in the technical report22, these advantages
include the ability to handle continuous confounding variables
and guaranteeing mean independence between F and c.

Results
HIV diagnosis from MRIs. We applied CF-Net and a standard
ConvNet (without CP) to distinguish the T1-weighted brain
MRIs of healthy controls (N= 223, age 45 ± 17 years) from
patients (N= 122, age 51 ± 8.3 years) diagnosed with HIV (CD4
count >100 cells

μL ). As HIV subjects were generally older, age was
the confounder of this study. The prediction accuracy of the
models was determined via fivefold cross-validation. On the
four folds used for training, two cohorts of equal size were gen-
erated by data augmentation (see “Methods” section) to ensure
that the model would not bias predictions toward the larger
cohort, i.e., the control cohort. We then confined the predictions
of age by CP to the controls (i.e., the y-conditioned cohort was
defined by y= 0). The prediction accuracy on the testing folds
was measured by balanced accuracy (BAcc)10 (to account for
different numbers of testing subjects in each cohort), and preci-
sion and recall rates according to the uninformative operating

Confounder
Cause Cause

Input Output

Diagnosis

Spurious and distorted association

Fig. 1 Confounding effects in deep-learning models. A confounder is a
variable that influences both the input and the output of a study causing
spurious association, if not properly controlled for.
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point of 0.5. To investigate if the prediction of the models was
confounded by age, we also recorded the three accuracy scores of
the approaches (without retraining) on a confounder-
independent subset (c-independent). The c-independent subset
in this experiment was a subset of HIVs and controls with the
same distribution of age (122 controls: 50.1 ± 11.5 years, 122
HIVs: 50.6 ± 8.4 years, p= 0.9 t-test).

CF-Net achieved a BAcc of 74.1% on the whole cohort, which
was higher than the BAcc of ConvNet (71.6%) (Table 1).
Although this improvement was only on a trend level according
to DeLong’s test (two-tailed p= 0.068), CF-Net recorded a more
balanced precision (73.4%) and recall scores (75.4%) than
ConvNet, which had a tendency to label subjects as controls

(low recall, Fig. 3b). Compared to the whole cohort, CF-Net
recorded a similar BAcc of 74.2% on the c-independent subset,
which was significantly higher (two-tailed p= 0.035, DeLong’s
test) than the BAcc of ConvNet (BAcc: 68.4%). Further, CF-Net
recorded similar accuracy, precision, and recall on the c-
independent subset, whereas the discrepancy between precision
and recall for ConvNet further increased. Confining the
computation of the accuracy score to the older and younger
subjects (subcohorts divided by the mean age of 50.4 years)
revealed that the predictions by ConvNet were largely biased by
age. While both models recorded similar BAcc on the older
cohort (two-tailed p= 0.36, DeLong’s test), CF-Net was sig-
nificantly more accurate than ConvNet on the younger cohort

Confounder
prediction (CP)

Classification or
prediction (P)

CF-net architecture

X

a b

F

F

c
c

y

y

1

3

2

Variables relationships

Feature
extraction

(FE)

�

Fig. 2 The proposed confounder-free neural network (CF-Net). a Model architecture for confounder-free feature learning, composed of three
subnetworks. FE learns features that successfully predict (P) the outcome y while being invariant (conditional independence defined by ρ) to the
confounding variables with the help of the adversarial component CP. b The confounder c influences both the output y (i.e., ②) and the input X, from
which feature F is extracted (i.e., ①). The classifier deems to find the relation ③ to enable prediction of the output labels. Our adversarial component aims to
remove the direct dependency between F and c ①.

Table 1 Balanced accuracy (%), precision (%), recall (%), and F1 score of HIV-diagnosis prediction.

Whole cohort c-Independent subset c-Independent young c-Independent old

Method BAcc Pre, Rec F1 score BAcc Pre, Rec BAcc Pre, Rec BAcc Pre, Rec

ConvNet 71.6 78.2, 59.8 0.68 68.4 84.4, 52.5 59.7 85.0, 36.3 75.3 85.0, 65.7
CF-Net 74.1 73.4, 75.4 0.74 74.2* 73.0, 75.4 69.0* 76.7, 62.7 82.4 88.1, 76.4

*Denotes significant higher balanced accuracy than ConvNet by DeLong’s test (p < 0.05).
Best results in each column are typeset in bold.
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Fig. 3 HIV diagnosis from MRIs. a Age discrepancy (p= 0.0002, two-tailed two-sample t-test) between n= 223 control (Ctrl) subjects and n= 122 HIV
patients resulted in the baseline ConvNet learning the confounding effects (b, d, f), which were alleviated by the proposed CF-Net (c, e, g). Boxplots
are characterized by minimum, first quartile, median, third quartile, and maximum. b, c HIV-prediction scores measured on a subset of n= 122 control and
n= 122 HIV subjects with the same age distribution (c-independent). d, e t-SNE visualization of the feature space learned by the deep-learning models.
f, g Saliency maps33 corresponding to the voxel-level attention (larger attention means more discriminative voxels) by the models.
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(two-tailed p= 0.045, DeLong’s test). As indicated by the black
circles in Fig. 3b, most of the young HIV subjects were falsely
labeled as controls by ConvNet (only 36.3% recall rate according
to Table 1) as the control cohort was significantly younger than
the HIV-positive subjects. On the other hand, CF-Net reduced
the gap in prediction accuracy between the age groups (Fig. 3c).

To assess that the unbiased prediction of CF-Net was the result
of extracting features impartial to normal aging, we performed a
post hoc analysis, in which we trainedCP to predict age from the
learned features. Upon convergence of the training loss in each
run of the fivefold cross-validation, the post hoc analysis retrained
CP from scratch on the features extracted from the controls in
the training folds and recorded the predicted age of the controls
in the testing fold. According to Supplementary Fig. 2, the
features learned by CF-Net no longer contained aging informa-
tion as the prediction of age was nearly random (Pearson’s r=
0.12, two-tailed p= 0.17). However, training CP on the features
learned by 3D ConvNet resulted in age prediction of significant
accuracy (Pearson’s r= 0.95, two-tailed p < 0.0001). These results
were also supported by measuring the statistical dependence
between the features and age via distance correlation (dcor)30 and
mutual information (MI)31. Based on a bootstrapping analysis,
CF-Net achieved an average of dcor= 0.07 and MI= 0.02, which
were significantly lower (two-tailed p < 0.001, two-sample t38 >
14.2) than dcor= 0.21 and MI= 0.13 reported for ConvNet
(Supplementary Fig. 3). We visually confirmed this finding by
projecting the high-dimensional F of each control subject into 2D
via t-SNE32. Figure 3d shows each subject as a point, whose color
was defined by their age. While older subjects are concentrated on
the upper-left region in the feature space associated with
ConvNet, a clear pattern with respect to age was not visible for
the projections associated with CF-Net (Fig. 3e).

To gain more insight into which anatomical regions drove the
predictions, Fig. 3f, g visualizes the saliency maps33 of ConvNet
and CF-Net with yellow, highlighting areas that the predictions
heavily relied upon. Figure 3f reveals that the ConvNet-extracted
features close to the ventricles and cerebellum, which were crucial
markers for brain aging34 omitted by CF-Net. On the other hand,
CF-Net produced higher saliency in the precentral and
postcentral gyri, which are frequently linked to alternations in
cortical structure and function in HIV-infected patients35,36.
Other regions with high average saliency according to CF-Net are
located in the temporal lobe, inferior frontal gyrus, and
subcortical regions, including the amygdala and hippocampus.
These regions (except for the amygdala) also exhibited significant
white-matter tissue loss due to HIV according to a traditional
voxel-based morphometry analysis37 (Supplementary Fig. 4).

Brain morphological sex differences in adolescent brains of the
NCANDA study. The public dataset (Release: NCANDA_PU-
BLIC_BASE_STRUCTURAL_IMAGE_V0138) consisted of the
baseline T1-weighted MRI of 334 boys and 340 age-matched girls
(age 12–21 years, p > 0.5, two-sample t-test) from the National
Consortium on Alcohol and NeuroDevelopment in Adolescence
(NCANDA)39 that met the no-to-low alcohol drinking criteria of
the study. The confounder of the study was the pubertal devel-
opment score (PDS, Fig. 4a)39, which was significantly higher (p <
0.001, two-sample t-test) in girls (3.41 ± 0.6) than boys (2.86 ±
0.7).

With respect to the ConvNet baseline, the results from the
previous experiment were largely replicated. Based on 5-fold
cross-validation, the accuracy in predicting sex dropped from
90.3% across all samples to 87.3% (Table 2) on a c-independent
subset, which consisted of 200 boys and 200 girls with the same
PDS distribution (3.14 ± 0.65). Being significantly confounded by

PDS, the ConvNet produced a lower balanced accuracy (BAcc:
79.5%) for subjects in the early pubertal stage compared with an
accuracy score of 90.6% for subjects in later stages (subcohorts
divided by the mean PDS of 3.2). As boys had significantly lower
PDS, the ConvNet tended to label girls with small PDS as boys
(recall: 68.1%, Fig. 4b). Although the t-SNE projection of the
ConvNet features showed less pronounced correlation with PDS
compared with the HIV experiment (Fig. 4d), the confounding
effect of PDS still significantly impacted the derived features as
revealed by the post hoc training of CP (Pearson’s r= 0.84,
p < 0.001, Supplementary Fig. 7). Last, sex prediction of ConvNet
was mostly based on the parietal inferior lobe, supramarginal
region, cerebellum, and subcortical regions according to the
saliency map of Fig. 4f (Supplementary Fig. 9).

For CF-Net, the accuracy depended on the set of subjects used
for training the component CP, which, unlike in the HIV
experiment, was not uniquely defined as the modeling of the PDS
effect that could be conditioned on y= 0 (boys) or y= 1 (girls).
According to Table 2, conditioning the training of CP on boys
resulted in more accurate predictions in the c-independent subset
and recorded a smaller gap in accuracy across subjects at different
pubertal stages, while conditioning on girls not only reduced the
BAcc, but also enlarged the discrepancy in precision and recall
rates. As expected, similar degraded performance was also
observed when training CP on subjects of both sexes without
conditioning (CF-Net (All) in Table 2). Among the three
implementations of CF-Net, only the CF-Net conditioned on
boys was significantly more accurate in prediction at the early
pubertal stage (two-tailed p= 0.039, DeLong’s test) and produced
features significantly less predictive of PDS (p < 0.001, one-sample
t333= 12.2, Supplementary Figs. 7 and 8) compared to ConvNet
(Fig. 4b–e). Interestingly, the saliency map associated with this
CF-Net implementation (Fig. 4f, g, Supplementary Fig. 9) focused
only on subcortical regions.

Bone-age prediction from hand X-ray images. The dataset
consisted of hand X-ray images of 12,611 children (6833 boys and
5778 girls) that were released by the Radiological Society of North
America (RSNA) Radiology Informatics Committee (RIC) as a
machine-learning challenge for predicting pediatric bone age40.
The confounder in this study was sex as boys were significantly
older than girls (boys: 134.8 ± 42.2 months, girls: 118.7 ±
38.2 months). We randomly chose 75% of the images (N= 9458)
as training data and the remaining as validation data (N= 3153).
The ConvNet was based on the publicly released implementation
by the Kaggle challenge41. The feature extractor consisted of a
pretrained VGG-16 backbone followed by an attention module41.
This ConvNet achieved a mean absolute error of 13.8 months in
predicting age from the X-rays of the validation set. The model
tended to overestimate the age of girls compared to boys (Fig. 5b),
and this discrepancy was more pronounced in the age range of
110–200 months (Fig. 5c).

Next, we aimed to remove sex-related confounding effects in
the attention module by CF-Net. Since the ConvNet was based on
a VGG-16 feature extractor pretrained on the large number of
natural images provided by ImageNet, it was unlikely to contain
confounding information for X-ray image. Hence, we only
applied the CP component to adjust parameters of the attention
module, but kept the VGG-16 feature extractor fixed. However, y
was now a continuous variable as opposed to a binary one used in
the previous experiments, so the y-conditioned cohort could not
be defined with respect to a fixed prediction outcome. Instead, we
applied the CP component to a bootstrapped-training set of
10,000 boys and 10,000 girls whose age was confined to the
interval from 75 to 175 months and had strictly matched
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distributions between the two genders (see “Methods” section).
By doing so, CF-Net successfully reduced the sex-related gap in
age prediction (Fig. 5c, Supplementary Figs. 11–13). Moreover,
the prediction accuracy of CF-Net with y-conditioning was

significantly higher (absolute error 11.2 ± 8.7 months) than that
of the baseline ConvNet and CF-Net without y-conditioning
(two-tailed p < 0.0001, one-sample t3152= 14.2, Fig. 5d). The
saliency maps of CF-Net were more localized on anatomical
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Fig. 4 Sex prediction from adolescent brain MRIs. a Significantly different pubertal development scores (PDS) between n= 334 boys and n= 340 girls (p
< 0.0001 two-tailed two-sample t-test). Boxplots are characterized by minimum, first quartile, median, third quartile, and maximum. b, c Sex-prediction
scores measured on all subjects and the c-independent subset containing n= 200 boys and n= 200 girls. d, e t-SNE visualization of the feature space
learned by the deep-learning models. f, g Saliency maps of sex differences.

Table 2 BAcc (precision and recall) on predicting sex from MRIs of NCANDA matched with respect to PDS. Optimal results were
achieved when conditioning CF-Net on boys.

Whole cohort c-Independent PDS < 3.2 PDS > 3.2

Method BAcc Pre, Rec F1 score BAcc Pre, Rec BAcc Pre, Rec BAcc Pre, Rec

ConvNet 90.3 95.5, 85.2 90.5 87.3 92.5, 82.5 79.5 92.8, 68.1 90.6 91.0, 90.0
CF-Net (All) 83.0 73.8, 92.2 82.0 83.3 93.0, 73.5 74.1 92.7, 56.5 87.3 93.1, 82.4
CF-Net (y= 1) 85.2 72.1, 98.5 83.3 84.3 96.5, 72.0 78.2 98.6, 58.0 89.0 98.6, 79.4
CF-Net (y= 0) 88.8 93.6, 84.1 88.6 88.5 83.8, 94.0 87.8* 88.4, 87.0 93.0 88.4, 97.0

*Denotes significant higher balanced accuracy than ConvNet by DeLong’s test (p < 0.05).
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test).
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structures than those of ConvNet, indicating that the widespread
pattern leveraged by ConvNet might be redundant and relate to
confounder-related cues. Note, as in the prior experiment, the
accuracy of CF-Net was similar to ConvNet when training CP
on all subjects available (without conditioning on y).

Discussion
Accurate modeling of confounders is an essential aspect in ana-
lyzing medical image2. For example, traditional machine-learning
models rely on precomputed features from which confounding
effects are regressed out a priori7,10,6. This topic, however, is
largely overlooked by deep-learning applications as researchers
shift attention to designing deeper and more powerful network
architectures to achieve higher classification/regression accu-
racy42–44. Indeed, end-to-end learning of deep models often is
superior to traditional machine-learning methods relying on
precomputed features. For example, the ConvNet baseline
reported a higher accuracy (BAcc: 71.6%) in the HIV experiment
than applying a traditional SVM classifier to the 298 brain
regional measurements extracted by FreeSurfer45 (BAcc: 69.5%).
The more accurate predictions of such deep models are in part
due to increased sensitivity to subtle group differences, which also
heightens the risk of biasing findings as these subtle differences
may relate to confounders. For example, on the NCANDA
dataset, ConvNet produced the highest prediction accuracy on
the entire cohort, which was partially attributed to the con-
founding effect of PDS. Therefore, the superiority of a prediction
model for medical imaging applications should be defined with
respect to its predictive power and impartiality to confounders.
However, the a priori strategies (used by traditional machine
learning) for training impartial predictors do not work for end-
to-end learning models as learning is based on extracting features
on-the-fly from raw images. While recent advances in adversarial
learning have shed light on this problem, existing deep models
were only designed to tackle specific confounding effects such as
scanner difference or dataset harmonization46–48. Here, we pro-
pose a deep-learning architecture for systematically and accu-
rately modeling confounders in medial image applications based
on adversarially training a confounding predictorCP (see Fig. 2).
CP can be used to remove confounding effects of any layer of a
generic deep model, such as the entire feature extractor in the
MRI experiments or a submodule of the extractor in the bone-age
experiment.

By explicitly modeling the confounding effect in the feature-
learning process, CF-Net bypasses the need of matching cohorts
with respect to confounders, which generally reduces the sample
size and thus negatively impacts generalizability of the model13.
However, training models on confounded data now requires
evaluating the fairness of model predictions with respect to
confounders. In line with the concept of group fairness or
demographic parity49,50, one can do so by examining whether the
predictive power of the model varies across different validation
subsets. We did so by measuring the difference between the
testing accuracy recorded on the whole (confounded) cohort and
on the c-independent (unconfounded) subset. We viewed this
difference as a metric for the severity of the confounding effects:
the larger the difference, the more confounded the model.
Another way of defining validation subsets is to group testing
subjects according to their confounder values (see Figs. 3b, c and
4b, c). In all three experiments, CF-Net achieved more balanced
prediction accuracies across those subsets than ConvNet, further
highlighting the fairness of the CF-Net model.

Another important property of CF-Net is its ability to model
continuous confounders (e.g., age), whereas most existing fair
machine-learning methods17,23,51–53,25 are confined to binary or

discrete confounders (e.g., gender). This improvement is achieved
by our loss function based on squared correlation (see “Methods”
section), which encourages statistical mean independence
between the derived high-dimensional features and a scalar
extraneous variable (in our case, a confounder). When applying
this adversarial loss to subjects from the y-conditioned cohort,
CF-Net outperformed other state-of-the-art deep models in
classification accuracy. Although this improvement did not meet
the significance level after multiple-comparison correction, CF-
Net resulted in impartial features and unbiased model inter-
pretation according to the experiments in Supplementary Infor-
mation. These complementary tests thoroughly assessed the
confounding effects in the underlying feature space and extended
beyond the aforementioned fairness evaluation defined on pre-
diction outcomes.

Learning confounder-free features is particularly challenging
when the confounder inherently correlates with the prediction
labels53,25, such as in the three experiments presented here. As
pointed out in refs. 53,25, general fair/invariant feature-learning
frameworks could potentially be harmful in this situation as it is
impossible to derive features that are simultaneously dis-
criminative with respect to y and independent with respect to c.
This argument was supported by our experiments (see also
Supplementary Figs. 1, 12, and 13) showing comprised prediction
accuracy or increased bias in the learned features when training
CP on all subjects in the training set. To address this issue, we
proposed here to learn the direct link between F and c by mod-
eling their conditional independence in a y-conditioned cohort,
i.e., subjects with y values confined to a certain range. The
practice of conditioning has been a standard approach in the
statistics literature for studying the relation between two variables
while controlling the mediation from a third variable54,55. In the
case of binary classification, conditioning on y is equivalent to
fixing y to either group so that the inherent correlation between c
and y is removed. However, the specific group chosen to model
the conditional dependency is application-specific. In the HIV
experiment, the relation between F and c was supposed to capture
normal aging, which could only be studied on the control group
(fixing y= 0) as HIV accelerates brain aging26–28. In the
NCANDA experiment, boys (y= 0) or girls (y= 1) would have
been theoretically suitable to trainCP being impartial to PDS. Of
the two cohorts, training conditioned on boys resulted in more
impartial predictions as this cohort covered the full range of PDS
values, while lower PDS scores were not well represented in the
girl-conditioned cohort as adolescent girls are generally more
mature than boys of the same age. When predicting a continuous
variable, we proposed to define the y-conditioned cohort by
selecting samples whose y was confined to a fixed interval and
decorrelating y and c via bootstrapping. In the bone-age experi-
ment, the interval was selected as the full width at half maximum
(FWHM)56 of the overall age distribution, which approximately
encompassed 80% of the training subjects and focused only on
the age range with sufficient samples (Supplementary Fig. 10).
This well-represented age interval facilitated the decorrelation
with respect to gender and resulted in a large y-conditioned
cohort for training CP. Another strategy for defining the interval
(not explored in this paper) is to model the interval as a hyper-
parameter, whose optimal setting is determined via parameter
exploration during nested cross-validation. Alternatively, one can
bypass the need of selecting the interval by using data-driven
matching procedures (e.g., a bipartite graph matching57 or greedy
algorithm7), which in our experiments produced similar accuracy
scores as the one based on the FWHM criteria and bootstrapping.

Based on these different y-conditioning strategies, medical
researchers can use CF-Net to train deep models on cohorts not
strictly matched with respect to confounders without discarding

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19784-9

6 NATURE COMMUNICATIONS |         (2020) 11:6010 | https://doi.org/10.1038/s41467-020-19784-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


unmatched samples. However, this does not mean that there is no
need to keep the confounders in mind when recruiting partici-
pants for medical imaging studies. For all learning models, per-
forming analysis on confounder-matched cohorts with sufficient
samples remains a fundamental strategy to disentangle bio-
markers of interest from the effects of confounders. For example,
in the bone-age experiment, recruiting enough age–gender-mat-
ched samples resulted in a large y-conditioned cohort that
reduces the risk of overfitting during the training of CP. Con-
versely, if two cohorts have completely different distributions
with respect to a confounder (e.g., one has participants with
strictly larger age than the other), there is no guarantee that any
method, including ours, can remove the bias in a purely data-
driven fashion. Therefore, in the study-design stage, defining
potential confounders for a specific medical application may
require domain-specific knowledge to maximize the power of CF-
Net in practice.

A limitation of our experiments was the focus on single con-
founders that were known a priori. To model unknown con-
founders, we aim to explore coupling CF-Net with causal
discovery algorithms (such as refs. 58–60). In case predictions are
biased by multiple confounders, we would need to extend CP to
predict multiple outputs (one for each confounder) or add for
each confounder a CP component to CF-Net. In the simple
scenario that the confounding variables are conditionally inde-
pendent with respect to y, eachCP component can be trained on
a separate y-conditioned cohort uniquely defined for each con-
founder. However, theoretical and practical ways in modeling
high-order interactions between confounders require further
investigation.

While we were able to visualize the HIV and sex effect by
computing saliency maps61 inferred from the predictor P, the
same technique is not directly applicable to visualize confounding
effects from CP due to the adversarial training. An alternative
could be deriving saliency maps from CP retrained on the fea-
tures learned by the baseline ConvNet (e.g., Supplementary
Fig. 2), i.e., a model that substantially captures the confounding
effect.

Finally, we abstained from determining the optimal imple-
mentation of the proposed confounder-free modeling strategy by
performing extensive exploration of network architectures.
Instead, we relied on some of the most fundamental network
components used in deep learning. This rather basic imple-
mentation still recorded reasonable prediction accuracies, so the
findings discussed here are likely to generalize to more advanced
network architectures.

Methods
Materials. This study used multiple medical imaging data sets to evaluate different
aspects of our proposed confouder-free neural network, described briefly herein. In
addition, experiments on synthetic data sets are included in Supplementary Fig. 1,
which shows the efficacy of our proposed framework in controlled settings.

HIV dataset: Our first task aimed at predicting the diagnosis of HIV patients vs.
control subjects62. Participants ranged in age between 18 and 86 years and were all
scanned with a T1-weighted MRI. All study participants provided written informed
consent, and the study was approved by Institutional Review Board (IRB) at
Stanford University (Protocol ID: IRB-9861) and SRI International (Protocol ID:
Pro00039132). HIV subjects were seropositive for the HIV infection with CD4
count >100 cells

μL (average: 303.0). Construction of the c-independent subset was

based on the matching algorithm7 that extracted the maximum number of subjects
from each group in such a way that they were equal in size and identically
distributed with respect to the confounder values. For each HIV subject, we
selected a control subject with minimal age difference and repeated this procedure
until all HIV subjects were matched or the two-tailed p value of the two-sample t-
test between the two age distributions dropped to 0.5. The MR images were first
preprocessed7 by denoising, bias-field correction, skull striping, and affine
registration to the SRI24 template63. The registered images were then
downsampled to a 64 × 64 × 64 volume64 based on spline interpolation to reduce
the potential overfitting during training and to enable a large batch size. Prediction

accuracy of the deep models was determined via fivefold cross-validation. For each
training run, MRIs were augmented to provide sufficient number of samples for the
model to be trained on. As in ref. 65, data augmentation produced new synthetic 3D
images by randomly shifting each MRI within one voxel and rotating within 1∘

along the three axes. The augmented dataset included a balanced set of 1024 MRIs
for each group (control and HIV). Assuming that HIV affects the brain
bilaterally7,66, the left hemisphere was flipped to create a second right hemisphere.
During testing, the right and flipped left hemispheres of the raw test images were
given to the trained model, and the prediction score averaged across both
hemispheres was used to predict the individual’s diagnosis group. Last, a saliency
map was computed61 for the right hemisphere of each test image quantifying the
importance of each voxel to the final prediction.

NCANDA dataset: Experiments were performed on the baseline T1 MR images
of 334 boys and 340 girls from the NCANDA study (Public Release:
NCANDA_PUBLIC_BASE_STRUCTURAL_V0167). Adult participants and the
parents of minor participants provided written informed consent before
participation in the study. Minor participants provided assent before participation.
The IRB of each site approved the standardized data collection and use39. All
subjects met the no-to-low alcohol drinking criteria of the study, and there was no
significant age difference between boys and girls (p > 0.5, two-sample t-test).
Pubertal stage was determined by the self-assessment pubertal development scale
(PDS). Procedures for preprocessing, downsampling, and classifying the MRI were
conducted according to the HIV experiment.

Bone-aging dataset: The RSNA Pediatric Bone Age Machine Learning Challenge
was based on a dataset consisting of 14,236 hand radiographs (12,611 training sets,
1425 validation sets, and 200 test sets)40. We experimented on the 12,611 training
images with ground-truth bone age (127.3 ± 41.2) and the ConvNet model publicly
released on the Kaggle challenge page41. In total, 3914 boys and 3518 girls, or 80%
of the training subjects (Fig. 5a), had bone ages between 75 months and
175 months (the FWHM of the age distribution, Supplementary Fig. 10). Confined
to this age range, we used bootstrapping68 to generate 1000 boys and 1000 girls
within each 10-month interval. This procedure resulted in a y-conditioned cohort
of 10,000 boys and 10,000 girls strictly matched with respect to bone age (p= 0.19,
two-tailed two-sample t-test).

Confounder-free neural network (CF-Net). Suppose we have N-training MR
images X ¼ fXigNi¼1 and their corresponding target-prediction values y ¼ fyigNi¼1,
where yi 2 [0, 1] for classification problems and is a continuous variable for
regression problems. Let us assume that the study is confounded by a set of k
variables and their values are denoted by C ¼ fcigNi¼1, where each ci ¼ ½c1i ; :::; cki � is
a k-dimensional vector denoting the k confounders of subject i. To train a deep
neural network for predicting the target value for each input MR image X, we first
apply a Feature Extraction (FE) network to the image, resulting in a feature vector
F. A Classifier (P) is built on this feature vector to predict the target y for the input
X. This ensures the discriminative power of the learned features and defines the
baseline architecture of ConvNet. Now, to guarantee that these features are not
biased to the confounders, we propose our end-to-end architecture as in Fig. 2.
Specifically, we build another network (denoted by CP) for predicting the con-
founding variables from F and backpropagate this loss to the feature-extraction
module in an adversarial way. We train CP only on a y-conditioned cohort
consisting of subjects whose target y values are uncorrelated with all k confounders.
We define the y-conditioned cohort as Xρ with ρi = 1 if Xi 2 X ρ , and ρi = 0
otherwise. The confounders associated with the y-conditioned cohort are corre-
spondingly denoted as Cρ. As a result, the feature extractor learns features that
minimize the y predictor loss while being conditionally independent of the con-
founder by maximizing the loss of CP for X ρ .

Each of the above networks have some underlying trainable parameters, defined
as θfe for FE, θp for P, and θcp for CP. P forces the feature extractor to learn
features to better predict yi by backpropagating the prediction loss. Let ŷi ¼
PðFEðXi; θfeÞ; θpÞ be the predicted yi, then the prediction loss can be characterized
by binary cross-entropy lðyi; ŷiÞ ¼ �yilog ŷi � ð1� yiÞlog ð1� ŷiÞ for
classification and by the mean-squared error lðyi; ŷiÞ ¼ ðyi � ŷiÞ2 for regression.
Finally, the prediction loss for the entire cohort is

LpðX ; y; θfe; θpÞ ¼
1
N

XN

i¼1

lðyi; ŷiÞ: ð1Þ

Similarly, with ĉi ¼ CPðFEðXi; θfeÞ; θcpÞ, we define the surrogate loss of
confounder prediction for the y-conditioned cohort as

LcpðXρ;Cρ; θfe; θcpÞ ¼ �
Xk

κ¼1

corr2ðcκ; ĉκÞ; ð2Þ

where corr2(.,.) is the squared correlation between its inputs and cκ defines the
vector of κth confounding variable in Cρ. Hence, the overall objective of the
network with a trade-off hyperparameter λ is

min
θfe ;θp

max
θcp

LpðX ; y; θfe; θpÞ � λLcpðX ρ;Cρ; θfe; θcpÞ: ð3Þ
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This scheme is similar to the GAN formulations29 with a min–max game
between two networks. In our case, FE extracts features that minimize the
classification criterion, while fooling CP (i.e., making CP incapable of predicting
the confounding variables). Hence, the saddle point for this optimization objective
is obtained when the parameters θfe minimize the classification loss while
maximizing the loss of the confounder-prediction module. Simultaneously, θp and
θcp minimize their respective network losses.

Implementation. After normalizing confounder values to z scores, we optimize Eq. (3)
based on the practice used in GANs. In each iteration, we first train Lp on a mini batch
sampled from all available training data. The loss of Lp was backpropagated to update
θfe and θp. With θfe fixed, we then minimize Lcp to update θcp by computing the
correlation of Eq. (2) over subjects of a mini batch sampled from the y-conditioned
cohort. Finally, with θcp fixed, Lcp is maximized by updating θfe with respect to the
correlation loss defined on a mini batch from the y-conditioned cohort.

With respect to the network architecture used in the experiments, we followed
the design of FE in refs. 69,64 that contained 4 stacks of 2 × 2 × 2 3D convolution/
ReLu/batch-normalization/max-pooling layers, yielding 4096 intermediate features.
Each of P and CP was a two-layer fully connected network. We set λ to 1 (see
Supplementary Fig. 5) and used a batch size of 64 subjects and Adam optimizer
with a learning rate of 0.0002. For the 2D X-ray experiment, the FE and P
components complied with the feature extractor and predictor defined in ref. 41.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this paper are described and their respective references are cited in the
“Materials” subsection of the Methods section. For the HIV dataset, as previously
described69, patients were recruited by referral from local outpatient HIV/AIDS-treatment
centers, presentations by project staff, and distribution of flyers at community events.
Control participants were recruited by referral from patient participants, Internet posting,
flyers, and word of mouth. This dataset is not accessible by the public. The NCANDA data
used here are from the data release NCANDA_PUBLIC_BASE_STRUCTURAL_V01
(digital object identifier 10.7303/syn11541569)67 distributed to the public according to the
NCANDA Data Distribution agreement https://www.niaaa.nih.gov/research/major-
initiatives/national-consortium-alcohol-and-neurodevelopment-adolescence/ncanda-data.
Recipient acknowledges that the collection of NCANDA data was approved by the IRB of
the local collection sites in accordance with the Department of Health and Human
Services regulations at 45 CFR Part 46. The Bone Age dataset is publicly available at
https://www.kaggle.com/kmader/rsna-bone-age. It is released by the RSNA RIC as a
machine-learning challenge for predicting pediatric bone age40.

Code availability
Custom scripts, including those for generating the synthetic dataset, have been made
available at https://github.com/qingyuzhao/br-net/(https://doi.org/10.5281/
zenodo.4122448). Additional preprocessing scripts may be accessed upon request.
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