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Recently, evidences show that cancer stem cells (CSCs) are a type of cancer cell group with self-renewal and play 
a huge role in tumor recurrence, metastasis, and drug resistance. Finding new treatment directions and targets for 
cancer prognosis and reducing mortality has become a top priority. OCT4, as a transcription factor, participates in 
maintaining the stem characteristics of CSCs, but the mechanism of OCT4 is often overlooked. In this review, we 
try to illustrate the mechanism by which OCT4 plays a role in CSCs from the perspective of genetic modification 
of OCT4, non-coding RNA, complexes and signaling pathways associated with OCT4. Our ultimate goal is to provide 
new targets for cancer treatment to prolong the survival of cancer patients.
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Introduction 

  Cancer stem cells (CSCs) are a type of cell population 
with self-renewal and replication that have been found to 
be the origin of cancer (1, 2). Growing evidence indicates 
that CSCs are tumor-initiating cells and play a non-negli-
gible role in cancer recurrence, metastasis, and drug resist-
ance (1, 3, 4). However, it is unclear how CSCs are gen-
erated and maintain stemness, which make tumor treat-
ment challenging.
  Octamer-binding transcription factor 4 (OCT4), which 
is encoded by the Pou5f1 gene and is a member of the 

POU-domain transcription factor family, is connected to 
maintain pluripotency of embryonic stem cells (ESCs) and 
CSCs (5-7). Mouse Oct4 has two homologs, Oct4A and 
Oct4B, the former in the nucleus and the latter in the cy-
toplasm (8). Unlike mice, human OCT4 has three homo-
logs, OCT4A, OCT4B and OCT4B1 (9). One study found 
that Oct4 expression was not detectable in adult murine 
organs (10). Meanwhile, some researchers also suggested 
that although Oct4 expression cannot be detected in testes, 
brain, liver, lung, kidney, and intestine, there is Oct4 ex-
pression in primordial germ cells and unfertilized oocytes, 
which shows that differential regulation of Oct4 expre-
ssion during mouse development (11). However, a study 
has found that there is Oct4 mRNA expression in the 
murine adult ovaries and testes, especially mature and ov-
ulating oocytes rather than resting oocytes, which may be 
due to Oct4 transactivate genes that are important for oo-
cyte maturation (12). Gradually, some researchers suggest 
that Oct4 is necessary and sufficient to induce pluri-
potency of adult mouse neural stem cells (13). The ex-
pression of OCT4 in several human adult stem cells, such 
as breast, pancreatic, and liver stem cells, supports the hy-
pothesis that stem cells are carcinogenic target cells (14). 
Additionally, OCT4 may generate resistance to radio-
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therapy by improving the epithelial to mesenchymal tran-
sition (EMT) process in human rectal cancer cells, and 
OCT4 is closely related to DNA damage when cancer cells 
respond to radiotherapy (15). Studies also indicate that 
OCT4 is strongly associated with tumor invasion and mi-
gration and can lead to poor prognosis for patients (6). 
Unfortunately, studies on the functions and mechanisms 
of OCT4 in the production of CSCs are scarce. The pur-
pose of this review is to summarize the relationship be-
tween OCT4 and CSCs to provide possibilities for clinical 
treatment by exploring targets related to OCT4.

OCT4 Is a Hallmark of CSCs

  The POU domain, which name derived from the Pituary- 
specific TF Pit1, Octamer binding TFs Oct1 and Oct2, 
and neural TF Unc-86, is highly conserved DNA-banding 
domain (16, 17). OCT4 has two DNA-binding domains, 
which bind to octamers of free DNA (octamer motif 
5’-ATTTGCAT-3’) in a sequence-specific manner and in-
duce chromatin opening and regulate gene expression (17, 
18). The two DNA-binding domains consist of a POU-spe-
cific domain (POUS) and a POU homeodomain (POUHD) 
(19). Compared with other stem genes, OCT4 has univer-
sal expression in CSCs of hepatocellular carcinoma, breast 
cancer, prostate cancer, melanoma, osteosarcoma, bladder 
cancer, ovarian cancer, and lung cancer (7, 20, 21). Oct4 
is overexpressed in pluripotent embryonic cells and si-
lenced after cell differentiation during mouse embryonic 
development (9). It seems that OCT4 can be a pluri-
potency and germ cell marker and be used to distinguish 
from non-CSCs, and participate in determining the bio-
logical function of CSCs.

Regulation of OCT4 Expression by Epigenetic 
Modification

  Epigenetic modification is a reversible and heritable 
change in gene function when the DNA sequence has not 
changed, which can participate in important biological 
processes by regulating gene expression (22). OCT4 silenc-
ing plays important role in differentiation, cell engineer-
ing, and tumors (23). In contrast, OCT4 expression is re-
lated to stem cell characteristics and increases spheroid 
formation capacity (24). 

Methylation
  Studies have shown that OCT4 is regulated by DNA 
methylation of CpG of the promoter and exon in the hu-
man trophoblast cells and ESCs (25, 26). Hypermethylat-

ion of the Oct4 promoter and enhancer regions results in 
structural changes in chromatin and inhibits Oct4 ex-
pression in mouse trophoblast stem cells (27). However, 
the epigenetic regulation of the histones in the OCT4 pro-
moter region cannot be ignored. The OCT4 promoter re-
gion includes the CCCTC-binding factor (CTCF) binding 
site. As it happens, Brother of the Regulator of Imprinted 
Sites (BORIS) as a CTCF paralog can bind to the OCT4 
promoter, and it promotes OCT4 expression and promotes 
stemness of human hepatocellular carcinoma by up-regu-
lating H3K4me2 and down-regulating the level of H3K27me3 
(28). 

Acetylation
  Researchers indicated that acetylation of OCT4 and 
SOX2 can attenuate transcriptional activity by impairing 
OCT4/SOX2 heterodimer formation (29). The expression 
of OCT4 is positively correlated with Ca2＋/calmodulin- 
dependent protein kinase IIγ (CaMKIIγ), which promotes 
the acetylation of the histones of OCT4 by activating Akt, 
thereby maintaining the stem cell capacity and tumor-
igenicity of human lung cancer cells (30). H3K56 acetyla-
tion is highly conserved in organisms, which can interact 
with Oct4 and promote the pluripotency of mouse ESCs 
(mESCs) (31). A significant increase in the acetylation lev-
el of H3K9 in the OCT4 promoter region was found in 
spherical cultures formed from human mesenchymal stem 
cells (32), which shows that the post-translational mod-
ification of OCT4’s histones plays an important role in 
stem maintenance. 

Phosphorylation
  Phosphorylation that occurs in the POUHD region of 
OCT4 in human ESCs (hESCs) inhibits its activity by 
blocking sequence-specific DNA binding (19). Studies 
have also found that Akt-mediated OCT4 phosphorylation 
can regulate stemness by changing the interaction with 
SOX2 (29). And increasing evidence suggests that phos-
phorylation at threonine 343 of Oct4 is also critical for 
maintaining mESC pluripotency (33). In addition, differ-
ent genetic modifications also interact with each other. 
The phosphorylation of human OCT4 at serine 111 pro-
motes its ubiquitination, which affects its activity and cell 
localization (34). 

Ubiquitination, SUMOylation, and glycosylation
  Experiments show that E3 ubiquitin ligase WWP2 pro-
motes the ubiquitination and degradation of OCT4 in 
hESCs. The same result is also observed in differentiated 
mouse embryonic carcinoma cells. Furthermore, ITCH, 
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Fig. 1. Epigenetic modification related to OCT4. This figure tries to explain the role of epigenetic modification in different periods of OCT4 
expression. Met: methylation, P: phosphorylation, Ac: acetylation, Ub: ubiquitination, SUMO: SUMOylation, O-GlcNAc: monosaccharide 
O-linked β-N-acetylglucosamine.

another ligase, regulates mESC Oct4 transcription and 
degradation after ubiquitination (9, 34, 35). Carboxy ter-
minus of HSP70-interacting protein (CHIP), which is an 
E3 ubiquitin ligase, can ubiquitinate OCT4 at lysine 284, 
which can reduce OCT4 stability and subsequently inhibit 
human breast CSC production (36). Oct4 SUMOylation in 
mouse embryonic carcinoma cells results in enhanced pro-
tein stability, transactivation function and DNA binding 
(7, 29). Studies have found that OCT4 expression in-
creases in cells of rectal cancer, neuroblastoma, and mela-
noma after drug treatment. The difference is that tes-
ticular germ cell tumors treated with cisplatin appear to 
reduce OCT4 expression through SUMOylation, but spe-
cific mechanism is still unclear (37). There is evidence 
that the protein activity of human OCT4 is altered by 
monosaccharide O-linked β-N-acetylglucosamine (O-GlcN 
Ac) (9). O-GlcNAc at the threonine 228 of Oct4 boosts the 
transcription of Oct4 and thus induces a variety of pluri-
potency genes, which is essential for the reprogramming 
of mESCs (38).
  In summary, the same genetic modification may regu-
late the structure and function of OCT4 through different 
pathways due to the role of different enzymes. Various ge-
netic modifications participate in the regulation of OCT4 

activity, stability and cell localization through interaction 
in various forms (Fig. 1), all of which have an effect on 
the role of OCT4 and provide new perspectives and targets 
for cancer treatment.

Non-Coding RNA Related to OCT4

  There are many types of non-coding RNA (ncRNA), 
such as long non-coding RNA (lncRNA), small interfering 
RNA (siRNA) and micro RNA (miRNA, miR) (39). 
Non-coding RNA is involved in cell growth, differentia-
tion, apoptosis, invasion, and other important biological 
processes, and even some of them have proven to be cru-
cial in the development of cancer (40, 41). OCT4, as a rep-
resentative CSC marker, is often used to judge the role 
of ncRNA in CSCs, such as miR-30b, lncRNA HOXA11- 
AS, and lncRNA MEG3 (42-44). In addition, more and 
more ncRNAs have been shown to be related to the regu-
lation of CSCs by interacting with OCT4.

Long non-coding RNA (lncRNA)
  OCT4 binds to the lncRNA NETA1.1 promoter in hu-
man bladder cancer-resistant cells treated with cisplatin, 
making it highly expressed to maintain the invasion and 
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growth of bladder cancer cells (45). LncRNA CCAT2 over-
expressed in human breast CSCs maintains the aggressive-
ness of CSCs by up-regulating the OCT4 pseudogene 
(OCT4-PG1) (46). The ability of MALAT1 to maintain the 
stemness of human colon CSCs may be achieved by tar-
geted inhibition of miR-20b-5p and reducing the binding 
of miR-20b-5p to OCT4 mRNA (Pou5f1) (47). OCT4 pro-
motes the invasion and proliferation of cancer cells by reg-
ulating the level of lncRNA AK055347 in human osteo-
sarcoma cells (48). The activation of lncRNA AK028326 
was also found to be directly regulated by Oct4 in mESCs 
(9). Lnc-CRCMSL, as an anti-metastatic gene, prevents 
human colorectal cancer cells from reprogramming by in-
hibiting high mobility group box 2 (HMGB2) from meta-
stasizing to the nucleus and inhibiting the interaction be-
tween HMGB2 and OCT4 (49). H19 can directly regulate 
the expression of OCT4 in human prostate cells. In turn, 
in F9 embryonic carcinoma cells, Oct4 and Sox2 can also 
positively regulate H19 by weakening the methylation lev-
el of the imprinted control region and promoter (50, 51). 
And research has also found that lncRNA ROR can form 
a regulatory feedback loop with OCT4, SOX2, and NANOG 
in hESCs (52, 53).

Micro RNA (miRNA, miR)
  Further evidence suggests that the involvement of 
miRNA in maintaining pluripotency is due to the pres-
ence of OCT4 binding sites on miRNA promoters (54). It 
is worth noting that OCT4, SOX2 and NANOG can bind 
to the promoter of miR-302 and promote its expression 
in hESCs (55). The miR-302 can also indirectly positively 
regulate OCT4 activity to promote reprogramming effi-
ciencies from human adipose-derived stem cells into in-
duced pluripotent stem cells through targeted inhibition 
of Nuclear receptor subfamily 2, group F, member 2 
(NR2F2) that suppresses OCT4 promoter activity (56). 
MiR-145 directly targets the 3’UTR of OCT4, which in-
hibits the transcription of OCT4 and promotes the differ-
entiation and inhibits the proliferation of human endo-
metrial adenocarcinoma cells (57), and the same result 
was also found in glioblastoma (58). Coincidentally, OCT4 
also binds to the promoter of miR-145 to achieve func-
tional inhibition of miR-145, which seems to indicate that 
a double-negative feedback loop can be formed between 
miR-145 and OCT4 in hESCs (9, 59). The lncRNA 
linc-DYNC2H1-4, which present in the cytoplasm of gem-
citabine-resistant pancreatic cancer cells, competes with 
miR-145 and subsequently eliminates the targeted inhibi-
tion of OCT4 by miR-145 to promotes CSC phenotypes 
(60). Studies in endometrial cancer and hepatocellular car-

cinoma have still found that the targeted inhibition of 
OCT4 by miR-145 can be reversed by OCT4 pseudogene 
5 (OCT4-pg5) due to their similar binding sites in OCT4 
3’UTR (61, 62). In addition, a decrease of lincRNA ROR 
in prostate CSCs can increase the effective concentration 
of miR-145 and inhibit CSC proliferation (50, 63). In 
short, many ncRNAs may use miR-145 as an intermediate 
to complete the connection with OCT4. MiR-302/367 clus-
ter regulated by OCT4 plays a role in maintaining pluri-
potency of stem cells (54). OCT4 directly regulates miR- 
1246, and they collectively activate the Wnt/β-catenin 
signaling pathway, which can promote self-renewal, tu-
morigenicity and drug resistance of liver CSCs (64). 

Small interfering RNA (siRNA)
  Using siRNA to target OCT4 may become a means to 
eradicate CSCs, which can achieve the purpose by induc-
ing CSCs to age and apoptosis (65). The discovery of 
siOCT4 in head and neck squamous cell carcinoma CSCs 
inhibits EMT and resistance by targeting the increased 
OCT4 in CSCs, which proves a new possibility for erad-
icating cancer cells and reducing metastasis and recurrence 
(66). The same siRNA-mediated study of OCT4 targeted 
silencing has also been found in pancreatic cancer, show-
ing inhibition of pancreatic cancer cell proliferation and 
induction of apoptosis (67). The use of OCT4 siRNA in 
breast CSCs reduces drug resistance to paclitaxel and tu-
mor initiating ability (68). However, the efficiency of 
siRNA delivery is limited and needs to be improved. But 
the targeted therapy of OCT4 still provides us with new 
ideas for CSC treatment, which may need us to study 
more comprehensive technologies. 
  In fact, many ncRNAs can affect the expression of 
OCT4 when regulating CSCs, but the ncRNAs that ac-
tually interact with OCT4 are somewhat scarce. And the 
interaction between ncRNA and OCT4 is extremely com-
plicated (Table 1). The ncRNAs can directly bind to 
OCT4, or form a regulatory network with OCT4 through 
an “intermediate”, which provides multiple therapeutic 
targets for eradicating CSCs.

OCT4 Participates in the Formation of Complexes

  Protein complexes are complexes formed by two or 
more functionally related proteins through disulfide bonds 
or other interactions, which have a huge influence in the 
occurrence and progression of cancer, such as cell local-
ization, gene transcription, DNA damage repair, cell cycle, 
cell differentiation, and other biological processes (69, 70). 
OCT4 forms protein complexes with different partners 
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Table 1. The role and mechanism of ncRNA interacting with OCT4 in CSCs

Non-coding RNA 
(ncRNA)

Category 
Mechanism of regulating 
cancer stem cells (CSCs)

The role in CSCs

NETA1.1 lncRNA Binds to OCT4 Invasion and growth of CSCs
CCAT2 lncRNA Overexpressed and upregulates OCT4-PG1 Aggressiveness of CSCs
MALAT1 lncRNA Inhibits miR-20b-5p Maintain stemness
AK055347 lncRNA Overexpressed in CSCs Invasion and proliferation
AK028326 lncRNA Binds to Oct4 Maintain stemness
Lnc-CRCMSL lncRNA Inhibits interaction between HMGB2 and OCT4 Anti-metastatic
H19 lncRNA Changes chromatin conformation and epigenetic modification Maintain stemness
miR-302 miRNA Inhibits NR2F2 Maintain stemness
miR-145 miRNA Binds to 3’UTR of OCT4 Differentiation 
Lnc-DYNC2H1-4 lncRNA Binds to miR-145 Maintain stemness
ROR lncRNA Increases miR-145 and targets OCT4 directly Inhibition of CSCs
miR-1246 miRNA Activates Wnt/β-catenin Maintain stemness

(SOX2, NANOG, KLF4 or other proteins) to participate 
in the regulation of proliferation and self-renew of CSCs 
(29, 71). 

OCT4/SOX2 protein complex
  Of these, the OCT4/SOX2 protein complex is common 
(72). The Oct4/Sox2 complex single-molecule imaging 
model indicates that Sox2 may first bind to the chromo-
some, which provides a target for subsequent Oct4 bind-
ing, and that Oct4 binding can stabilize the Oct4/Sox2 
structure in mESCs (73). The OCT4/SOX2 complex in-
duces transcription in the nucleus and leads to the con-
cept that binding partners can stimulate nuclear local-
ization (8). And they bind to specific target genes to in-
duce their expression and jointly maintain CSC-like 
characteristics. However, whether the OCT4/SOX2 com-
plex works may be related to post-translational mod-
ification and the specific mechanism is not clear (5, 7, 9). 
Subsequently, it was discovered that OCT4/Lys-156 has 
different post-translational modifications in human pluri-
potent stem cells and differentiated cells, which may affect 
the stability of the OCT4/SOX2 complex and regulate the 
EMT phenotype (73). In the structure of the OCT4/SOX2 
complex, the salt bridge formed between OCT4/Lys-151 
and SOX2/Asp-107 is relatively obvious, so post-transla-
tional modification or mutation of key residues may de-
stroy the salt bridge structure and damage the stability of 
the protein complex, which seems to reduce the main-
tenance of stem cell-like characteristics by mechanically 
damaging the complex structure (73). The OCT4/SOX2 
complex has also been shown to be involved in DNA re-
pair, cell cycle, and apoptosis (74). Zfp206 as a transcrip-
tion factor involved in maintaining pluripotent stem cells, 
has been shown to interact with the Oct4/Sox2 complex 

in mESCs and is an important part of the complex (9, 75). 
In head and neck squamous cell carcinoma, OCT4/SOX2/ 
NANOG may form complexes or regulatory networks to 
prevent differentiation and lead to poor prognosis and 
chemoresistance (71). 

Other protein complexes
  β-catenin forms complexes with Oct4 and Klf4 and 
participates in regulating stem cell-like characteristics in 
mESCs (55). The sal-like 4 (SALL4) as a transcription fac-
tor maintains the proliferation, chemoresistance and 
self-renewal ability of CSCs and can form a complex or 
regulatory network with OCT4 to maintain CSC-like char-
acteristics (76-78). Ku80 encoded by the XRCC5 gene is 
related to the repair of double-stranded DNA breaks and 
can interact with SALL4, thereby interfering with the sta-
bility of the SALL4/OCT4 complex and destroying the 
self-renewal ability of liver CSCs (76). The scaffolding 
protein caveolin-1 (Cav-1), which has a tumor suppressive 
effect and is low-expressed in the tumorspheres of breast 
cancer, can form a complex with OCT4 and mediate the 
degradation of OCT4 through ubiquitin-proteasome (79, 
80). However, NO can damage the Cav-1/OCT4 complex 
by promoting phosphorylation on Cav-1 tyrosine 14 and 
boost the stability and biological function of OCT4 and 
lung CSC-like phenotype (79, 81). Under hypoxic or glu-
cose-restricted conditions, nuclear PKM2, as an isozyme 
of pyruvate kinase, can bind to OCT4 and collectively reg-
ulate the transcription of downstream stemness-related 
genes, thereby increasing cancer invasion and metastasis 
(82, 83). The BAF (BRG1-associated factor) complex inter-
acts with the Oct4 to form the Oct4/BAF complex, which 
regulates epigenetic modifications of mESC differentia-
tion (84). Functional proteins can also combine with each 
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Table 2. The role of OCT4-related complexes in cancer stem cells

Complex
The role in 

cancer stem cells (CSCs)

OCT4/SOX2 complex Gene transcription, cell 
localization, DNA repair, cell 
cycle, apoptosis

Oct4/Sox2/Zfp206 complex Maintains stemness of CSCs
OCT4/SOX2/NANOG complex Inhibition of differentiation
Oct4/KLF4/β-catenin complex Maintains stemness of CSCs
OCT4/SALL4 complex Maintains stemness of CSCs
OCT4/Cav-1 complex Degradation of OCT4
OCT4/PKM2 complex Gene transcription
Ash2I/OSN complex Gene transcription
ABCG2/OCT4 complex Maintains stemness of CSCs 
Oct4/Sox2/KLF4 complex The expression of Nanog 

other on the OCT4 gene to form a complex. For example, 
the transcription factor ZIC2 recruits nuclear remodeling 
factor (NURF) to form a complex in the OCT4 promoter 
region, activates OCT4 transcription, and promotes the 
self-renewal and differentiation potential of liver CSCs 
(85).
  With the interaction between W118 residue of Ash2I 
and Oct4, Ash2I can further recruit other transcription 
factors Sox2 and Nanog to form the Ash2I/OSN complex 
in mESCs and activate downstream stem genes to jointly 
regulate the pluripotent network by epigenetic mod-
ifications (86). Increased ABCG2 (ATPase binding cas-
sette transporter protein) in glioblastoma stem cells may 
interact with OCT4 to promote drug resistance and CSC 
survival (87, 88). The complexes formed by OCT4 may in-
duce other pluripotency-related transcription factors to 
regulate the characteristics of CSCs. For example, the 
Oct4/Sox2/Klf4 complex binds to the Nanog promoter to 
induce its transcriptional activity and achieve the function 
of regulating stem cell-like characteristic in mESCs (89). 
Actually, some researchers have suggested that OCT4 is 
sufficient for pluripotential reprogramming of human 
neural stem cells (26).
  OCT4 can independently perform stem-related regu-
lation or form a complex with stem cell transcription fac-
tors or other functional proteins to regulate CSC pro-
liferation, self-renewal, and invasion (Table 2). Therefore, 
how OCT4 interacts with binding proteins will become 
our research direction, which may provide new methods 
for our CSC treatment by interfering with complex for-
mation or blocking regulatory networks.

Signaling Pathways Related to OCT4

  In addition to being regulated by pluripotency-related 
transcription factors (such as OCT4, SOX2, NANOG, 
KLF4, MYC) and extracellular factors (such as hypoxia 
and extracellular matrix), CSCs are also interfered by vari-
ous signaling pathways (such as Wnt, Notch, PI3K/Akt, 
JAK/STAT, Hedgehog) (90). Studies have found that 
OCT4 is also involved in the complex regulation of CSCs 
as an intermediate station or terminal target in the signal-
ing pathway. 

Hedgehog signaling pathway
  Hedgehog signaling pathway stimulated by the binding 
of Hh ligand and transmembrane protein receptor PTCH 
can regulate CSC metastasis and self-renewal ability by 
up-regulating the expression of downstream target gene 
OCT4 (52, 90). The lncRNA-Hh regulated by the gene 
TWIST, induces the expression of OCT4 by promoting 
the Hedeghog pathway and maintains the tumorigenicity 
and self-renewal ability of breast CSCs (52). 

Signal transducer and activator of transcription 
pathway
  Increasing evidence suggests OCT4 is functionally de-
pendent on signal transducer and activator of tran-
scription 3 (STAT3) and the expression of OCT4 is pos-
itively related to the activity and expression of STAT3 in 
breast CSCs, cervical CSCs and liver CSCs (91-95). Inter-
leukin 6 (IL-6) activates the Janus kinase1 (JAK1)/STAT3 
signaling pathway and downstream OCT4 expression to 
complete the transformation of human breast cancer cells 
into breast CSCs (96, 97). The leukemia inhibitory factor 
(LIF) as a member of the IL-6 family can also activate 
this pathway (97). And IL-6 can also upregulate OCT4 
through JAK2/STAT3 signaling to maintain the recu-
rrence and drug resistance of liver CSCs (98). Interestingly, 
IL-6 also transiently upregulated protein tyrosine phos-
phatase receptor-type δ (PTPRD), which in turn dephos-
phorylates STAT3 and inhibits IL-6/STAT3 signal trans-
duction and OCT4 expression in human breast cancer 
cells (99). At the same time, it was found that OCT4 can 
also activate the JAK1/STAT6 signaling pathway in ovar-
ian CSCs and promote tumorigenesis (90). Moreover, 
OCT4 induces the production of IL-24 through the 
STAT3 and NF-κB signaling pathways, which can confer 
radiotherapy resistance to breast cancer cells by inhibiting 
radiation-induced senescence (65). The recognition and 
combination of ligand chemokine ligand 21 (CCL21) and 
C-C chemokine receptor 7 (CCR7) increase the expression 
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of pluripotency-related transcription factors and stem cell 
markers (such as OCT4, CD133, CD44) by activating the 
JAK2/STAT3 signaling pathway, thereby enhancing the 
invasion, migration, and tumorsphere formation of oral 
squamous cell carcinoma (100). In addition, the STAT3 
or STAT5A plays an important role in glioblastoma, 
which can be verified by the expression of OCT4 (101). 
The study further found that JAK/STAT3 activity is es-
sential for DNA demethylation of Oct4 promoter during 
mouse somatic cell reprogramming (102, 103). Ganoderma 
lucidum extract (GLE) with anticancer activity inhibits 
the STAT3 signaling pathway thereby reducing the ex-
pression of phosphorylated and total STAT3 and OCT4 
of breast CSCs (91). Ovatodiolide reduces the expression 
of genes, such as OCT4, and the formation of tumor-
spheres by inhibiting the JAK2/STAT3 signaling pathway, 
and cooperates with cisplatin to complete the treatment 
of oral cancer (104). Survivin is an apoptosis suppressor 
protein and is associated with chemoradiation resistance 
and metastasis of tumor cells (105). In hepatocellular ad-
enocarcinoma, OCT4 was found to regulate the migration 
and invasion of cancer cells through the Survivin/STAT3 
signaling pathway (106). 

PI3K/Akt pathway
  The PI3K/Akt pathway, which is related to cell growth 
and apoptosis, phosphorylates the substrate FOXO tran-
scription factor to inactivate it and thereby reducing the 
expression of OCT4, because FOXO can directly bind to 
the OCT4 promoter to regulate OCT4 transcription, which 
indicates that targeting FOXO factors can reduce the gen-
eration of CSCs and the use of PI3K inhibitors clinically 
has potential risks (107-109). Likewise, phosphorylated 
Akt can phosphorylate OCT4, which increases tumor-
igenicity and self-renewal ability of CSCs (110). However, 
the researchers demonstrate that the Akt pathway is acti-
vated when mouse embryonic carcinoma cells begin to dif-
ferentiate, and Akt phosphorylates Oct4 at serine 228 to 
accelerate its degradation (111). 

Wnt/β-catenin signaling pathway
  The Wnt/β-catenin signaling pathway plays a huge 
role in maintaining the stem cell-like characteristics of 
breast CSCs and ESCs (112, 113). Diallyl Trisulfide can 
suppress Wnt/β-catenin signaling pathway and OCT4 ex-
pression to inhibit breast CSCs (112). Exogenous intake 
of bisphenol A (BPA) and polychlorinated biphenyls (PCBs) 
can increase the expression of stem cell markers, such as 
OCT4, and drug resistance of human ovarian cancer cells 
by activating Wnt/β-catenin pathway (114). OCT4 can al-

so bind to enhancers of target genes activated by the Wnt/
β-catenin signaling pathway, so the deletion of OCT4 has 
a direct influence on the Wnt/β-catenin signaling path-
way (115). A contradictory result suggests that Wnt/β- 
catenin plays a role in hESC differentiation rather than 
self-renewal and that OCT4 may inhibit this pathway 
(116). 

Other signaling pathways
  Studies have found that fine particulate matter (PM2.5) 
exposed to human lung cancer cells promotes the ex-
pression of OCT4 by activating the Notch signaling path-
way, thereby promoting the occurrence of lung CSCs (117). 
Similarly, the relationship between the Notch pathway 
and OCT4 has also been confirmed in pancreatic CSCs 
(118). Evidence suggests that the c-Met signaling pathway 
promotes the self-renewal and metastasis of glioblastoma 
stem cells by up-regulating the expression of OCT4 and 
c-MYC (119). TGF-β RI is highly expressed in tissues 
with highly metastatic endometriosis, and it was found 
that the completion of TGF-β signal transduction re-
quires the addition of OCT4 (120). Moreover, the knock-
out of OCT4 in liver cancer cells significantly reduces the 
expression of genes related to the TGF-β pathway (ELF, 
Smad3, Smad4), which indicates that OCT4 plays an im-
portant role in CSCs by improving the TGF-β pathway 
(121). The Hippo signaling pathway was found to be in-
hibited during the progression from colorectal adenoma to 
colorectal cancer, and OCT4 as a target gene of the Hippo 
pathway was upregulated in the case of overexpression of 
downstream cascade kinases, which may be related to the 
progression and metastasis of colorectal cancer (122). The 
pluripotency mediator b-FGF upregulates the expression 
of OCT4 and maintains the undifferentiated state of hu-
man induced pluripotent stem cells through the mi-
togen-activated protein kinase (MAPK) signaling pathway 
(NRAS-RAF-MEK-ERK) (123).

Collaboration between signaling pathways
  The various signaling pathways are not independent, 
and they may be synergistic in regulating OCT4 expression. 
Argonaute 2/OCT4/methyl-CpG-binding protein 6 (Ago2/ 
OCT4/MBD6) signal transduction pathway was found to 
regulate stemness-related genes and human adipose tis-
sue-derived stem cell self-renewal (124). In addition, Ago2 
can also regulate human umbilical cord blood-derived me-
senchymal stem cell self-renewal through the expression 
of OCT4 and activation of Wnt/β-catenin and JAK2/ 
STAT3 signaling pathways (125). IL-17B related to cancer 
progression enhances the expression of OCT4, SOX2 and 
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Fig. 2. Several OCT4-related signaling pathways that participate in regulating CSCs. This figure shows several OCT4-related signaling path-
ways that participate in regulating CSCs.

other transcription factors and activates the NF-κΒ, 
STAT3 and β-catenin pathways to promote the progre-
ssion of gastric cancer (126). IL-23, which is positively cor-
related with OCT4 expression, promotes the self-renewal 
ability and tumorigenicity potential of ovarian CSCs 
through NF-κΒ and STAT3 signaling pathways (127). 
The PI3K/Akt2/mTOR signaling pathway and MAPK sig-
naling pathway promote the cisplatin and radiation resist-
ance of neuroblastoma cells by regulating the expression 
of OCT4, SOX2, CD133 and ALDH (128). In addition to 
the PTEN/PI3K/AKT/β-catenin axis, miR-429, which is 
hypomethylation and highly expressed in liver CSCs, also 
regulates the generation, invasion and metastasis of liver 
cancer through the Rb binding protein 4/E2F tran-
scription factor 1/OCT4 (RBBP4/E2F1/OCT4) axis (129, 
130). Phosphorylation and inactivation of GSK3β by Wnt, 
PI3K, Akt, and MAPK pathway reduce the expression of 
OCT4, but in head and neck cancer, CD44 can inhibit Akt 
phosphorylation and thus inhibit GSK3β inactivation 
and maintain the self-renewal ability of CSCs (131).
  In fact, OCT4-related signaling pathways are complex 
in maintaining the stem characteristics of CSCs (Fig. 2). 
There may be conflicting research results on the same sig-
nal pathway, which requires us to further determine 
whether there is a difference in cancer species specificity 

or cellular time limit. The discovery of signal pathways 
related to OCT4 provides many targets for radical treat-
ment of CSCs, which may well solve the problems of can-
cer recurrence, metastasis and drug resistance.

Cancer Treatment Effects with OCT4 Targeted

  The role of OCT4 in pluripotency maintenance makes 
OCT4 a new cancer treatment target. Increased experi-
ments have found that siRNA targeting OCT4 induces 
apoptosis, inhibits proliferation, EMT, and drug resistance 
in pancreatic cancer cells and head and neck squamous 
cell carcinoma CSCs, breast CSCs (66-68). Similar results 
have been found in lung cancer, ovarian cancer, liver can-
cer, and glioma (37, 106). However, an experiment sug-
gested that OCT4 knockout in the MCF-7 human breast 
cancer cell line induced cell invasion, migration, and 
EMT, which is because MCF-7 cells already have high ex-
pression of OCT4 (37, 132). Moreover, due to the intra- 
and extracellular degradation of enzymes, the delivery ef-
ficiency of siRNA is limited, which still needs to be solved 
(66). The epigenetic regulator JMJD3 inhibits OCT4 ex-
pression in human breast cancer cells in an independent 
manner with demethylase activity, and paricalcitol, a vita-
min D analog, inhibits OCT4 expression and stem 
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cell-like characteristics of human breast cancer cells after 
promoting JMJD3 expression (133). Recently, three differ-
ent Oct4 epitopes were chemically synthesized, among 
which Oct4-3 and carrier protein KLH induced a strong 
tumor-specific adaptive immune response in combination 
with toll-like receptor 9 agonist, thereby inhibiting mouse 
testis embryonic carcinoma growth and promoting long- 
term survival. Importantly, the mice were well tolerated 
with the Oct4-3 vaccine and no obvious adverse events 
were observed (134). Additionally, targeting upstream acti-
vators of OCT4 is also a new method. For instance, the 
use of Notch pathway inhibitor L685,458 can reduce the 
expression of OCT4 and reverse stem cell-like phenotype 
and resistance to paclitaxel of breast cancer cells (19, 135). 
Using siRNA to target OCT4B1 induces apoptosis or 
G2/M arrest in human brain cancer cells, suggesting that 
OCT4B1 may also be a potential therapeutic target in 
brain cancer (136).

Conclusions

  CSCs are a group of cells with the ability to self-renew 
and differentiate among cancer cells. Their discovery pro-
vides the possibility to solve tumor recurrence, metastasis 
and resistance. OCT4 as a stem transcription factor is 
widely expressed in ESCs and CSCs, and research has 
found that OCT4 may participate in the regulation of 
CSCs through various forms, but the specific mechanism 
may not be clear. This review mainly proposes the specific 
role of OCT4 in CSCs from the epigenetic modification 
of OCT4 and complexes, non-coding RNA and signaling 
pathways related to OCT4, which may provide multiple 
targets for the treatment of CSCs to achieve the purpose 
of extending patient life.
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